

6. Radiated Emission Band Edge

6.1. Test Equipment

The following test equipments are used during the test:

Radiated Emission Band Edge / CB1

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Double Ridged Guide	Schwarzback	BBHA 9120	D743	2014/02/17
Horn Antenna				
Spectrum Analyzer	Agilent	E4440A	MY46187335	2014/01/27
k Type Cable	Huber Suhner	Sucoflex 102	25623/2	2014/02/21

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

6.2. Test Setup

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2009 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated measurement.

6.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

6.6. Uncertainty

The measurement uncertainty ± 3.9 dB above 1GHz

6.7. Test Result

Radiated is defined as

Site : CB1	Time : 2014/01/03 - 19:00
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V /60Hz
EUT : Access Point	Note : 802.11b_2412MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:01
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	11.483	41.542	-12.458	54.000	AVERAGE
2		2387.756	30.865	11.718	42.583	-11.417	54.000	AVERAGE
3	*	2390.000	30.888	11.922	42.810	-11.190	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:07
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	24.089	54.148	-19.852	74.000	PEAK
2	*	2389.460	30.883	34.749	65.632	-8.368	74.000	PEAK
3		2390.000	30.888	30.598	61.486	-12.514	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:08
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2412MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	12.328	42.387	-11.613	54.000	AVERAGE
2		2386.336	30.850	13.953	44.803	-9.197	54.000	AVERAGE
3	*	2390.000	30.888	14.279	45.167	-8.833	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:13
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2462MHz

		riequency	COTTECT FACIO	Reading Level	Neasure Lever	warym	Linin	Delector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	31.858	24.872	56.730	-17.270	74.000	PEAK
2	*	2484.336	31.867	27.854	59.721	-14.279	74.000	PEAK
3		2500.000	31.988	24.086	56.075	-17.925	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:14
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	31.858	12.655	44.513	-9.487	54.000	AVERAGE
2		2484.399	31.867	12.597	44.464	-9.536	54.000	AVERAGE
3	*	2500.000	31.988	12.613	44.602	-9.398	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:20
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	31.858	35.022	66.880	-7.120	74.000	PEAK
2	*	2483.769	31.861	35.823	67.684	-6.316	74.000	PEAK
3		2500.000	31.988	30.294	62.283	-11.717	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2014/01/03 - 19:21
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11b_2462MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2483.500	31.858	14.526	46.384	-7.616	54.000	AVERAGE
2		2484.714	31.870	14.315	46.186	-7.814	54.000	AVERAGE
3		2500.000	31.988	13.658	45.647	-8.353	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 17:40
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2412MHz_0D,0F

NI _a	4
INC	I A I
110	ω.

2

3

2388.750

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

27.805

26.990

58.680

57.878

-15.320

-16.122

74.000

74.000

PEAK

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.876

30.888

Site : CB1	Time : 2013/12/05 - 17:42
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2412MHz_0D,0F

3

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

13.830

44.718

-9.282

54.000

AVERAGE

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.888

Site : CB1	Time : 2013/12/05 - 17:59
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2412MHz

		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	26.231	56.290	-17.710	74.000	PEAK
2		2389.318	30.882	39.636	70.517	-3.483	74.000	PEAK
3	*	2390.000	30.888	39.734	70.622	-3.378	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 17:58
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2412MHz

3

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

21.580

52.468

-1.532

54.000

AVERAGE

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.888

Site : CB1	Time : 2013/12/05 - 17:33
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 17:34
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 17:28
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2462MHz

Note:

3

2500.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

25.575

57.564

-16.436

74.000

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

31.988

Site : CB1	Time : 2013/12/05 - 17:27
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11g_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 16:42
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2412MHz

3

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

25.065

55.953

-18.047

74.000

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.888

Site : CB1	Time : 2013/12/05 - 16:43
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2412MHz

2

3

2388.466

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

13.110

13.486

43.982

44.374

-10.018

-9.626

54.000

54.000

AVERAGE

AVERAGE

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.873

30.888

Site : CB1	Time : 2013/12/05 - 16:47
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2412MHz

		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	23.650	53.709	-20.291	74.000	PEAK
2	*	2388.182	30.869	36.065	66.934	-7.066	74.000	PEAK
3		2390.000	30.888	34.436	65.324	-8.676	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 16:49
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2412MHz

2

3

2389.602

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

21.484

21.916

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.884

30.888

6. The average measurement was not performed when the peak measured data under the limit of average detection.

52.368

52.804

-1.632

-1.196

54.000

54.000

AVERAGE

AVERAGE

Site : CB1	Time : 2013/12/05 - 16:27
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 16:28
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 16:34
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2462MHz

3

2500.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

25.716

57.705

-16.295

74.000

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

31.988

Site : CB1	Time : 2013/12/05 - 16:37
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 20MHz_2462MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 15:33
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2422MHz

NI	oto	
IN	ole	

2

3

2387.704

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

26.319

25.638

57.184

56.526

-16.816

-17.474

74.000

74.000

PEAK

PEAK

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.865

30.888

Site : CB1	Time : 2013/12/05 - 15:35
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2422MHz

Noto	
INULE	

2

3

2388.464

2390.000

1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

13.971

14.225

44.843

45.113

-9.157

-8.887

54.000

54.000

AVERAGE

AVERAGE

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

30.873

30.888

Site : CB1	Time : 2013/12/05 - 15:45
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2422MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	30.059	25.052	55.111	-18.889	74.000	PEAK
2	*	2388.464	30.873	38.773	69.645	-4.355	74.000	PEAK
3		2390.000	30.888	36.918	67.806	-6.194	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 15:43
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2422MHz

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 15:52
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2452MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	2456.620	31.579	64.314	95.893	21.893	74.000	PEAK
2		2483.500	31.858	26.004	57.862	-16.138	74.000	PEAK
3		2500.000	31.988	24.617	56.606	-17.394	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 15:52
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - HORIZONTAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2452MHz

		((48)	(abav)	(abat/iii)		(aBat/iii)	
1	*	2435.625	31.362	54.140	85.501	31.501	54.000	AVERAGE
2		2483.500	31.858	14.012	45.870	-8.130	54.000	AVERAGE
3		2500.000	31.988	12.709	44.698	-9.302	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 15:57
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2452MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2483.500	31.858	34.052	65.910	-8.090	74.000	PEAK
2	*	2486.965	31.894	34.393	66.287	-7.713	74.000	PEAK
3		2500.000	31.988	27.863	59.852	-14.148	74.000	PEAK

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Site : CB1	Time : 2013/12/05 - 16:00
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB1_FCC_EFS_1-18G-1_0901 - VERTICAL	Power : AC 120V/60Hz
EUT : Access Point	Note : 802.11n 40MHz_2452MHz

1	*	2483.500	31.858	21.189	53.047	-0.953	54.000	AVERAGE
2		2484.160	31.865	20.968	52.833	-1.167	54.000	AVERAGE
3		2500.000	31.988	15.955	47.944	-6.056	54.000	AVERAGE

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment

The following test equipments are used during the test:

Occupied Bandwidth / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2014/08/05

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

7.2. Test Setup

7.3. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure section 8.1 of KDB558074 v03r01 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100KHz, VBW \geq 3xRBW, Sweep time=Auto, Set Peak detector.

7.4. Limits

The 6 dB bandwidth must be greater than 500 kHz.

7.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

7.6. Uncertainty

The measurement uncertainty is defined as ±150Hz

7.7. Test Result

Product	Access Point			
Test Item	Occupied Bandwidth			
Test Mode	Mode 1: Transmit			
Date of Test	2013/12/05	Test Site	SR7	

802.11 b, ANT 0					
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result	
1	2412	10.10	≧0.5	Pass	
6	2437	10.10	≧0.5	Pass	
11	2462	10.10	≧0.5	Pass	

🗊 Agilent Spectrum Analyzer - Occupied BW 11:02:57 AM Dec 05, 2013 50 \$ INSE:IN Freq / Channel Center Freq: 2.412000000 GHz Trig: Free Run Avg|Hold>10/10 #Atten: 30 dB Ext Gain: -1.50 dB Center Freq 2.412000000 GHz Radio Std: None Input: RF 9 Radio Device: BTS #IFGain:Low 10 dB/div Ref 30 dBm og 20 **Center Freq** 2.412000000 GHz 10 nnn so D -10 -20 -30 -40 -50 -60 CF Step 3.000000 MHz Center 2.412 GHz Span 30 MHz Auto Man #Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms **Occupied Bandwidth Total Power** 26.67 dBm 12.251 MHz **Transmit Freq Error** -9438 Hz **OBW Power** 99.00 % x dB Bandwidth 10.10 MHz x dB -6.00 dB STATUS MSG

Channel 1

🗊 Agilent Spectru	m Analyzer - Occupie	JBW							
Center Freq	2.43700000(Input: RF	Center Fi Center Fi Trig: Free #Atten: 30	NSE:INT req: 2.4370 e Run 0 dB	00000 GHz Avg Hold Ext Gain:	ALIGNAUTO 1:> 10/10 : -1.50 dB	Radio Std	M Dec 05, 2013 : None vice: BTS	Freq / Channel	
10 dB/div	Ref 30 dBm		_	1	T		r	-	
20									Center Freq 2.437000000 GHz
-10		M	and	June	h	4			
-20	and the f						ሙ		
-40 -50	www.www.					f4	. Marine Contraction	may way to	
-60									CF Step 3.000000 MHz
#Res BW 10	0 KHZ		#VE	Span #VBW 300 kHz Sweep 2				2.933 ms	<u>Auto</u> Man
Occupied Bandwidth 12.291 MHz				Total Power			9 dBm		
Transmit	KHz OBW Power			99.00 %					
x dB Ban	Hz	Hz x dB		-6	.00 dB				
MSG						STATUS	3		

🗊 Agilent Spectru	m Analyzer - Occupied	BW							
Center Freq	2.462000000 Input: RF	GHz #IFGain:Low	C SE Center Fi Trig: Free #Atten: 30	NSE:INT req: 2.4620 e Run 0 dB	00000 GHz Avg Holc Ext Gain	ALIGNAUTO I:>10/10 : -1.50 dB	Radio Sto	AM Dec 05, 2013 I: None vice: BTS	Freq / Channel
10 dB/div	Ref 30 dBm			1	r.	-	T	-	
20			my	m	-	-			Center Freq 2.462000000 GHz
-10		N	1		P	A.			
-30	mont						Amor	AP14	
-50 -60								A. Mariano.	
Center 2.462 #Res BW 10	2 GHz 10 kHz		#VE	300 SW	kHz		Spa Sweep	an 30 MHz 2.933 ms	CF Step 3.000000 MHz <u>Auto</u> Man
Occupie	d Bandwidtl 12	274 Mł	Ηz	Total Power			2 dBm		
Transmit	Freq Error	-21609	Hz OBW Power			9	9.00 %		
x dB Ban	dwidth	lHz	z xdB		-6.00 dB				
MSG			_			STATU	s		-

Г

Product	Access Point		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/05	Test Site	SR7

802.11 b, ANT 1											
Channel No.	Frequency	Measurement Level	Required Limit	Decult							
Channel No.	(MHz)	(MHz)	(MHz)	Result							
1	2412	10.07	≧0.5	Pass							
6	2437	10.10	≧0.5	Pass							
11	2462	10.10	≧0.5	Pass							

Agilent Spe	ctrum Analyzer - Occupied	IBW							
Center F	50 12 req 2.412000000 Input: RF) GHz #IFGain:Low	SENSE:INT Center Freq: 2.41 Trig: Free Run #Atten: 30 dB	2000000 GHz Avg Holc Ext Gain	ALIGNAUTO 1:>10/10 : -1.50 dB	11:04:33 A Radio Std: Radio Dev	M Dec 05, 2013 : None rice: BTS	Freq / Channel	
10 dB/div									
20 10		man	many par	Mary				Center Freq 2.412000000 GHz	
-10				L	Ay				
-30 -40 -50	mmmm				7	And the stand of t	Spending and man		
-60 Center 2	412 GHz		#VBW 30			Spa	n 30 MHz 2 033 me	CF Step 3.000000 MHz <u>Auto</u> Man	
Occui	pied Bandwidtl	h 2.210 MH	Total	Power	26.2	8 dBm	2.955 113		
Transı x dB B	nit Freq Error Sandwidth	-7096 10.07 M	Hz OBW Hz x dB	Power	9 -6	9.00 % .00 dB			
MSG					STATU	s			

🗊 Agilent Sper	ctrum Analyzer - Occupied	BW						
Center Fr	req 2.437000000 Input: RF	GHz Cen Trig #IFGain:Low #At	sense:INT nter Freq: 2.437(j: Free Run ten: 30 dB	Freq / Channel				
10 dB/div	Ref 30 dBm		-				-	
20		antern	man	24.5.4				Center Freq 2.437000000 GHz
-10		N		V	X			
-20	mannen				1	When we water		
-50	'yır'						a and a second	
-60						-		CF Step
Center 2. #Res BW	437 GHz 100 kHz	n	Span 30 MHz Sweep 2.933 ms				n 30 MHz 2.933 ms	Auto Man
Occup	bied Bandwidth 12	211 MHz	Total Power HZ (Hz OBW Power		24.21 dBm			
Transn	nit Freq Error	7.657 kHz			99	0.00 %		
x dB B	andwidth	10.10 MHz	x dB		-6.	00 dB		
MSG					STATUS	1		

🗊 Agilent Spec	trum Analyzer - Occupied	BW					
Center Fr	Freq / Channel						
10 dB/div	Ref 30 dBm						
20 10			un mai	24			Center Freq 2.462000000 GHz
-10		N		V	h		_
-20 -30 -40	monarra				J.	When the work of	
-50							
-60							CF Step
Center 2.4 #Res BW	162 GHz 100 kHz	<u>n</u>	#VBW 300	kHz	S	Span 30 weep 2.933	MHz Auto Man
Occup	ied Bandwidth 12	.155 MHz	Total Power		23.94 d	IBm	
Transm	nit Freq Error	-11254 Hz	OBW	Power	99.0	0 %	
x dB Ba	andwidth	10.10 MHz	x dB		-6.00	dB	
MSG					STATUS		

Product	Access Point		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/05	Test Site	SR7

802.11 g, ANT 0				
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result
1	2412	16.60	≧0.5	Pass
6	2437	16.60	≧0.5	Pass
11	2462	16.60	≧0.5	Pass

🗊 Agilent Spectrum	n Analyzer - C	Occupied B	W							_ 🗖 🖸 🚺
Center Freq	Center Freq 2.412000000 GHz Input: RF #IFGain:Low					SENSE:INT ALIGNAUTO Center Freq: 2.412000000 GHz Trig: Free Run Avg Hold:>10/10 #Atten: 30 dB Ext Gain: -1.50 dB				Freq / Channel
10 dB/div	Ref 30 d	Bm	1.1	2				_		-
20 10										Center Freq 2.412000000 GHz
-10 -20		J	nn waard waard	᠋ᡶᠰᡀᠬᢇᠧᠬ	mann	nn worken	money			
-30 -40 70 10 10 10 10 10	Same and a second							V V V	munuw	
-60 Center 2.412 #Res BW 100	GHz 0 kHz			#VI	3W 300	kHz		Spa Sweep	un 30 MHz 2.933 ms	CF Step 3.000000 MHz Auto Man
Occupied Bandwidth 16.470 MF				Total Power			19.23	3 dBm		
Transmit	-11578	Hz OBW Power			91	9.00 %				
x dB Band	dwidth		16.60 M	Hz	x dB		-6.	00 dB		
MSG							STATUS	5		

🗊 Agilent Spe	ctrum Analyzer -	Occupied B	W							
So of AC Center Freq 2.437000000 GHz C Input: RF #IFGain:Low #I					SENSE:INT ALIGNAUTO Center Freq: 2.437000000 GHz Trig: Freq: 2.437000000 GHz Trig: Freq: Run Avg Hold:>10/10 #Atten: 30 dB Ext Gain: -1.50 dB			11:13:36 / Radio Std Radio Dev	M Dec 05, 2013 : None vice: BTS	Freq / Channel
10 dB/div	Ref 30 c	IBm			_			_		
20									-	Center Freq 2.437000000 GHz
0	-	from	vite your way and a second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	howwww	-naranga-saan	howway			
-20	pa ann Mar	þ						Montalina	and the state of t	
-30										
-50										
Center 2.	437 GHz		1					Spa	in 30 MHz	CF Step 3.000000 MHz
#Res BW	100 kHz	_		#V	BW 300	kHz		Sweep	2.933 ms	Auto main
Occur	oled Band	Ηz	Total Power			7 dBm				
Transn	Hz OBW Power			99	9.00 %					
x dB B	andwidth	16.60 N	AHz	Hz x dB		-6.00 dB				
MSG							STATUS	5		

🗊 Agilent Spec	trum Analyzer - Occupie	d BW							
Center Fr	eq 2.46200000 Input: RF	Center Freq: 2.462000000 GHz Trig: Freq: Run Avg Hold:>10/10 #Atten: 30 dB Ext Gain: -1.50 dB			Radio Std Radio Dev	M Dec 05, 2013 I: None vice: BTS	Freq / Channel		
10 dB/div	Ref 30 dBm		_		_				
20 10									Center Freq 2.462000000 GHz
-10	J.	mannannannannannannannannannannannannann	mmm	portant	www.	mmon			
-30						-	North March	η-1 ₁₋₁ Λ	
-50 Jun 24 14						-		" March Showers	
-60							Sno	- 20 MHz	CF Step 3.000000 MHz
#Res BW	100 kHz		#VE	#VBW 300 kHz Sweep 2.933				2.933 ms	<u>Auto</u> Man
Occup	ied Bandwidt 16	Total Power		16.4	3 dBm				
Transm	iit Freq Error	-10502	Hz OBW Power			9	9.00 %		
x dB Ba	andwidth	16.60 M	Hz	x dB		-6.00 dB			
MSG						STATUS	5		

Product	Access Point					
Test Item	Occupied Bandwidth					
Test Mode	Mode 1: Transmit					
Date of Test	2013/12/05	Test Site	SR7			

802.11 g, ANT 1				
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result
1	2412	16.62	≧0.5	Pass
6	2437	16.60	≧0.5	Pass
11	2462	16.62	≧0.5	Pass

🗊 Agilent Spectrum	Analyzer - Occupi	ed BW						
Center Freq	Ω 2.41200000 Input: RF	AC DO GHz #IFGain:Low	SENSE:INT Center Freq: 2.41 Trig: Free Run #Atten: 30 dB	2000000 GHz Avg Hold: Ext Gain:	ALIGNAUTO > 10/10 -1.50 dB	11:11:33 Radio Sto Radio De	AM Dec 05, 2013 d: None vice: BTS	Freq / Channel
10 dB/div	Ref 30 dBm		-1					
20 10								Center Freq 2.412000000 GHz
-10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	monthere	in and the second	many			
-20	- And					No. No.		
-40 Muran	And and					- Mar	Auroral	-
-60								CF Step
Center 2.412 #Res BW 100	GHZ) kHz	2 FB	#VBW 300 kHz			Sweep	Auto Man	
Occupied	Occupied Bandwidth 16.525 MH Transmit Freq Error -17068		Total Power IZ Hz OBW Power		18.76 dBm			
Transmit I					99.00 %			
x dB Band	lwidth	16.62 M	Hz x dB		-6.	00 dB		
MSG					STATUS			

rum Analyzer - Occupi	ed BW							
50 ນີ 2.43700000 Input: RF	20 GHz #IFGain:Low	C SEN Center Fre Trig: Free #Atten: 30	ise:INT eq: 2.43700 Run dB	0000 GHz Avg Hold Ext Gain:	ALIGNAUTO >10/10 -1.50 dB	11:12:54 Radio Sto Radio De	AM Dec 05, 2013 I: None vice: BTS	Freq / Channel
Ref 30 dBm		_	_		_			
								Center Freq 2.437000000 GHz
- Im	undraf a consister of the	many	hanner warden	aroonaar yaya	warmen			
www.www					2	Manne	mannon	
			_		-			
			-					
								CF Step
37 GHz 100 kHz		#VB	≠VBW 300 kHz			Spa Sweep	an 30 MHz 2.933 ms	Auto Man
Occupied Bandwidth 16.666 MHz			Total Power		27.03 dBm			
Transmit Freq Error 12.620 kH x dB Bandwidth 16.60 MH		Hz	OBW P	ower	99	9.00 %		
		Hz xdB			-6.00 dB			
					STATUS			
	Ref 30 dBm Ref 30 dBm	Spanner Cocupied BW Spanner Imput: RF Imput: RF #IFGain:Low Ref 30 dBm Imput: RF Imput: RF #IFGain:Low Imput: RF #IFGain:Low<	Ref 30 dBm Center From Trig: Free Watten: 30 Ref 30 dBm Center From Trig: Free Watten: 30 Ref 30 dBm Openation of the second sec	Ref 30 dBm Ref 30 dBm Ref 30 dBm Ref 30 dBm MirGain:Low <	Signal and sense intil an antipart of the sense intil and sense intiteration.	AC SENSE:1NT ALGINAUTO SQ AC SENSE:1NT ALGINAUTO Q 2.437000000 GHz Input:RF #IFGain:Low #Atten: 30 dB Avg Hold>10/10 #Atten: 30 dB Avg Hold>10/10 Ext Gain: -1.50 dB Ref 30 dBm Avg Hold>10/10 #Atten: 30 dB Avg Hold>10/10 Ext Gain: -1.50 dB Avg Hold>10/10 Ext Gain: -1.50 d	AC SENSE:NT ALGNAUTO DI12:54. SQ AC SENSE:NT ALGNAUTO DI12:54. Radio Sto Ref 30 dBm Ref 30 dBm AC SENSE:NT ALGNAUTO DI12:54. Prig: Free Run Avg Hold>10/10 Radio De Ref 30 dBm AC SENSE:NT Avg Hold>10/10 Radio De Ref 30 dBm AC SENSE:NT Avg Hold>10/10 Radio De Ref 30 dBm Action 1000 KHz Sto Spa Spa Spa Spa Spa Spa Spa Spa	Ref 30 dBm Content Free; 2,437000000 GHz Radio Std: None Input: RF #/FGain:Low #Atten: 30 dB Ext Gain: -1.50 dB Radio Device: BTS Ref 30 dBm

🗊 Agilent Spect	rum Analyzer - Occupie	d BW				-			
Center Freq 2.462000000 GHz		C SEN Center Fre Trig: Free #Atten: 30	SENSE: INTI A Center Freq: 2.462000000 GHz Trig: Free Run Avg Hold:>- #Atten: 30 dB Ext Gain: -1		ALIGNAUTO 11:15:11AM Dec 65,20 Radio Std: None >10/10 -1.50 dB Radio Device: BTS		M Dec 05, 2013 : None vice: BTS	Freq / Channel	
10 dB/div	Ref 30 dBm		-		_		-		
20									Center Freq 2.462000000 GHz
-10		www.mwww.ww	month	-s ^{par} et Mander	n.napt.Mannan	manumany			
-30							- Non		
-50 sime mark	at the man			-	_	-	vv	many	
-60									CF Step
Center 2.4 #Res BW	62 GHz 100 kHz	1.00	#VBI	#VBW 300 kHz Sweep 3			n 30 MHz 2.933 ms	Auto Man	
Occupied Bandwidth 16.515 MHz			łz	Total Power		16.0	5 dBm		1
Transmit Freq Error -23828		Hz	OBW P	ower	9	9.00 %			
x dB Ba	Indwidth	16.62 N	Hz	x dB		-6.	00 dB		
MSG						STATUS	5		

QuieTek

Product	Access Point		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/05	Test Site	SR7

IEEE 802.11n (20MHz)(ANT 0)									
Channel No.	Frequency	Measurement Level	Required Limit	Pocult					
	(MHz)	(MHz) (MHz)		Result					
1	2412	17.75	≧0.5	Pass					
6	2437	17.79	≧0.5	Pass					
11	2462	17.78	≧0.5	Pass					

🗊 Agilent Speetr	um Analyzer - Occupie	d BW							
Center Fre	50 Ω 9 2.41200000 Input: RF	0 GHz #IFGain:Low	Center F Center F Trig: Fre #Atten: 3	inse:INT req: 2.4120 e Run 0 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO 4:>10/10 : -1.50 dB	Radio Sto Radio De	AM Dec 05, 2013 d: None wice: BTS	Freq / Channel
10 dB/div	Ref 30 dBm				_				
20									Center Freq 2.412000000 GHz
-10	hum	~uMmurrowarowarow	W TALLAN	human	จะ คำสามารถการณ์สะวง	And warming and a star	- 		
-20	- normal						The way		
-40 mm-40 mm-40 mm-50	Jon your						"ww	- Allow when	
-60									CF Step
Center 2.47 #Res BW 1	12 GHZ 00 kHz		#VE	#VBW 300 kHz			Sweep	an 30 MHz 2.933 ms	<u>Auto</u> Man
Occupi	Occupied Bandwidth 17.599 MH Transmit Freq Error -1211		Total Power IZ Hz OBW Power		19.14	19.14 dBm 99.00 %			
Transmi					9				
x dB Bai	ndwidth	17.75 M	Hz	x dB		-6	.00 dB		
MSG						STATUS	8		

D Agilent Sper	ctrum Analyzer	Occupied B	W	_						
Center Freq 2.437000000 GHz		Center F Center F Trig: Free #Atten: 3	SENSE:INT Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold: #Atten: 30 dB Ext Gain: -		Radio I:>10/10 : -1.50 dB Radio		AM Dec 05, 2013 I: None vice: BTS	Freq / Channel		
10 dB/div	Ref 30 c	Bm								
20										Center Freq 2.437000000 GHz
-10		Wardenste	Mananaria	an throw the second	hours	L fatter of the second second	and an and an and and and and and and an	h		
-20 Monaphr	www.	_						Thomas	www.	
-30										
-50	-	-								
-60	497 645							- Cm		CF Step 3.000000 MHz
#Res BW	437 GH2 100 kHz			#VE	SW 300	kHz		Sweep	2.933 ms	<u>Auto</u> Man
Occup	Occupied Bandwidth 17.806 MH			Ηz	Total Power		28.10 dBm			
Transn	Transmit Freq Error 7.375		Hz OBW Power		99.00 %					
x dB B	andwidth		17.79 N	1Hz	x dB		-6.	00 dB		
MSG							STATUS	5		

🗊 Agilent Spec	trum Analyzer - Occ	upied BW							
Center Fr	eq 2.462000 Input:	000 GHz RF #IFGain:Low	Center Fr Center Fr Trig: Free #Atten: 30	inse:INT req: 2.46200 e Run 0 dB	00000 GHz Avg Hold Ext Gain:	ALIGNAUTO I:> 10/10 : -1.50 dB	Radio De	AM Dec 05, 2013 d: None vice: BTS	Freq / Channel
10 dB/div	Ref 30 dBi	n	-			_		_	
20 10									Center Freq 2.462000000 GHz
-10	r	www.www.www.www.www.	gen on the second	hammen	-phonese and	- rannon mang			
-20	work						Contraction of the second seco		
-40 -50 mg/mm	mound						m/	n www.	-
-60 Center 2.4	162 GHz						Spa	an 30 MHz	CF Step 3.000000 MHz
#Res BW	100 kHz		#VE	#VBW 300 kHz			Sweep	2.933 ms	<u>Auto</u> Man
Occupied Bandwidth 17.596 MH		Ηz	Total Power			2 dBm			
Transm	Transmit Freq Error -442		Hz	OBW F	ower	99	9.00 %		
x dB Ba	andwidth	17.78 №	IHz	x dB		-6.	00 dB		
MSG						STATUS	1		

Product	Access Point		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/05	Test Site	SR7

IEEE 802.11n (20MHz)(ANT 1)									
Channel No.	Frequency	Measurement Level	Required Limit	Result					
Channel No.	(MHz)	(MHz) (MHz)		Result					
1	2412	17.67	≧0.5	Pass					
6	2437	17.69	≧0.5	Pass					
11	2462	17.69	≧0.5	Pass					

D Agilent Spectrum	n Analyzer - Occupi	ed BW						
Center Freq	So Ω Senter Freq 2.412000000 GHz Input RF #IFGain:Low		Center Freq: 2.412000000 GHz Trig: Free Run Avg Hold>10/10 #Atten: 30 dB Ext Gain: -1.50 dB			11(16)43) Radio Sto Radio De	AM Dec 05, 2013 I: None vice: BTS	Freq / Channel
10 dB/div	Ref 30 dBm					50	_	
20 10								Center Freq 2.412000000 GHz
-10	min	withour and a start and a start and a start a st	monthelm	manahanna	pello-dreateration	1		
-20						1		
-40 -50	Ally rolling					N. Mr.	a the many	
-60	CHA						20 1014-	CF Step 3.000000 MHz
#Res BW 10	0 kHz		#VBW 3	100 kHz		Sweep	2.933 ms	<u>Auto</u> Man
Occupie	d Bandwid 1	th 7.578 MH	Tot IZ	al Power	18.5	7 dBm		
Transmit	Transmit Freq Error -4309		Hz OBW Power		9	9.00 %		
x dB Band	x dB Bandwidth 17.67 M		Hz x d	в	-6	.00 dB		
MSG					STATU	5	4	

🗊 Agilent Spe	etrum Analyzer - I	Occupied BW								
Center F	enter Freq 2.437000000 GHz Input: RF #IFGain:Low				C SENSE:INT ALIGNAUTO Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:>10/10 #Atten: 30 dB Ext Gain: -1.50 dB			11(20:50) Radio Std Radio Dev	AM Dec 05, 2013 I: None vice: BTS	Freq / Channel
10 dB/div	Ref 30 c	Bm								
20		for to Th				0	B. Ar A.			Center Freq 2.437000000 GHz
-10		Juraina and	ላለስኪ _ው , መንግሥ		Manage	ANAVA16-10.7A	and a second of	ha		
-20 mJMM	montana							. Mrynyhn	many have	
-30										
-50										
Center 2.	437 GHz							Spa	an 30 MHz	CF Step 3.000000 MHz
#Res BW	100 kHz			#VE	BW 300 H	Hz		Sweep	2.933 ms	Auto Man
Occur	oied Band	width 17.7	16 MI	Hz	Total P	ower	27.64	l dBm		
Transr	Transmit Freq Error 4.552 kH				kHz OBW Power		99	9.00 %		
x dB B	x dB Bandwidth 17.69 MH			AHz	x dB		-6.	00 dB		
MSG			_		_		STATUS	1		

🗊 Agilent Spec	trum Analyzer - Occi	upied BW							
So 2 Center Freq 2.462000000 GHz Input: RF #IFGain:Low			AC SE Center Fr Trig: Free #Atten: 30	Center Freq: 2.462000000 GHz Trig: Free Run Avg Hold>10/10 #Atten: 30 dB Ext Gain: -1.50 dB			Radio De	AM Dec 05, 2013 d: None vice: BTS	Freq / Channel
10 dB/div	Ref 30 dBr	n	-						
20									Center Freq 2.462000000 GHz
-10		WANDALANA	harverandry	Montant	www.www	Long			
-20	1						1		
-40 -50 mr. Mora	n many not						pol	My hor Mary Have	
-60 Center 2.4	462 GHz		#)/E	200 4			Spa	an 30 MHz	CF Step 3.000000 MHz <u>Auto</u> Man
Occup	ied Bandwi	_{dth} 17.579 MI	^{#VE}	Total P	ower	16.50) dBm	2.933 ms	
Transmit Freq Error -3707		Hz OBW Powe			99	9.00 %			
x dB Ba	andwidth	17.69 N	IHZ	X dB		-6.	oo aB		
MSG						STATUS			

Product	Access Point		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/05	Test Site	SR7

IEEE 802.11n (40MHz)(ANT 0)										
Channel No	Frequency	Measurement Level	Required Limit	Pocult						
Channel No.	(MHz)	(MHz)	(MHz)	Result						
3	2422	36.60	≧0.5	Pass						
6	2437	36.58	≧0.5	Pass						
9	2452	36.59	≧0.5	Pass						

🗊 Agilent Spectru	m Analyzer - Or	ccupied BW								
Center Fred	2.42200	0000 GH	AC	SE Center Fr	NSE:INT req: 2.4220	00000 GHz	ALIGN AUTO	11:24:22 Radio Ste	AM Dec 05, 2013 d: None	Save
	Input: RF IFGain:Low #Atten: 30 dB Ext Gain: -1.50 dB Radio Device: BTS									State►
10 dB/div	Ref 30 dl	Bm		_		1	1	r		
20										Thorn
-10 -20	, J	Alternation	ኬትሳ ራ ለ ‹ስሥን _ደ ተያውሶላ	norrandin da	provinitanita N	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	ጚ ፞ኇጚፘዹጜ፞ _ዸ ጜቍጚ			
-30 -40 -50	1 States							- Manager	mmunuhan	Data (Export) ► Trace 1
-60 Center 2.422 #Res BW 10	2 GHz 0 kHz			#VE	SW 300	kHz		Sp: Swee	an 60 MHz ep 5.8 ms	Screen Image
Occupie	d Bandv	vidth 36.2	38 MH	Iz	Total I	Power	17.8	2 dBm		
Transmit	Transmit Freq Error -2584				Hz OBW Power		9	9.00 %		
x dB Ban	x dB Bandwidth 36.60 MH			Hz	x dB		-6.	.00 dB		
MSG			-		_		STATUS	8	4	

💵 Agilent Spec	trum Analyzer - Occupie	d BW							
Center Fre	50.Ω Center Freq 2.437000000 GHz Input: RF #IFGain:Low			ENSE:INT Freq: 2.43700 e Run 10 dB	00000 GHz Avg Hold Ext Gain	ALIGNAUTO 4:>10/10 : -1.50 dB	Radio Sto Radio De	AM Dec 05, 2013 d: None wice: BTS	Freq / Channel
10 dB/div	Ref 30 dBm								
20 10									Center Freq 2.437000000 GHz
-10	marian	๛ฦ๛๛ฦๅๅๅ๛ๅๅๅ๛๛๛ๅๅ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	มนให้เขาการที่จา	proposition may as here	<u>~</u> ሁላለክውክስትላ›	rap now of a strategy and			
-30	and from the						"hundred	4	
-50 -50						-	-	and with when the	-
-60									CF Step
Center 2.4 #Res BW	37 GHz 100 kHz		#VI	BW 300 H	Hz		Sp: Swee	an 60 MHz ep 5.8 ms	6.000000 MHz <u>Auto</u> Man
Occup	ied Bandwidf 36	h 6.227 MH	Ηz	Total P	ower	18.58	3 dBm		
Transmit Freq Error 5.781 H		Hz	OBW F	ower	99	9.00 %			
x dB Ba	x dB Bandwidth 36.58 MH		IHz	x dB		-6.	00 dB		
MSG						STATUS	5		

🗊 Agilent Spec	trum Analyzer - Occupie	d BW							
So of Center Freq 2.452000000 GHz		C SEI Center Fr Trig: Free #Atten: 30	NSE;INT req: 2.45200 ≥ Run) dB	00000 GHz Avg Holc Ext Gain	ALIGNAUTO 1:>10/10 : -1.50 dB	Radio Sto Radio De	AM Dec 05, 2013 I: None vice: BTS	Freq / Channel	
10 dB/div	Ref 30 dBm		_				-10		
20 10									Center Freq 2.452000000 GHz
-10		ป <i>ิจาม</i> ุระน <i>า</i> ปุจะรูกเของเทษ	anter anter and a starting and a sta	portunities	anter	apa a gadatar a			
-30 -40 -50 unmarkt	- And						- Windhard	n way where	
-60 Center 2.4	152 GHz						Spa	an 60 MHz	CF Step 6.000000 MHz
#Res BW	100 kHz		#VB	SW 300 I	Hz		Swee	ep 5.8 ms	Auto Man
Occup	ied Bandwidt 36	հ 6.211 MF	łz	Total F	ower	16.1	0 dBm		
Transmit Freq Error 3.070 kl			kHz OBW Power			9	9.00 %		
x dB Bandwidth 36.59 MHz		Hz	x dB		-6	.00 dB			
MSG				STATU	S				

QuieTek

Product	Access Point		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/05	Test Site	SR7

IEEE 802.11n (40MHz)(ANT 1)										
Channel No.	Frequency (MHz)	Measurement Level (MHz)	Required Limit (MHz)	Result						
3	2422	36.44	≧0.5	Pass						
6	2437	36.46	≧0.5	Pass						
9	2452	36.50	≧0.5	Pass						

D Agilent Spect	rum Analyzer - Occupie	ed BW							
Center Fre	So of Freq 2.422000000 GHz		Center Freq: 2.422000000 GHz Trig: Free Run Avg Hold>10/10 #Atten: 30 dB Ext Gain: -1.50 dB		Radio Std: None Radio Device: BTS		Freq / Channel		
10 dB/div	Ref 30 dBm		-		_		-		
20 10									Center Freq 2.422000000 GHz
-10		างปัจจุญาติเหลือจะประ	manhadawa	 polon point our de	๛ _ู มาไปในการจะบนไม่งไป	๛๛๛๛๚๛๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛			
-30 -40 -50	and the forget of the second						June Constant	and an annound and an	
-60 Center 2.4 #Res BW	22 GHz 100 kHz		#VE	3W 300 F	(Hz		Spa	an 60 MHz ep 5.8 ms	CF Step 6.000000 MHz Auto Man
Occup	ied Bandwid 3	th 6.233 MH	Ηz	Total P	ower	18.02	2 dBm		
Transm x dB Ba	Transmit Freq Error 11.120 k x dB Bandwidth 36.44 M		:Hz IHz	OBW F	ower	99 -6.	9.00 % 00 dB		
MSG	sg					STATUS	8		

🗊 Agile	ant Speetrum	1 Analyzer - Occi	rpied BW						
Cent	So 2 Center Freq 2.437000000 GHz Input: RF #IFGain:Low				SENSE:BNT ALGINAUTO Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold>10/10 #Atten: 30 dB Ext Gain: -1.50 dB			AM Dec 05, 2013 I: None vice: BTS	Freq / Channel
10 dB	/div	Ref 30 dBr	n	_					
20 - 10 -									Center Freq 2.437000000 GHz
0 -10		pilros	intryling north-altrapyliterastic	และพารีการเรา	pollon-vindraulon-gradewar	๛๛ุ๛๛๛๛๛๛๛๛๛๚	1		
-20 — -30 —		in hostiller		4			hin hard in		
-40 - 40 - -50 -	and a second and a second	гън [.]						and and and and	
-60 Cente	er 2.437	GHz					Spa	an 60 MHz	CF Step 6.000000 MHz
#Res	BW 100) kHz		#VB	#VBW 300 kHz			ep 5.8 ms	<u>Auto</u> man
00	cupied	d Bandwi	_{dth} 36.219 MH	łz	Total Powe	r 18.7	8 dBm		
Tra	Transmit Freq Error 11.898 k			Hz	OBW Powe	r 9:	9.00 %		
xc	x dB Bandwidth 36.46 MH		Hz	x dB	-6	.00 dB			
мыс						STATUS	8		

II Agilent Spectr	um Analyzer - Occup	ied BW					
Center Fre	g 2.45200001 Input: Ri	ADO GHZ #IFGain:Low	Center Freq: 2.4520 Trig: Free Run #Atten: 30 dB	ALIGNAUT 000000 GHz Avg Hold:>10/10 Ext Gain: -1.50 dB	Radio Std: Radio Devi	Dec 05, 2013 None ce: BTS	Freq / Channel
10 dB/div	Ref 30 dBm	-			_		
20							Center Freq 2.452000000 GHz
-10 -20	Jane	ilonilonastative loce populates de	apenandrina phanibila	ากลุการกำรงสาราวไรการสารารการการการการการการการการการการการการ	włyk,		
-30 -40 -50 vestimutan	South States				- Winner William	Landh winder page	
-60 Center 2.43 #Res BW 1	52 GHz 00 kHz		#VBW 300	kHz	Spar Sweep	60 MHz 5.8 ms	CF Step 6.000000 MHz <u>Auto</u> Man
Occupi	ed Bandwid 3	th 6.222 M⊦	Total IZ	Power 16.	.38 dBm		1
Transmi	t Freq Error	14.264 k	Hz OBW	Power	99.00 %		
x dB Ba	ndwidth	36.50 M	Hz x dB		-6.00 dB		
MSG				STA	TUS		

8. **Power Density**

8.1. Test Equipment

The following test equipment is used during the test:

Power Density / SR7

Instrument	Manufacturer	Model No.	Serial No	Next Cal. Date
Spectrum Analyzer	Agilent	N9010A-EXA	US47140172	2014/08/05

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.

8.2. Test Setup

IEEE 802.11 b / g / a / n (20M / 40M) MODE

8.3. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

8.4. Test Procedures

The EUT was setup according to ANSI C63.4: 2009; tested according to DTS test procedure section 10.2 of KDB558074 v03r01 for compliance to FCC 47CFR 15.247 requirements. Set 3KHz \leq RBW \leq 100 kHz, Set VBW \geq 3xRBW, Sweep time=Auto, Set Peak detector; tested according to section E)c) of KDB662911 v02v01.

8.5. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247: 2012

8.6. Uncertainty

The measurement uncertainty is defined as ±1.27dB.

8.7. Test Result

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11b, ANT 0						
Channel No	Frequency	Measure Level	Limit	Decult		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
1	2412	-0.067	≦8	Pass		
6	2437	0.383	≦8	Pass		
11	2462	-0.424	≦8	Pass		

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11b, ANT 1						
Channel No	Frequency	Measure Level	Limit	Decult		
Channel No.	(MHz)	(dBm)	(dBm)	Result		
1	2412	-11.111	≦8	Pass		
6	2437	-0.134	≦8	Pass		
11	2462	0.527	≦8	Pass		

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11b , ANT 0+1 (Worse Condition+10log(Ant N))=Ant0						
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
1	2412	2.943	≦8	Pass		
6	2437	3.393	≦8	Pass		
11	2462	2.586	≦8	Pass		

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE802.11g, ANT 0

Channel No.	Frequency	Measure Level	Limit	Result
1	2412	-17.342	(dBm) ≦8	Pass
6	2437	-11.499	≦8	Pass
11	2462	-18.715	≦8	Pass

Channel 6

Channel 11

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE802.11g, ANT 1

Channel No.	Frequency (MHz)	Measure Level	Limit (dBm)	Result
1	2412	-20.780	≦8	Pass
6	2437	-12.199	≦8	Pass
11	2462	-27.380	≦8	Pass

🔰 Agilent Spectrum Analyzer - Swept SA 10:35:35 AM Dec 31, 2013 SENSE:INT Screen Image Avg Type: Log-Pwr Avg|Hold: >10/10 Ext Gain: -2.50 dB TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N Center Freq 2.412000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low Input: RF Themes, Mkr1 2.414 505 GHz -20.780 dBm Flat Monochrome 10 dB/div Log Ref 20.00 dBm Save As .. 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.41200 GHz Span 30.00 MHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 3.16 s (10001 pts) MSG STATUS

Channel 11

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE802.11g, ANT 0+1 (Worse Condition+10log(Ant N))=Ant0							
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result			
1	2412	-14.332	≦8	Pass			
6	2437	-8.489	≦8	Pass			
11	2462	-15.705	≦8	Pass			

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11n_20MHz , ANT 0							
Channel No.	Frequency Measure Level Limit		Decul				
	(MHz)	(dBm)	(dBm) (dBm) Res				
1	2412 -16.776 ≦8		≦8	Pass			
6	2437	-8.728	≦8	Pass			
11	2462	-20.849	≦8	Pass			

					onann					
🗊 Agilent Spe	ctrum Analyzer -	Swept SA								
1	50 Q	1	P A	IC SE	NSE;INT		ALIGN AUTO	10:41:54 A	M Dec 31, 2013	Sereen Image
Marker 1	2.4189570	000000 G	Hz	Tria: Ero	Due	Avg Type	: Log-Pwr	TRA		Screen image
1	In	put: RF PI	10: Fast 😱	#Atten: 30	dB	Ext Gain:	-2.50 dB	D	ETPNNNNN	Thomas
-			Junicow		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10.00 - 01.0	Miland	0 440 0	57 OU-	i nemes
the stand of the							IVIKLI	2.410 5	76 dDm	Flat Monochrome
10 dB/div	Ref 20.00	dBm						-10.7	70 UBIII	(*
										1
10.0							_	_		Save As
10,0										and the second second
0.00				-						
ant -							10 million (11)			
-10.0				-			A1		-	
12 m							T.			
-20.0		LANAAAAAA		A MALIANANA	KALLALAAA	ANARALISA	LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			
-		WAARALA	TWINNIN	(A MANANA A	VARAAAAA AA	NAMANA	ACCESSION ALL AND A			
-30.0	-	-		10 10 C 2.04	1			-		
121 1 100							1			
-40.0	3	1		-		_		Ni		
1.0								1		
-50.0							-			
	1111							The state		
-60.0	J. MT						-	NA.	4	
a baddle	LANTN'							34	Plant bland	
-70.0 4-1.11								1	The Hand	
10.0	100									
1.				4 m 4						
Center 2.4	41200 GHz		C. Carlos	Same			30.5	Span 3	0.00 MHz	
#Res BW	3.0 kHz		#VBW	10 kHz			Sweep	3.16 s (1	0001 pts)	
MSG							STATUS			0
			_	_						

Channel 11

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11n 20MHz , ANT 1

	,				
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result	
1	2412	-20.749	≦8	Pass	
6	2437	-9.654	≦8	Pass	
11	2462	-26.473	≦8	Pass	

📁 Agilent Spectrum Analyzer - Swept SA 10:43:50 AM Dec 31, 2013 Screen Image Avg Type: Log-Pwr Avg|Hold: >10/10 Ext Gain: -2.50 dB TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N Marker 1 2.419500000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast 😱 IFGain:Low Input: RF Themes. Mkr1 2.419 500 GHz -20.749 dBm Flat Monochrome 10 dB/div Log Ref 20.00 dBm Save As .. 10.0 0.00 -10.0 -20.0 аланталараларананана алагандара -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.41200 GHz Span 30.00 MHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 3.16 s (10001 pts) MSG STATUS

Channel 11

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11n_20MHz , ANT 0+1 (Worse Condition+10log(Ant N))=Ant0								
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result				
1	2412	-13.766	≦8	Pass				
6	2437	-5.718	≦8	Pass				
11	2462	-17.839	≦8	Pass				

Product	Access Point		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2013/12/31	Test Site	SR7

IEEE 802.11n 40MHz, ANT 0

	,			
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
3	2422	-20.179	≦8	Pass
6	2437	-20.447	≦8	Pass
9	2452	-23.299	≦8	Pass

📁 Agilent Spectrum Analyzer - Swept SA 11:03:27 AM Dec 31, 2013 SENSE:INT Screen Image Avg Type: Log-Pwr Avg|Hold: >10/10 Ext Gain: -2.50 dB TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N Marker 1 2.404540000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast Input: RF Themes, Mkr1 2.404 540 GHz -20.179 dBm Flat Monochrome 10 dB/div Log Ref 20.00 dBm Save As .. 10,0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.42200 GHz Span 60.00 MHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 6.33 s (10001 pts) MSG STATUS

and the second se	Contraction of the local division of the loc									
Agilent Spectru	m Analyzer -	Swept SA								
5	0Ω		A	C SE	NSE:INT		ALIGNAUTO	11:05:52 A	M Dec 31, 2013	Screen Image
Center Frec	2.4370	00000 GI put: RF PM	HZ 10: Fast 😱	Trig: Free	Run	Avg Type Avg Hold:	>10/10	TYPE MANNAN		Corconniago
		IFG	iain:Low	#Atten: 30) dB	Ext Gain:	-2.50 dB		ap manni	Themes
10 dB/div R	ef 20.00 (dBm					Mkr1	2.452 9	54 GHz 47 dBm	Flat Monochrome
Log					-					
10,0		ç			-					Save As
0.00			_	_	_					
-10.0				11						
-20.0							♦ ¹	-		
-30.0								-		
10.0		s traffad				1.1000	12511			
540.0					r.			N		
-50.0	a har							Wellin		
-60.0				1.221	1			(Indiana)	Property of	
-70.0				1.11					al stealing	
Center 2.437	00 ĜHz		20 (1911)	10101				Span 6	0.00 MHz	
#Kes BW 3.0	KHZ		#vBW	TU KHZ			sweep	0.33 S (1	uuui pts)	
MSG	_		_	_			STATUS		_	

Product	Access Point				
Test Item	Power Density				
Test Mode	Mode 1: Transmit				
Date of Test	2013/12/31	Test Site	SR7		

IEEE 802.11n 40MHz, ANT 1

_ /						
Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result		
3	2422	-24.859	≦8	Pass		
6	2437	-25.276	≦8	Pass		
9	2452	-29.111	≦8	Pass		

🔰 Agilent Spectrum Analyzer - Swept SA 11:00:11 AM Dec 31, 2013 SENSE:INT Screen Image Avg Type: Log-Pwr Avg|Hold: >10/10 Ext Gain: -2.50 dB TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N Marker 1 2.407018000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast C Input: RF Themes, Mkr1 2.407 018 GHz -24.859 dBm Flat Monochrome 10 dB/div Log Ref 20.00 dBm Save As .. 10,0 0.00 -10.0 -20.0 Au -30.0 -40.0 -50.0 -60.0 -70.0 Center 2.42200 GHz Span 60.00 MHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 6.33 s (10001 pts) MSG STATUS

Channel 6

D Agilent Spectrum Analy	zer - Swept SA								
50 Ω		AC	SEL	NSE:INT		ALIGNAUTO	11:09:26 Af	M Dec 31, 2013	0
Marker 1 2.4407	62000000 GH	z			Avg Type	: Log-Pwr	TRAC	E123456	Screen Image
1	Input: RF PNC IFGa	: Fast 😱 in:Low	#Atten: 30	Run IdB	Avg Hold: Ext Gain:	>10/10 -2.50 dB	DE		Themes
						Mkr1	2 440 7	62 GHz	Flat Monochrome
10 dBidiy Pef 20	00 dBm						-29.1	11 dBm	That morroent office
Log	oo abiii		-		1				
10,0						-	-		Save As
					100				
0.00			_						
-10.0			_	_		-			
-20.0			_						
		1							
-30.0		P							
	a Mathematical and really in	alata hada dhi	didin dina.	Wantibull	dillo and and	hiditulation	U		
-40.0	Mathania and		Manuam.	Hotan Altin	Mathanan	DEMONSTR	1		
	W. Oak I	al draft	and a st	W. G. W.	to had a h	and the d			
-50.0				1		-	1		
00.0	1						1		
60.0				(Ni.		
-00.0 al 11.1							West of		
700 Manuelle Miller	μ.							والمتحا والمراجع فيتأها أقار	
Waterhard Diverting			1 1			1		ter fill woodstille some	
			1000	-					
Center 2.45200 GI	lz	1000	200.2	-		3.21	Span 6	0.00 MHz	
#Res BW 3.0 kHz		#VBW	10 kHz			Sweep	6.33 s (1	0001 pts)	
MSG JAligning 5 of 7						STATUS			

Product	Access Point				
Test Item	Power Density				
Test Mode	Mode 1: Transmit				
Date of Test	2013/12/31	Test Site	SR7		

IEEE802.11n 40MHz, ANT 0+1 (Worse Condition+10log(Ant N))=Ant0

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
3	2422	-17.169	≦8	Pass
6	2437	-17.437	≦8	Pass
9	2452	-20.289	≦8	Pass