
Antennas Distance

The antennas distance between Zigbee and WLAN is more than $5\,\mathrm{cm}$.

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lin	nits for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300 300–1500	61.4	0.163	1.0 f/300	6
1500-100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180f ²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30-300	27.5	0.073	0.2	30
300-1500 1500-100,000			f/1500 1.0	30 30

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE: 110 TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also capply in situations when an individual is transient through coloritor where occupational/controlled imits apply provided he or she is made aware of the potential for exposure.
posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure.
exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1	2	3	4	5
Frequency	Electric Field	Magnetic Field	Power	Averaging
(MHz)	Strength; rms	Strength; rms	Density	Time
	(V/m)	(A/m)	(W/m ²)	(min)

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)/d}$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields: $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

The power density in units of mW/cm^2 is converted to units of W/m^2 by multiplying by a factor

<u>LIMITS</u>

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

I	Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
			Distance	Power	Gain	Density	Density
١			(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)

7.5 Maximum Permissible Exposure

The devices are subject to the radio frequency radiation exposure requirements specified in FCC 1.1307 (b). 2.1091 and 2.1093, as appropriate. All equipment shall be considered to operate in a	C parts

ETC Report No. : 09-12-MAS-184-01

MPE calculation:

The EUT is considered as a mobile device according to OET Bulletin 65, Edition -97-01. Therefore distance to human body of min. 20 cm is determined.

The limit of Power density for General Population / Umcontrolled Exposure is $1.0\ mW/cm^2.$ Formula:

 $S = EIRP / 4\pi R^2$

Calculation:

EIRP	Radiated Power (dBm)	24.1
EIRP	Radiated Power (mW)	257.04
R	Distance (cm)	20
S	Power Density (mW/cm²)	0.051