

Issued Date: 2017-06-17

FCC Test Report

Client

Information:

Applicant: Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd

Applicant add.: No.6, Yong An Road, Beijiao, Shunde, Foshan, China

ProductInformation:

EUT Name: Microwave Oven

Model No.: NS-MW16SS8

Brand Name: N/A

FCC ID: VG8XM245AYYPV4BBY

Standards: 47 CFR PART 18:2015

Prepared By:

UL-CCIC Company Limited

Add.: Electronic Building, Parage Electronic Industrial Park, No. 8 Nanyun Er Road, Guangzhou Science Park, Guangzhou, 510663 China

Date of Receipt:May18, 2017 Date of Test: May18~Jun. 08, 2017

Date of Issue: Jun.09, 2017 Test Result: Pass

This device described above has been tested by BZT Testing Technology Co., Ltd, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of UL-CCIC Company Limited.

Reviewed by: Zem Than Approved by: Linds Mi

		Table of Contents	Page
1		TEST SUMMARY	3
2		GENERAL INFORMATION	4
	2.1	CLIENT INFORMATION	4
	2.2	GENERAL DESCRIPTION OF E.U.T.	4
	2.3	DETAILS OF E.U.T.	4
	2.4	DESCRIPTION OF SUPPORT UNITS	4
	2.5	DEVIATION FROM STANDARDS	4
	2.6	GENERAL TEST CLIMATE DURING TESTING	4
	2.7	ABNORMALITIES FROM STANDARD CONDITIONS	4
	2.8	TEST LOCATION	4
	2.9	TEST FACILITY	4
3		EQUIPMENT LIST	5
4		EMISSION TEST RESULTS	8
	4.1	OPERATING FREQUENCY	8
	4.2	RF OUTPUT POWER MEASUREMENT	11
	4.3	CONDUCTED EMISSIONS, 150 KHZ TO 30MHZ	12
	4.4	RADIATED EMISSIONS,9 KHZ TO 25GHZ	16
5		PHOTOGRAPHS	26
	5.1	CONDUCTED EMISSIONS, 150 KHZ TO 30 MHZ TEST SETUP	26
	5.2	RADIATED EMISSIONS TEST SETUP	27
	5.3	EUT CONSTRUCTIONAL DETAILS	29

Issued Date: 2017-06-17

TEST SUMMARY

Electromagnetic Interference (EMI)					
Test	Test Requirement	Test Method	Class / Severity	Result	
Conducted Emission (150 kHz to 30 MHz)	47 CFR PART 18: 2015	FCC OST/ MP-5:1986	18.307(b)	PASS	
Radiated Emission (9 kHz to 30 MHz)	47 CFR PART 18: 2015	FCC OST/ MP-5:1986	18.305(b)	PASS	
Radiated Emission (30 MHz to1 GHz)	47 CFR PART 18: 2015	FCC OST/ MP-5:1986	18.305(b)	PASS	

Radiated Emission (9 kHz to 30 MHz)	47 CFR PART 18: 2015	FCC OST/ MP-5:1986	18.305(b)	PASS		
Radiated Emission (30 MHz to1 GHz)	47 CFR PART 18: 2015	FCC OST/ MP-5:1986	18.305(b)	PASS		
Remark : EUT: In this whole report EUT means Equipment Under Test. Model named description:						

Issued Date: 2017-06-17

2 GENERAL INFORMATION

2.1 CLIENT INFORMATION

Applicant: Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd

Address of Applicant: No.6, Yong An Road, Beijiao, Shunde, Foshan, China

2.2 GENERAL DESCRIPTION OF E.U.T.

Product Description: Microwave Oven Model No.: NS-MW16SS8

2.3 DETAILS OF E.U.T.

Rated Supply (Voltage): AC 120V 60Hz

Power Cable: 1.0m x 3 wires unscreened AC mains cable.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with water.

Load for power output measurement :1000 milliliters of water in the beaker located in the centre of the oven

Load for frequency measurement :1000 milliliters of water in the beaker located in the centre of the oven Load for conducted and radiated emission measurement :1000 milliliters of water in the beaker located in the centre of the oven

2.5 DEVIATION FROM STANDARDS

None.

2.6 GENERAL TEST CLIMATE DURING TESTING

Temperature: 15-30 °C Humidity: 30~70 %RH Atmospheric Pressure: 860-1060 mbar

2.7 ABNORMALITIES FROM STANDARD CONDITIONS

None.

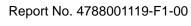
2.8 TEST LOCATION

BZT Testing Technology Co., Ltd

Buliding 17, Xinghua Road Xingwei industrial Park Fuyong, Baoan District,

Shenzhen, Guangdong, China

2.9 TEST FACILITY


FCC- Registration No: 701733

Issued Date: 2017-06-17

3 EQUIPMENT LIST

Test Equipment	Model	Manufacturer	Seria	l No.	Cal Until	
EMC Laboratory						
	Rad	iation Test Equipm	ent			
EMI Test Receiver	ESCI	R&S	1014	127	2017/10/22	
Bilog Antenna	CBL6111D	TESEQ	346	78	2017/11/23	
Horn Antenna	BBHA	SCHWARZBEC	9120D	-1343	2018/03/04	
	9120D(120	K				
	1)					
Low frequency	R01	N/A	N/	A	2017/10/22	
cable						
PREAMPLIFIER	8449B	Agilent	605	38	2017/10/22	
Temperature &	HH660	Mieo	N/	A	2017/10/22	
Humitidy						
Temperature &	HH660	Mieo	N/	A	2017/10/22	
Humitidy						
Spectrum	E4407B(9K	Agilent	MY501	40340	2017/10/22	
Analyzer	-26.5G)					
Passive Loop	6512	ETS	0016	5355	2017/10/22	
Antenna						
MEASUREMENT	30M-200MHz				2.83	
UNCERTAINTY	RTAINTY 200MHz-1000MHz				2.94	
	1GHz-6GHz				3.03	

	<u> </u>					
Test Equipment	Model	Manufacturer	Seri	al No.	Cal Until	
Conduction Test equipment						
EMI Test Receiver	ESCI	R&S	10 ⁻	1427	2017/10/22	
LISN	ENV216	R&S	10	1242	2017/10/22	
Absorbing clamp	MDS-21	R&S	100	0668	2017/10/22	
Temperature & Humitidy	HH660	Mieo	N	I/A	2017/10/22	
conduction Cable	C01	EM	N	I/A	2017/10/22	
Clamp Cable	C02	EM	N	I/A	2017/10/22	
LOOPS	ZN30401	ZNINAN	13	018	2018/10/23	
MEASUREMENT	15	50KHz-30MHz			2.67	
UNCERTAINTY	9	KHz-150KHz			2.88	
	F	RF Test Equipment				
ETSI						
EN300328.1.8.1T			STS	-E056		
EST SYSTEM						
MXA SIGNAL Analyzer	N9020A	Agilent	MY49	100060	2017/10/22	
MXG Vector Signal Generator	N5182A	Agilent	MY46	240556	2017/10/22	
POWER SENSOR	RPR3006W	DARE)41SNO)3	2017/10/22	
RF Relay matrix tsj	RFM-S621	TSJ	04	261	2017/10/22	
Vector signal generator	E8257D-52	Agilent	MY45	141029	2017/10/22	
programmable power supply	3642A	Agilent				
11DB ATTENUATOR	8494B	HP	DC0-	18GHz		
70DB ATTENUATOR	8495B	Agilent	DC0-	18GHz		

	1		T		
Test Equipment	Manufacturer	Model	Serial No.	Cal Until	
RS Tester					
vector Signal Generator	Agilent	E4438C	US44271917	2017.09.29	
Power meter	Agilent	E4419B	GB40202122	2017.09.29	
Power Sensor	Agilent	E9300A	MY41496625	2017.09.29	
Power Sensor	Agilent	E9300A	MY41496628	2017.09.29	
RF power Amplifier	OPHIR	5225R	1045	N/A	
RF power Amplifier	OPHIR	5273R	1018	N/A	
Antenna	SCHWARZBE CK	STLP9128E- special	STLP9128E s#139	N/A	
Antenna	SCHWARZBE CK	STLP 9149	STLP 9149 #456	N/A	
	Aux	iliary Equipment	t		
Power meter	EVERFINE	PF9901	G100731cj135 1244	2017.09.29	
Weight meter	bALANCE	BCS-511-60	110213	2017.09.29	
Thermometer	0-200°C	STS 001	001	2017.05.09	
Thermometer	0-200°C	STS 002	002	2017.05.09	
Beaker	1L	STS 003	003	N/A	
Beaker	1L	STS 004	004	N/A	
Beaker	Diameter 1900mm height 900mm	STS 005	005	N/A	

Issued Date: 2017-06-17

4 EMISSION TEST RESULTS

4.1 OPERATING FREQUENCY

Test Requirement: 47 CFR PART 18
Test Method: FCC OST/ MP-5

Test Date: 2017-06-17
Power Supply: AC 120V 60Hz
Frequency Range: 2400-2500 MHz

Detector: Peak

Limit:

ISM equipment may be operated on any frequency above 9 kHz.And the frequency band 2400-2500MHz is allocated for use by ISM equipment. (§18.301)

ISM frequency Tolerance 6.78 MHz ±15.0 kHz 13.56 MHz ±7.0 kHz 27.12 MHz ±163.0 kHz 40.68 MHz| ±20.0 kHz 915 MHz ±13.0 MHz 2,450 MHz ±50.0 MHz 5,800 MHz ±75.0 MHz 24,125 MHz ±125.0 MHz 61.25 GHz ±250.0 MHz 122.50 GHz ±500.0 MHz 245.00 GHz ±1.0 GHz

4.1.1 FREQUENCY FOR NORMAL VOLTAGE

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

MEASUREMENT DATA

START Frequency (MHz)	STOP Frequency (MHz)
2435.5	2464.8

Issued Date: 2017-06-17

4.1.2 FREQUENCY FOR LINE VOLTAGE

The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.

MEASUREMENT DATA

(80%voltage) Frequency (MHz)	(125% voltage) Frequency (MHz)
2432.9	2465.6

Issued Date: 2017-06-17

4.1.3 RADIATION HAZARD TEST

CLIENT:	Guangdong Midea Kitchen Appliances Manufacturing	TEST STANDERD:	FCC Part 18		
GEIENT.	Co.,Ltd	TEST STANDEND.	1 00 1 411 10		
MODEL NUMBERS:	NS-MW16SS8	PRODUCT:	Microwave Oven		
MODEL TESTED:	NS-MW16SS8	EUT DESIGNATION:	Home or Office		
TEMPERATURE:	22.5°C	HUMIDITY:	55%		
ATM PRESSURE:	101kPa	GROUNDING:	Through AC Power Cord		
TESTED BY:	Barry li	DATE OF TEST:	May 18th,2017		
TEST REFERENCE:	ANSI C63.4-2014, FCC/OST MF	P-5:1986			
	The EUT was set-up according to	to the FCC MP-5 and FCC	Part 18 for Radiation		
	Hazard Measurement. The measurement was using a microwave leakage meter to				
TEST PROCEDURE:	measure the Radiation leakage	in the as-received conditio	n with the oven door		
TEST PROCEDURE:	closed. A 1000ml water load in a	a beaker was located in the	center of the oven and the		
	Microwave Oven was set to maximum power. While the oven operating, the				
microwavemeter will check the leakage and then record the maximum leakag					
TESTED RANGE:	N/A				
TEST VOLTAGE:	AC 120V/60Hz				
	There was no microwave leakag	ge exceeding a power level	of 0.19mW/cm2 observed		
	at any point 5cm or more from the external surface of the oven. A maximum of 1.0				
RESULTS:	mW/cm² is allowed in accordance with the applicable FCC standards. Hence,				
RESULTS.	microwave leakage in the as-received condition with the oven door closed was below				
	the maximum allowed. The test results relate only to the equipment under test				
	provided by client.				
CHANGES OR	There were no modifications ins	talled by ECMG Electronic	Technical Testing Corp		
MODIFICATIONS:	(Shenzhen) test personnel.				
M. UNCERTAINTY:	0.0002 mW/cm2				

Issued Date: 2017-06-17

4.2 RF OUTPUT POWER MEASUREMENT

Test Requirement: 47 CFR PART 18
Test Method: FCC OST/ MP-5
Test Date: 2017-06-17

Power Supply: AC 120V 60Hz

4.2.1 E.U.T. OPERATION

Test the EUT in microwave mode with full power.

4.2.2 MEASUREMENT DATA

Mass of	Mass of the	Ambient	Initial	Final	Heatin	Power
water(g	container(g	temperature(°C	temperature(°C	temperature(°C	g	output(watts
)))))	time(S))
1000	358	26.3	25	46	120	1130

Formula:

$$P = \frac{4.2 \times m_w(T_2 - T_1) + 0.9 \times m_c(T_2 - T_0)}{+}$$

NOTE:

P is the microwave power output, in watts mw is the mass of the water, in grams

 $m_{\text{\tiny C}}$ is the mass of the container, in grams

To is the ambient temperature, in degrees Celsius

To is the initial temperature of the water, in degrees Celsius

T2 is the final temperature of the water, in degrees Celsius

t is the heating time, in seconds, excluding the magnetron filament heating-up time.

Issued Date: 2017-06-17

4.3 CONDUCTED EMISSIONS, 150 KHZ TO 30MHZ

Test Requirement: 47 CFR PART 18
Test Method: FCC OST/ MP-5

Test Date: 2017-06-17
Power Supply: AC 120V 60Hz
Frequency Range: 150 kHz to 30 MHz

Detector: Peak for pre-scan, Quasi-Peak and Average for the final result.

(9kHz Resolution Bandwidth for 150 kHz to 30 MHz)

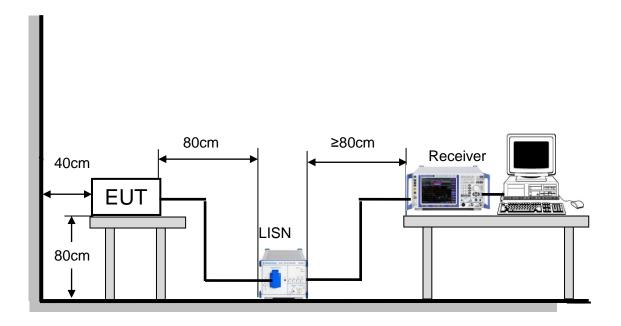
Limit:

Frequency range MHz	AC mains	
IVII 12	Quasi-peak	Average
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]
0.5 to 5	56	46
5 to 30	60	50

Note1: The limit decreases linearly with the logarithm of the frequency in therange $0.05\ \text{MHz}$ to $0.5\ \text{MHz}$

MHz.

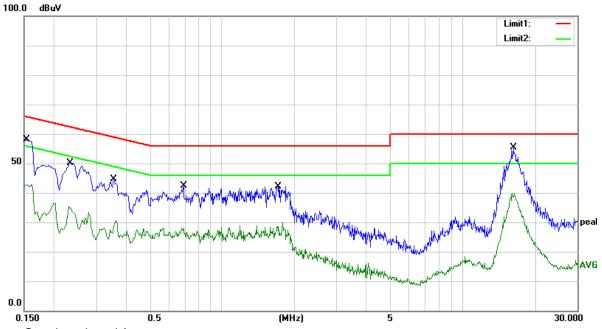
Note2: The lower limit is applicable at the transition frequency.


4.3.1 E.U.T. OPERATION

Test the EUT in microwave mode with full power.

4.3.2 TEST SETUP AND PROCEDURE

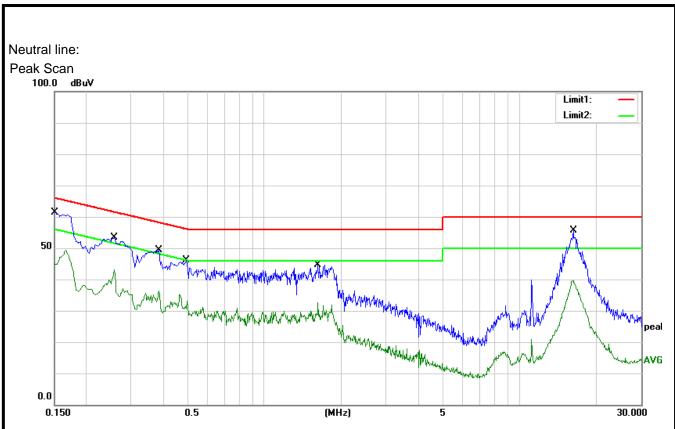
- 1. The mains terminal disturbance voltage test was conducted in a shielded room.
- 2. The EUT was connected to nominal power supply through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3. The tabletop EUT was placed upon a non-metallic table 1 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


4.3.3 MEASUREMENT DATA

Pre-scan was performed with peak detected on both live and neutral cable. Quasi-peak & average measurements were performed at the frequencies which maximum peak emission level was detected.

Please see the attached Quasi-peak and Average test results.

Live line:


Peak Scan

Quasi-peak	and	Average	measurement:
------------	-----	---------	--------------

No	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBu√)	(dB)	(dBu∀)	(dBu∀)	(dB)	Remark
1	0.1540	48.78	9.23	58.01	65.78	-7.77	QP
2	0.1540	33.65	9.23	42.88	55.78	-12.90	AVG
3	0.2340	40.91	9.20	50.11	62.31	-12.20	QP
4	0.2340	25.75	9.20	34.95	52.31	-17.36	AVG
5	0.3540	35.34	9.29	44.63	58.87	-14.24	QP
6	0.3540	19.26	9.29	28.55	48.87	-20.32	AVG
7	0.6900	33.08	9.23	42.31	56.00	-13.69	QP
8	0.6900	17.13	9.23	26.36	46.00	-19.64	AVG
9	1.7100	33.01	9.22	42.23	56.00	-13.77	QP
10	1.7100	19.40	9.22	28.62	46.00	-17.38	AVG
11	16.2900	45.72	9.57	55.29	60.00	-4.71	QP
12	16.2900	29.00	9.57	38.57	50.00	-11.43	AVG

Quasi-peak and Average measurement:

No	Frequency	Reading	Correction	Result	Limit	Margin	Daws and
	(MHz)	(dBu∀)	(dB)	(dBu√)	(dBu√)	(dB)	Remark
1	0.1500	52.14	9.23	61.37	66.00	-4.63	QP
2	0.1500	35.58	9.23	44.81	56.00	-11.19	AVG
3	0.2580	44.12	9.17	53.29	61.50	-8.21	QP
4	0.2580	33.85	9.17	43.02	51.50	-8.48	AVG
5	0.3860	40.01	9.40	49.41	58.15	-8.74	QP
6	0.3860	26.91	9.40	36.31	48.15	-11.84	AVG
7	0.4940	36.91	9.16	46.07	56.10	-10.03	QP
8	0.4940	21.41	9.16	30.57	46.10	-15.53	AVG
9	1.6260	35.41	9.21	44.62	56.00	-11.38	QP
10	1.6260	23.52	9.21	32.73	46.00	-13.27	AVG
11	16.2980	46.01	9.57	55.58	60.00	-4.42	QP
12	16.2980	29.25	9.57	38.82	50.00	-11.18	AVG

Issued Date: 2017-06-17

4.4 RADIATED EMISSIONS,9 KHZ TO 25GHZ

Test Requirement: 47 CFR PART 18
Test Method: FCC OST/ MP-5
Power Supply: AC 120V 60Hz
Test Date: 2017-06-13~17
Frequency Range: 9 KHz to 25GHz

Measurement Distance: 3m

Detector: Peak for pre-scan, Average for the final result

(200 Hz Resolution Bandwidth for 9 kHz to 150 kHz 9 kHz Resolution Bandwidth for 150 kHz to 30 MHz 100 kHz Resolution Bandwidth for 30MHz to 1,000MHz 1 MHz Resolution Bandwidth for 1,000MHz to 25,000MHz)

Limit: (a) ISM equipment operation on a frequency specified in §18.301 is

permitted unlimited radiated energy in the band specified for that

frequency.

(b) The field strength levels of emissions which lie outside the bands specified in §18.301,unless otherwise indicated, shall not exceed the

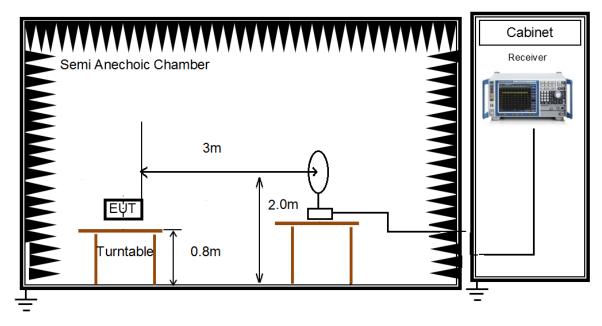
following:

RF Power generated by equipment(watts)	Field strength Limit(uV/m) @300m			
Below 500	25			
500 or more	25*SQRT(power/500)			

Power =1130W according to cluse7.2.2

Limit=20lg(25*SQRT(power/500))+20lg(300/3) @ 3m distance.

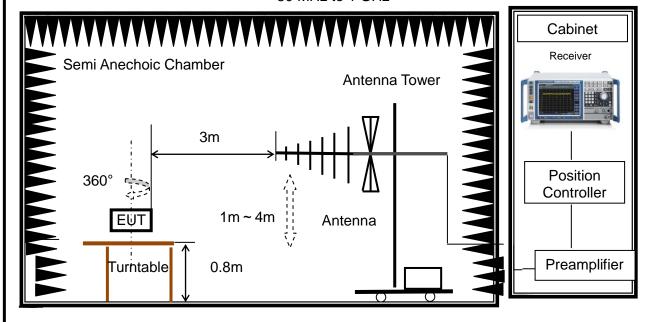
4.4.1 E.U.T. OPERATION


Test the EUT in microwave mode with full power.

4.4.2 TEST SETUP AND PROCEDURE

9 KHz to 30 MHz

- 1. The magnetic emissions test was conducted in a semi-anechoic chamber.
- 2. The EUT was connected to AC power source through a mains power outlet which was bonded to the ground reference plane; The mains cables shall drape to the ground reference plane.
- 3. The tabletop EUT was placed upon a non-metallic table 1 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- Before final measurements of magnetic emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum signature data plots of the EUT.

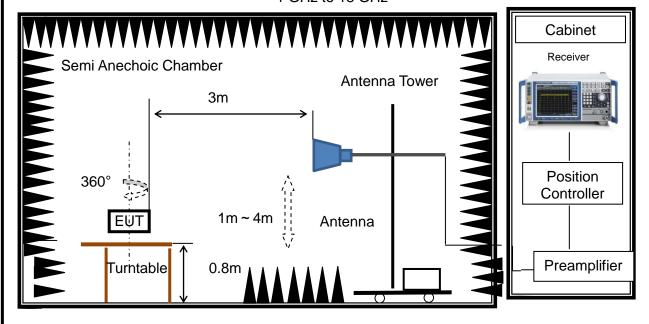

The frequencies of maximum emission were determined in the final magnetic emissions measurement, The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. At each frequency, the EUT was rotated 360°, the antenna was supported in the vertical plane and be rotatable about a vertical axis. The antenna height was set at around 2 m above the ground reference plane.

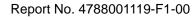
Issued Date: 2017-06-17

30MHz to 1 GHz:

30 MHz to 1 GHz

- 1. The radiated emissions test was conducted in a semi-anechoic chamber.
- 2. Biconical and log periodic antenna was used for the frequency range from 30MHz to 1GHz
- 3. The EUT was connected to nominal power supply through a mains power outlet which was bonded to the ground reference plane; The mains cables were draped to the ground reference plane. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT.

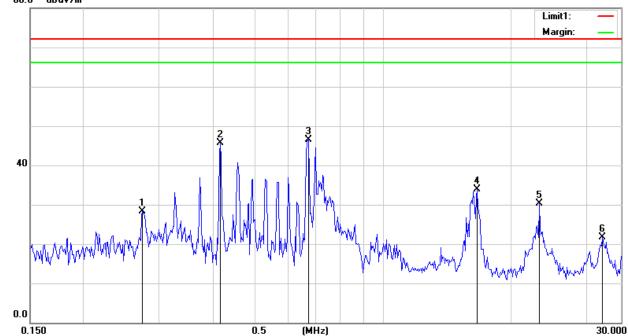

The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal andvertical antenna polarization.


Issued Date: 2017-06-17

Above 1 GHz:

1 GHz to 18 GHz

- 1. The radiated emissions test was conducted in a fully-anechoic chamber.
- 2. Horn antenna was used for the frequency above 1GHz
- 3. The EUT was connected to nominal power supply through a mains power outlet which was bonded to the ground reference plane; The mains cables were draped to the ground reference plane. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emission spectrum plots of the EUT.
- 5. The frequencies of maximum emission were determined in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

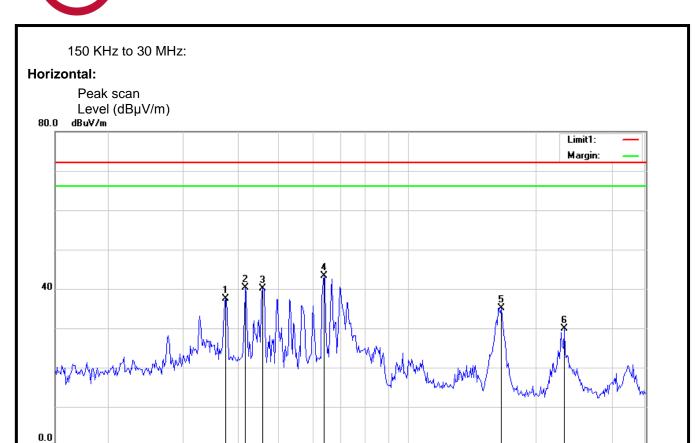

4.4.3 MEASUREMENT DATA

150 KHz to 30 MHz:

Vertical:

Peak scan Level (dBµV/m)

Average measurement


No	Frequency	Reading	Correction	Result	Limit	Margin	Domonile
	(MHz)	(dBu√)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
1	0.2743	59.78	-0.20	59.58	72.19	-43.80	QP
2	0.4171	26.74	-0.21	26.53	72.19	-26.53	QP
3	0.6720	25.96	-0.21	25.75	72.19	-25.75	QP
4	1.6625	38.52	-0.28	38.24	72.19	-38.24	QP
5	2.3212	42.25	-0.28	41.97	72.19	-41.97	QP
6	3.2583	50.78	-0.29	50.49	72.19	-50.49	QP

Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

30.000

Issued Date: 2017-06-17

Average measurement


0.150

No	Frequency	Reading	Correction	Result	Limit	Margin	Damasile
	(MHz)	(dBu√)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
1	0.3750	37.55	-0.20	37.35	72.19	-34.64	QP
2	0.4171	40.22	-0.21	40.01	72.19	-31.97	QP
3	0.4586	40.19	-0.21	39.99	72.19	-32.00	QP
4	0.6370	43.30	-0.23	43.07	72.19	-28.89	QP
5	1.6535	35.19	-0.28	34.90	72.19	-37.00	QP
6	2.3212	29.91	-0.29	29.62	72.19	-42.28	QP

(MHz)

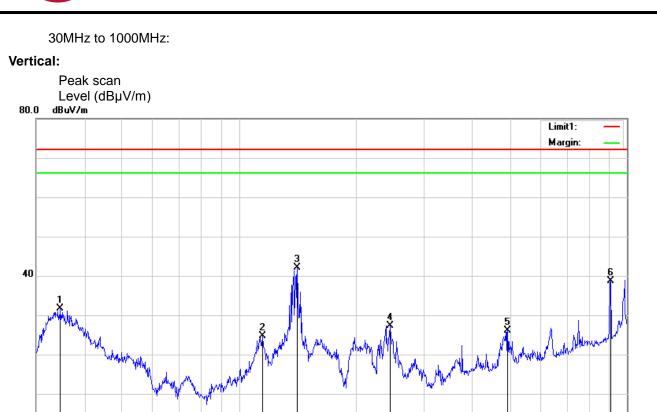
Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

0.5

0.0

30.000

Issued Date: 2017-06-17

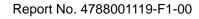

500

400

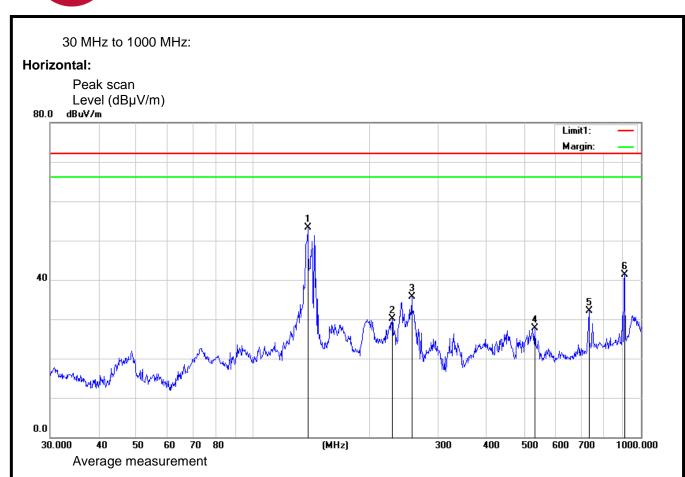
600 700

1000.000

300

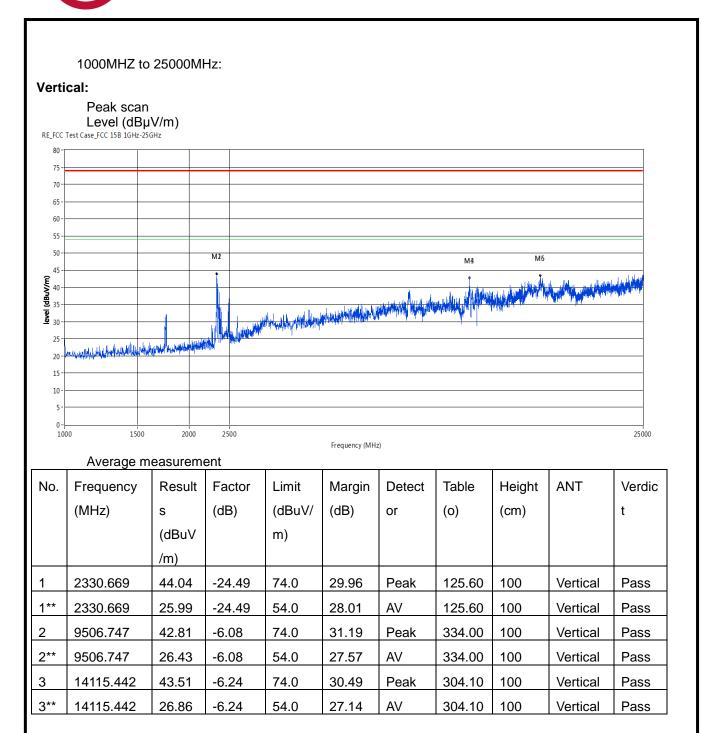

Frequency Reading Correction Result Limit Nο Margin Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 34.6385 45.30 -13.57 31.73 72.19 -40.46 QΡ 2 114.9168 72.19 QΡ 42.75 24.73 -47.46 -18.02 3 141.3298 59.78 -17.58 42.20 72.19 -29.99 QΡ 4 245.0900 44.31 -17.03 27.28 72.19 -44.91 QΡ 35.24 5 492.4685 -9.09 26.15 72.19 -46.04 QΡ 6 909.6667 40.65 -1.93 38.72 72.19 QΡ -33.47

(MHz)

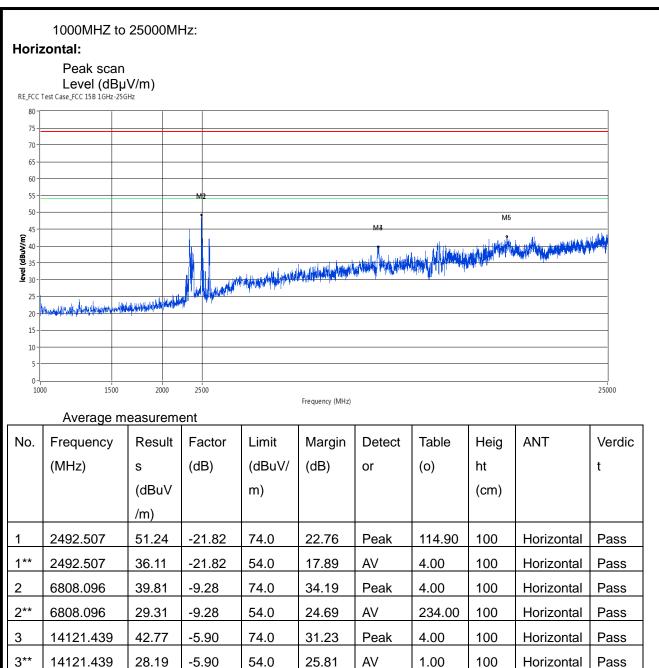

Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

70 80

Average measurement

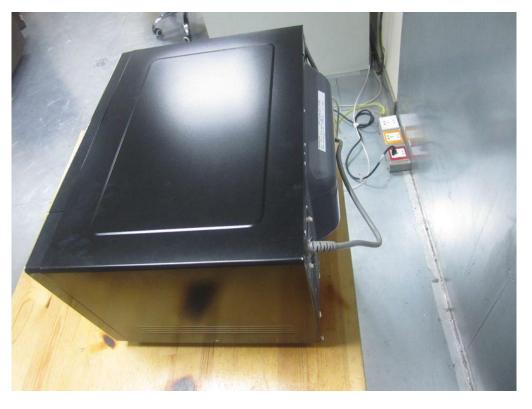


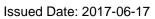
No	Frequency	Reading	Correction	Result	Limit	Margin	Remark
	(MHz)	(dBu∀)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
1	138.3873	70.83	-17.51	53.32	72.19	-18.87	QP
2	228.4903	48.60	-18.57	30.03	72.19	-42.16	QP
3	256.5211	51.24	-15.50	35.74	72.19	-36.45	QP
4	531.9634	35.55	-7.75	27.80	72.19	-44.39	QP
5	734.4913	35.99	-3.83	32.16	72.19	-40.03	QP
6	906.4824	43.36	-2.05	41.31	72.19	-30.88	QP


Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

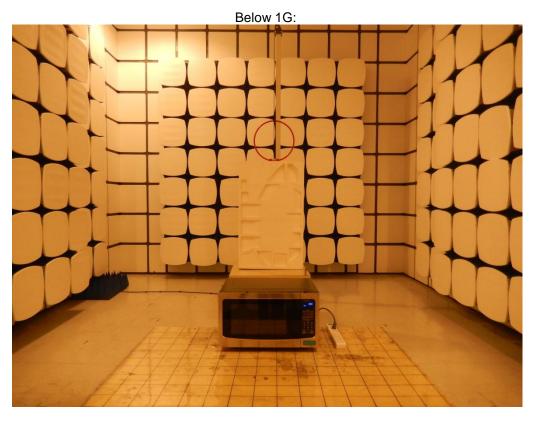
Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor.

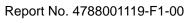




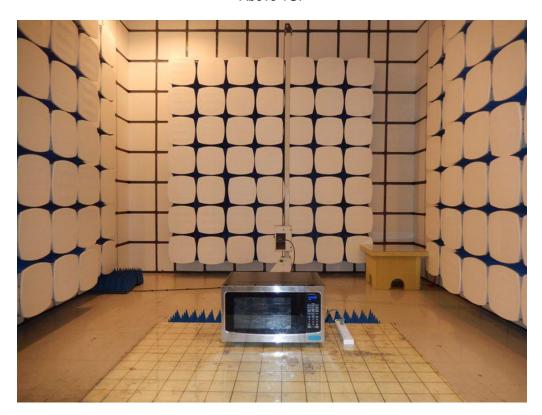
5 PHOTOGRAPHS

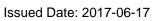
5.1 CONDUCTED EMISSIONS, 150 KHZ TO 30 MHZ TEST SETUP

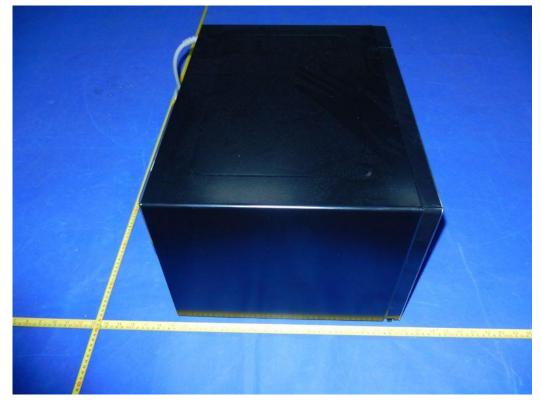




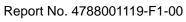
5.2 RADIATED EMISSIONS TEST SETUP

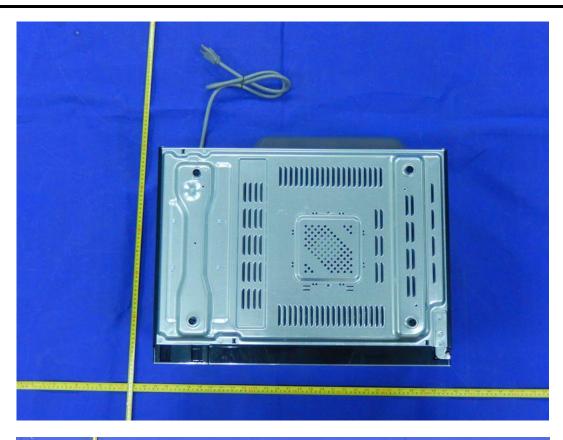


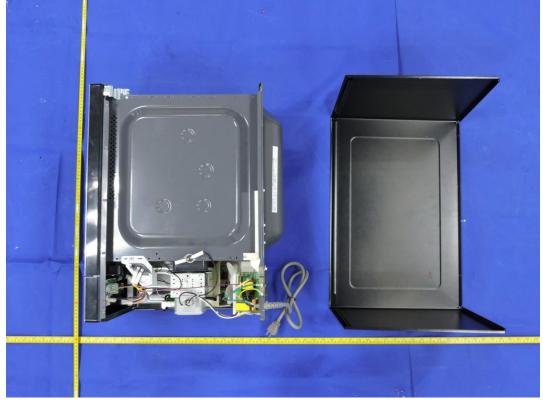


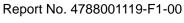


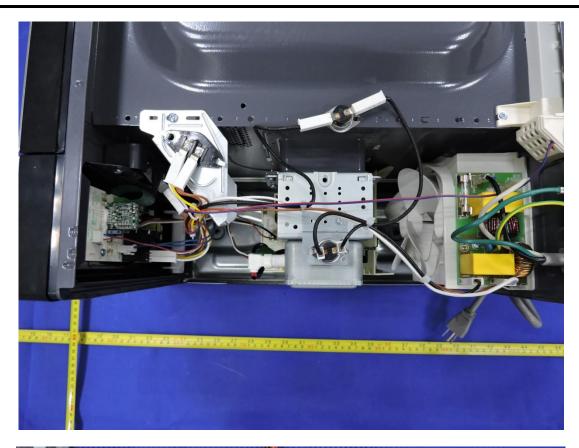

5.3 EUT CONSTRUCTIONAL DETAILS

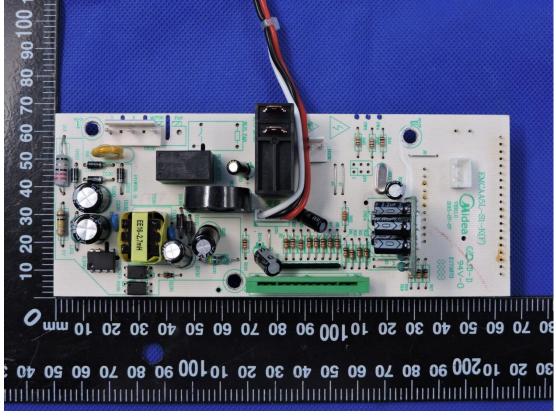


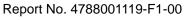


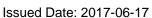


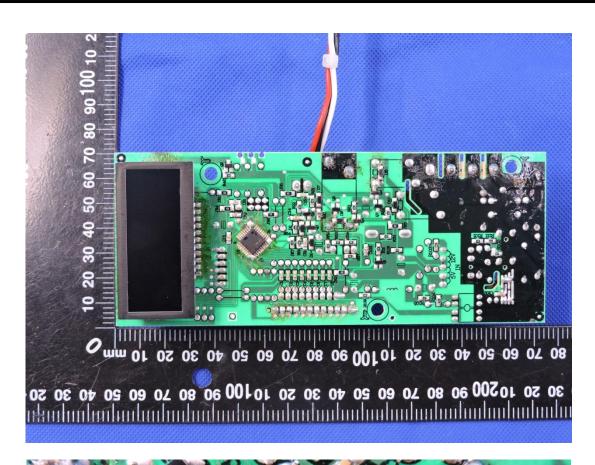


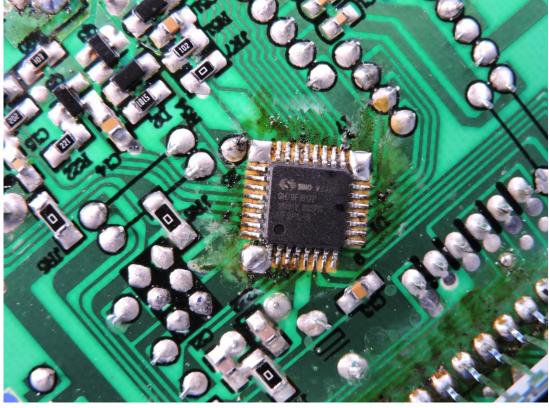


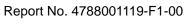


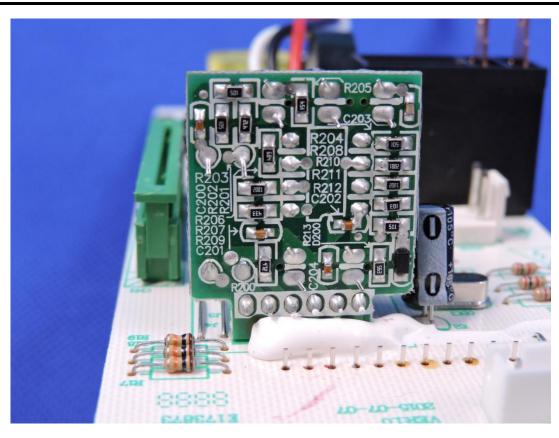


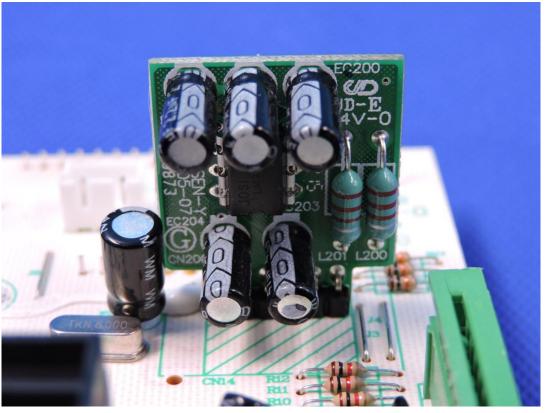


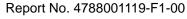


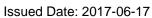


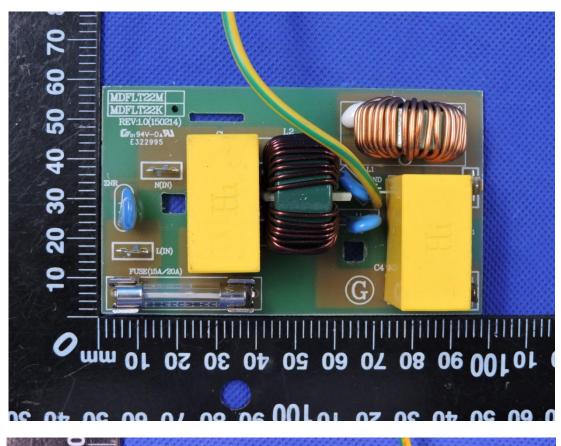


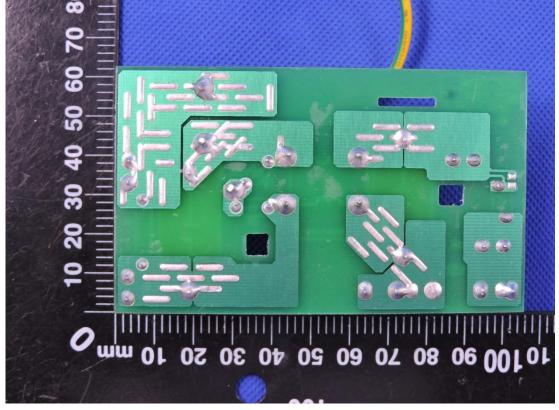


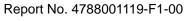


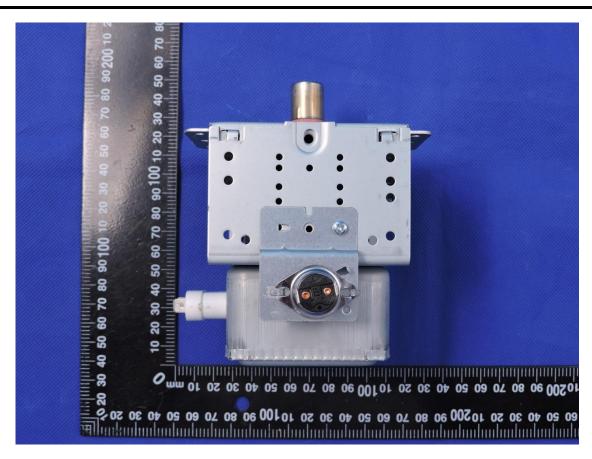


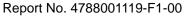


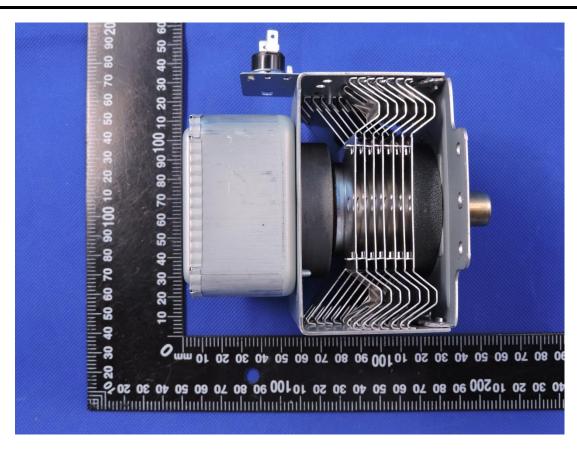


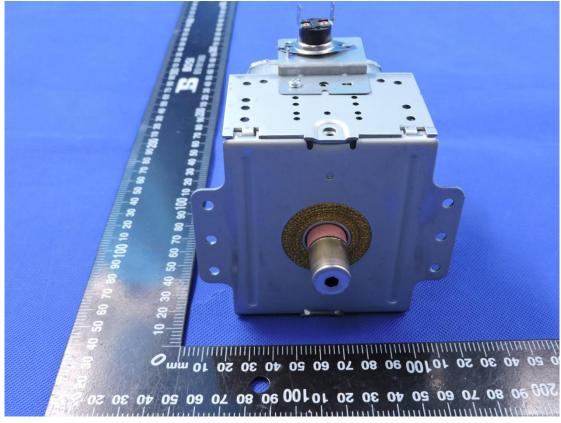


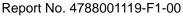


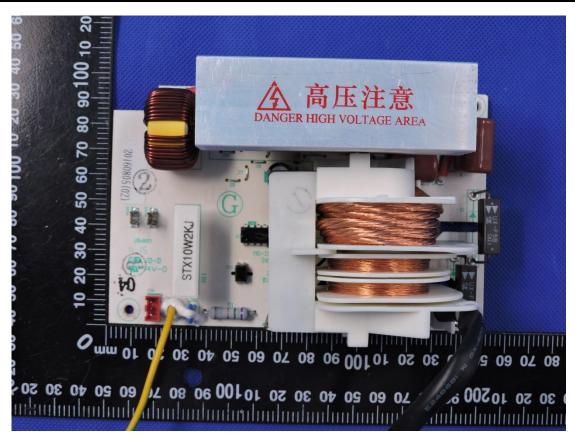


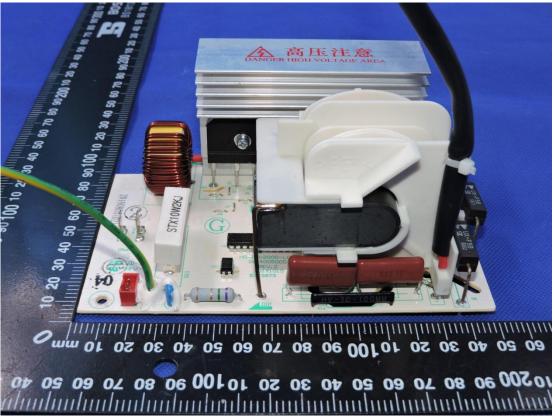


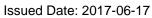


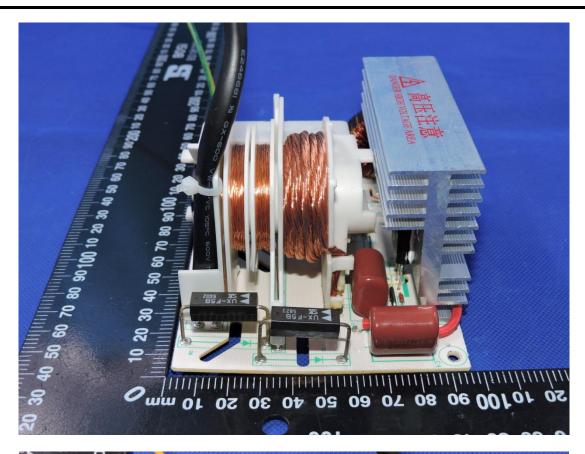


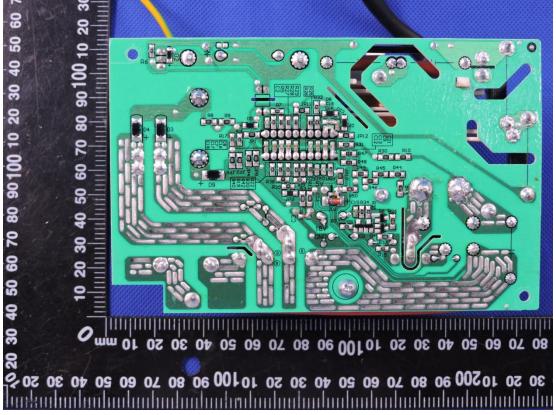












-- End of Report--