

EMISSION - TEST REPORT

Report Number	:	64.790.10.370.01	Da	ate of Issue):	September 10, 2010
Model / Serial No.	:	VG8AM025FXX-appearance; Y =P;			or	A-Z stand for different
Product Type	:	Microwave oven				
Applicant	:	Foshan Shunde M Manufacturing	idea Mi	crowave an	ıd l	Electrical Appliance
Manufacturer	:	Foshan Shunde Mi Manufacturing	dea Mic	crowave and	d E	Electrical Appliance
License holder	:	Foshan Shunde Mi Manufacturing	dea Mic	crowave and	d E	Electrical Appliance
Address	:	NO.18 Huanzhen	West Ro	ad,Beijiao,	Sh	unde, Foshan,
	:	Guangdong, China	a			
Test Result	:	■ Positive □] Negati	ive		
Total pages including Appendices	:	19				

The test result only responds to the tested sample.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Report Number: 64.790.10.370.01 Page 1 of 19

DIRECTORY

A)	Documentation	Pages
	Directory	2
	Test Regulations	3
	General information	3 - 4
	Equipment used	5
B)	Test Data	
	Radiation Hazard Measurement	6
	Input Power Measurement	7
	RF Output Power Measurement	8
	Operating Frequency Measurement	9
	Conducted Emission	10-12
	Radiated Emission	13-15
C)	Photographs of The Test Set-Up	40
	Set-up for radiation measurement below 1GHz	18
	Set-up for radiation measurement above 1GHz	19

Report Number: 64.790.10.370.01 Page 2 of 19

TEST REGULATIONS:

The tests were performed according to the following regulations:

■ - 47 CFR Part 18

Test Facilities

Registration Number: 910385

GUANGDONG WITOL VACUUM ELECTRONIC EMC TEST LABORATORY.

Add: BeiJiao, Shun De, Fo Shan, Guang Dong, 528311, China

Environmental Conditions

Temperature: : 21 $^{\circ}$ C Relative Humidity: : 56 $^{\circ}$ Atmospheric Pressure: : 1006 mBar

Power Supply System Utilized:

Power supply system : 120V/60Hz/1ø

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities that can account for a nominal measurement error. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Short Description of the Equipment under Test(EUT)

VG8AM025FTR-S is a microwave oven operates in the frequency 2.450GHz.

Communication type: VG8AM025FTR-S

Power Consumption: 120V~60Hz, 1500W (microwave)

Output power: 1000W
Operation Frequency: 2450MHz
Magnetron Manufacturer: Toshiba
Magnetron Model Number: 2M248J
Power Cable: 150cm

Report Number: 64.790.10.370.01 Page 3 of 19

Rev.No 1.7

Definitions For Symbols Used In This Test Report

■ - Black box indicates that the listed condition, standard or equipment is applicable for this report □ -Blank box indicates that the listed condition, standard or equipment was not applicable for this report.

Status of Facility Used for Testing

GUANGDONG WITOL VACUUM ELECTRONIC EMC TEST LABORATORY. BeiJiao, ShunDe, FoShan, GuangDong, 528311, China is listed in the US Federal Communications Commission list of facilities approved to perform measurements.

Load for Microwave Ovens

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000 watts output, each quantity was increased by 50% for each 500 watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

- Load for power Input and output measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for radiation hazard measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.
- Load for other measurement: 700 milliliters of water in the beaker located in the center of the oven.

Report Number: 64.790.10.370.01 Page 4 of 19

Test Equipment Used:

Serial No.	Equipment	Manufacturer	Model No.	Last Cal.	Cal. Interval
00052558	Microwave survey meter	Holaday	HI-1710A	2009.10.21	1 Year
508015	power meter	Ainuo	AN8726C	2010.05.22	1 Year
93130026	Digital thermometer	FLUKE	51II	2010.08.26	1 year
100091	LISN	R&S	ESH2-Z5	2010.01.21	1 Year
100267	EMI Receiver	R&S	ESCS30	2010.01.21	1 Year
3107A03648	Pulse limiter	Agilent	11947A	2010.01.21	1 Year
/	Shielding room	Changzhou zhongyu	8*5*3.5m	2010.04.05	1 Year
	AC Power Source	ainuo	AN97005	2010.05.19	1 Year
100174	EMI test receiver	R&S	ESIB-26	2010.01.21	1 Year
130144	Bilog antenna	TDK	HLP3003	2009.12.01	1 Year
100311	Horn Antenna	R&S	HF906	2009.12.01	1 Year -
/	Anechoic Chamber	TDK	9*6*6m	2008.04.16-	3Year

Report Number: 64.790.10.370.01 Page 5 of 19

RADIATION HAZARD MEASUREMENT

TEST REFERENCE: ANSI C63.4:2009, FCC/OST MP-5:1986

TEST PROCEDURE

The EUT was set up according to the FCC MP-5 and FCC Part 18 for Radiation Hazard Measurement. The measurement was using a microwave leakage meter to measure the Radiation leakage in the asreceived condition with the oven door closed.

A 1000ml water load was placed in the center of the oven and the oven was operated at maximum output power.

TEST Result:

There were no microwave leakage exceeding power level of 0.25mW/cm² observed at any point 5cm or more from the external surface of the oven.

A maximum of 1.0 mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

Report Number: 64.790.10.370.01 Page 6 of 19

INPUT POWER MEASUREMENT

TEST REFERENCE: ANSI C63.4:2009, FCC/OST MP-5:1986

TEST PROCEDURE

The EUT was set up according to the FCC MP-5 and FCC Part 18 for Input power measurement. Input power and current was measured using a power analyzer.

A 1000ml water load was placed in the center of the oven and oven was operated at maximum output

A 1000ml water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

TEST Result:

Input Voltage	Input Current	Measured Input Power	Rated Input Power (watts)
(Vac/Hz)	(amps)	(watts)	
120/60	12.4	1488	1500

Report Number: 64.790.10.370.01 Page 7 of 19

RF OUTPUT POWER MEASUREMENT

TEST REFERENCE: ANSI C63.4:2009, FCC/OST MP-5:1986

TEST PROCEDURE

The EUT was set up according to the FCC MP-5 and FCC Part 18C for RF output power Measurement. The Caloric Method was used to determine maximum RF output power.

The initial temperature of the water load was measured. A 1000ml water load in a beaker was located in the center of the oven. The oven was operated at maximum output power for 120 seconds, the temperature of the water was re-measured.

RF Output Power

- = (4.2joules/calorie)(volume in milliliters)(temperature rise) / (time in seconds)
- = 4.2joules/calorie × 1000 × (Final Temp Initial Temp) / 120

TEST Result:

Quality of Water (ml)	Starting Temperature (℃)	Final Temperature (°C)	Elapsed Time (Seconds)	RF Output Power (watts)
1000	25.8	52.1	120	921

☐ The measurement output power was found to be less than 500watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared to the limit of 25uV/meter at a 300-meters measurement distance

☑ The measured output power was found to exceed 500watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared with the limit calculated as following:

LFS = 25 × SQRT (power output / 500) = 25 × SQRT (921/500) ≈ 33.9

Where: LFS is the maximum allowable field strength for out-of-band emissions in uV/meter at a 300-meters measurement distance. Power Output is the measured output power in watts.

Model Number	LFS	dB(uV/M)	dB(uV/M)@3m
VG8AM025FTR-S	33.9	30.6	70.6

Report Number: 64.790.10.370.01 Page 8 of 19

OPERATING FREQUENCY MEASUREMENT

TEST REFERENCE: ANSI C63.4:2009, FCC/OST MP-5:1986

TEST PROCEDURE

The EUT was set up according to the FCC MP-5 and FCC Part 18 for Operating frequency measurement.

1) Variation in Operating Frequency with Time

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000ml water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

2) Variation in Operating Frequency with Line Voltage

The EUT was operated/ warmed by at least 10minutes of use with a 1000ml water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.

TEST Result:

Variation in Operating Frequency with Time:

Minimum Frequency (MHz)	Maximum Frequency (MHz)
2450.200	2452.605

Variation in Operating Frequency with Line Voltage:

Minimum Frequency (MHz)	Maximum Frequency (MHz)		
2448.196	2451.803		
Note: Line voltage varied from 96Vac to 150Vac			

Report Number: 64.790.10.370.01 Page 9 of 19

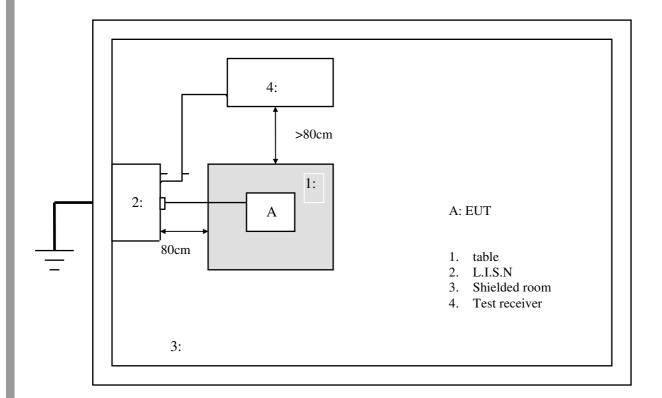
CONDUCTED EMISSION

TEST REFERENCE: ANSI C63.4:2009, FCC/OST MP-5:1986

TEST PROCEDURE

The EUT was set up according to the guideline of ANSI C63.4: 2003 & FCC MP-5 for conducted emissions

The EMI test receiver was set to investigate the spectrum from 150KHz to 30MHz.


During the conducted emission test, IF B/W of the EMI test receiver was set to 9KHz.

During the conducted emission test, the EUT power cord was connected to the outlet the LISN.

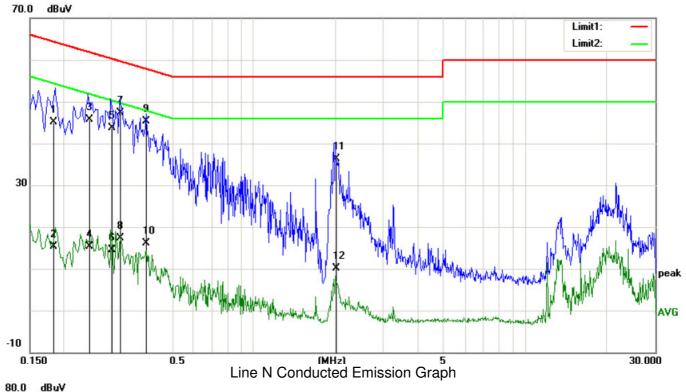
Maximizing procedure were performed on the six(6) highest emissions of the EUT.

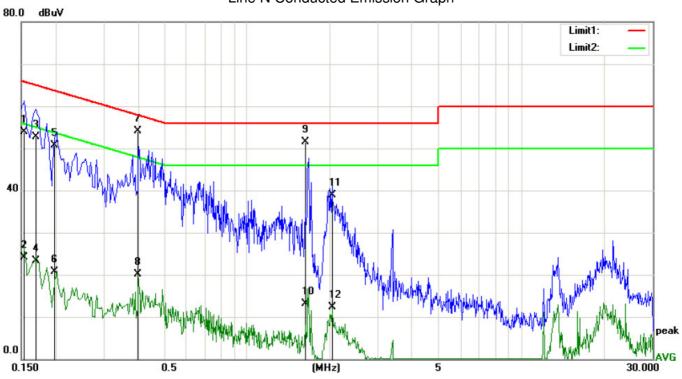
All data was recorded in the Quasi-peak and average detection mode.

TEST Setups:

Report Number: 64.790.10.370.01 Page 10 of 19

TEST Result:


Line	Frequency (MHz)	Corrected QP Reading (dBuV)	Limit (dBuV)	Corrected AV Reading (dBuV)	Limit (dBuV)
L	0.183	44.9	64.3	15.2	54.3
L	0.249	45.6	61.8	15.1	51.8
L	0.301	43.7	60.2	14.4	50.2
L	0.322	47.3	59.7	17.3	49. 7
L	0.402	45.2	57.8	16.0	47.8
L	2.018	36.0	56	10.0	46
N	0.154	53.9	65.8	24.0	55.8
N	0.170	52.6	65.0	23.3	55.0
N	0.197	50.6	63.7	20.6	53.7
N	0.399	54.1	57.9	20.0	47.9
N	1.629	51.3	56	12.8	46
N	2.047	38.6	56	12.0	46


Report Number: 64.790.10.370.01 Page 11 of 19

China

Line L Conducted Emission Graph

Report Number: 64.790.10.370.01

Page 12 of 19

Rev.No 1.7

RADIATED EMISSION

TEST REFERENCE: ANSI C63.4:2009, FCC/OST MP-5:1986

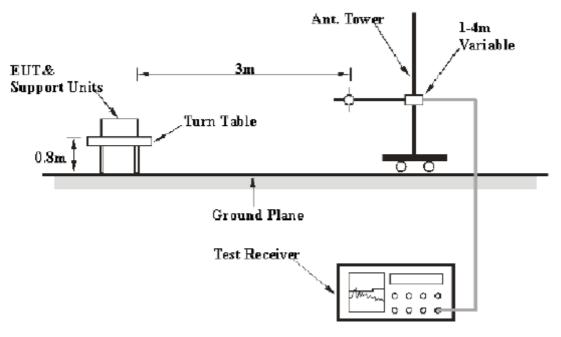
TEST PROCEDURE

The EUT was set up according to the guideline of ANSI C63.4: 2003 & FCC MP-5 for radiated emissions. The radiated emission tests were performed in the 3 meters chamber A test site.

The EUT was connected to 120VAC/60Hz power source.

The system was investigated from 30MHz to 24.5GHz

During the radiated emission test, the EMI test receiver was set with the following configurations:


Frequency Range	RB/W	Video B/W	IF B/W
30 - 1000 MHz	100 kHz	300 kHz	120 kHz
Above 1 GHz	1 MHz	30Hz	
Start Frequency			1 GHz
Stop Frequency			
Sweep Speed			
Video Bandwidth			
Resolution Bandwidth			1 MHz

Maximizing procedure was performed on the six(6) highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was in the normal operating mode during the final qualification test to represent the worst results.

All data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz and average detection mode above 1GHz.

TEST Setups:

Report Number: 64.790.10.370.01 Page 13 of 19

Rev.No 1.7

Corrected Amplitude

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

Report Number: 64.790.10.370.01 Page 14 of 19

TEST Result:

Frequency (MHz)	Antenna Polarization	Corrected Reading, QP (dBuV/m)	3 Meters Limit (dBuV/m)
	30MH	z – 1GHz	
61.102	Н	19.7	70.6
111.643	Н	20.5	70.6
193.287	Н	24.5	70.6
267.154	Н	23.6	70.6
558.737	Н	29.1	70.6
850.320	Н	35.2	70.6
66.102	V	18.8	70.6
107.756	V	24.7	70.6
140.240	V	29.5	70.6
284.649	V	21.9	70.6
521.804	V	27.5	70.6
807.555	V	34.5	70.6
_		Corrected Reading,	
Frequency (GHz)	Antenna Polarization	AV	3 Meters Limit (dBuV/m)
	Polarization	AV (dBuV/m) – 25GHz	
	Polarization	AV (dBuV/m)	
(GHz)	Polarization 1GHz	AV (dBuV/m) – 25GHz	(dBuV/m)
(GHz) 2.198	Polarization 1GHz H	AV (dBuV/m) – 25GHz	(dBuV/m) 70.6
2.198 4.894	Polarization 1GHz H H	AV (dBuV/m) - 25GHz 33.1 38.4	70.6 70.6
2.198 4.894 7.359	Polarization 1GHz H H H	AV (dBuV/m) - 25GHz 33.1 38.4 49.3	70.6 70.6 70.6
2.198 4.894 7.359 8.591	Polarization 1GHz H H H H	AV (dBuV/m) - 25GHz 33.1 38.4 49.3 56.1	70.6 70.6 70.6 70.6 70.6
2.198 4.894 7.359 8.591 12.259	Polarization 1GHz H H H H H	AV (dBuV/m) - 25GHz 33.1 38.4 49.3 56.1 49.6	70.6 70.6 70.6 70.6 70.6 70.6
2.198 4.894 7.359 8.591 12.259 14.784	Polarization 1GHz H H H H H H	AV (dBuV/m) - 25GHz 33.1 38.4 49.3 56.1 49.6 54.6	70.6 70.6 70.6 70.6 70.6 70.6 70.6
2.198 4.894 7.359 8.591 12.259 14.784 4.864	Polarization 1GHz H H H H H H V	AV (dBuV/m) - 25GHz 33.1 38.4 49.3 56.1 49.6 54.6 43.0	70.6 70.6 70.6 70.6 70.6 70.6 70.6 70.6
2.198 4.894 7.359 8.591 12.259 14.784 4.864 7.359	Polarization 1GHz H H H H V V	AV (dBuV/m) - 25GHz 33.1 38.4 49.3 56.1 49.6 54.6 43.0 48.8	70.6 70.6 70.6 70.6 70.6 70.6 70.6 70.6
2.198 4.894 7.359 8.591 12.259 14.784 4.864 7.359 8.591	Polarization 1GHz H H H H V V V	AV (dBuV/m) - 25GHz 33.1 38.4 49.3 56.1 49.6 54.6 43.0 48.8 56.5	70.6 70.6 70.6 70.6 70.6 70.6 70.6 70.6

Report Number: 64.790.10.370.01 Page 15 of 19

China

Equipment Under Test

The equipment under test was ope	rated under the following conditions during emissions testing:
☐ - Standby	
□ - Test Program (H - Pattern)	
□ - Test Program (Color Bar)	
□ - Test Program (Customer Specifi	ed)
	nd interface cables were connected during the testing:
o -	
o -	
<u> </u>	
-	
o	
O -	
■ - unshielded power cable (75cm)	
□ - unshielded cables	
□ - shielded cables	TUVPS.No.:
□ - customer specific cables	
□ - <u> </u>	
□ - <u> </u>	

Report Number: 64.790.10.370.01 Page 16 of 19

GENERAL REMARKS:

All models are identical in critical components only different in appearance.

FIANL JUDGEMENT:		
The requirements according to the technical regulations and tested operation modes are		
■ - Met		
□ - Not Met		
The Equipment Under Test		
■ - Fulfills the general approval requirements cited on page 3.		
□ - Does not fulfill the general approval requirements cited on page 3.		
Testing Start Date:	August-18-2010	
-		
Testing End Date:	August-19-2010	
-Jiangsu TÜV PRODUCT SERVICE LTDGuangzhou Branch		
Reviewed by:	Prepared by:	

Report Number: 64.790.10.370.01 Page 17 of 19

Kitty Xu

Samuel Zhang

Photographs of the Test Set-Up

Set-up for Conducted Emission measurement below 1GHz

Set-up for radiation emission measurement below 1GHz

Report Number: 64.790.10.370.01 Page 18 of 19

Set-up for radiation emission measurement above 1GHz

Report Number: 64.790.10.370.01 Page 19 of 19