

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001 Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47CFR part 15 subpart C § 15.247

FOR:

Ruggedcom Ltd. Subscriber unit operating in 5.8 GHz band Models: WiN5258 WiN5158-AC WiN5158-DC FCC ID:VG5WIN5X58

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	
2	Equipment under test attributes	
3	Manufacturer information	
4	Test details	
5	Tests summary	
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests according to 47CFR part 15 subpart C requirements	
7.1	Minimum 6 dB bandwidth	8
7.2	Output power	
7.3	Spurious emissions at RF antenna connector	24
7.4	Field strength of spurious emissions	
7.5	Band edge emissions at RF antenna connector	83
7.6	Peak spectral power density	
7.7	Conducted emissions	97
7.8	Antenna requirements	100
8	APPENDIX A Test equipment and ancillaries used for tests	101
9	APPENDIX B Measurement uncertainties	103
10	APPENDIX C Test laboratory description	104
11	APPENDIX D Specification references	104
12	APPENDIX E Test equipment correction factors	105
13	APPENDIX F Abbreviations and acronyms	115

1 Applicant information

Client name:	Ruggedcom Ltd.
Address:	32 Maskit Street, P.O.Box 12412, Herzeliya 46733, Israel
Telephone:	+972 9951 9556
Fax:	+972 9951 9557
E-mail:	AmnonAssulin@ruggedcom.com
Contact name:	Mr. Amnon Assulin

2 Equipment under test attributes

Product name:	Subscriber unit operating in 5.8 GHz band
Product type:	Transceiver
Model(s):	WiN5158-AC
Serial number:	55813712001
Hardware version:	RFID =20
Software release:	SS4.3.4624.21
Receipt date	9/5/2012

3 Manufacturer information

Manufacturer name:	Ruggedcom Ltd.
Address:	32 Maskit Street, P.O.Box 12412, Herzeliya 46733, Israel
Telephone:	+972 9951 9556
Fax:	+972 9951 9557
E-Mail:	AmnonAssulin@ruggedcom.com
Contact name:	Mr. Amnon Assulin

4 Test details

Project ID:	23641
Location:	Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel
Test started:	9/6/2012
Test completed:	10/25/2012
Test specification(s):	FCC 47CFR part 15, subpart C §15.247

5 Tests summary

Test	Status
Transmitter characteristics	
Section 15.247(a)(2), 6 dB bandwidth	Pass
Section 15.247(b)(3), Peak output power	Pass
Section 15.247(b)5, RF exposure	Pass, exhibit provided in Application for certification
Section 15.247(d), Conducted spurious emissions	Pass
Section 15.247(d), Radiated spurious emissions	Pass
Section 15.247(d), Band edge emissions	Pass
Section 15.247(e), Peak power density	Pass
Section 15.207(a), Conducted emission	Pass
Section 15.203, Antenna requirement	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer Mr. S. Samokha, test engineer	October 25, 2012	Att. Can
Reviewed by: Mrs. M. Cherniavsky, certification engineer		October 30, 2012	Chur
Approved by:	Mr. M. Nikishin, EMC and radio group manager	October 30, 2012	ft b

6 EUT description

6.1 General information

The EUT, WIN5158/WIN5258, is a subscriber unit of WiMAX system, installed at the customer premises. It comprises an Outdoor Unit (ODU) that includes modem, radio, data processing and management components, serving as an efficient platform for a wide range of services. It provides a wireless connection to the base station. Data is fed to the EUT through the RJ-45 port. The EUT is sending the data via wireless connection to the base station. The EUT is sending the data via wireless connection to the base station. The EUT is sending the data via wireless connection to the base station. The EUT is sending the data via wireless connection to the base station. The EUT is Sending the data via wireless connection to the base station. The EUT has one Tx and two Rx connectors - it is MISO (Multi In Single Out) type.

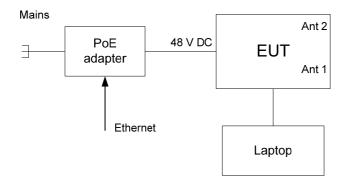
The difference between WIN5158 and WIN5258 is the antenna connectors. The **WIN5258** has internal (onmechanic) antenna, and it is powered by WIN1010 power adapter unit (48VDC). WIN5149 has external N-Type connectors for antennas. The WIN5158 has 2 sub-models, WIN5158-AC and WIN5158-DC. The **WIN5158-AC** is powered by WIN1010 power adapter unit (48VDC), and the **WIN5158-DC** is powered by car's 12V battery. The "Mobile subscriber unit" is installed in car (vehicular environment);"Fixed subscriber unit" is installed on roofs, towers, etc.

The EUT model WiN5158-AC powered by power adapter unit was tested.

6.2 Ports and lines

Port type	Port description	Connected from	Connected to	Qty.	Cable type	Cable length, m
Power AC power		PoE adapter	AC mains	1	Unshielded	3
Power and telecom 48 VDC + Ethernet		EUT	PoE adapter	1	Shielded	3
RF Antenna		EUT	50 Ohm termination	2	NA	NA

6.3 Support and test equipment


Description	Description Manufacturer Model number			
Laptop	Lenovo	T410	2522WZN	
PoE adapter (CPE)	RuggedWireless Ltd.	WiN1010 (0334B4848)	0507047	

6.4 Changes made in EUT

No changes were implemented in the EUT.

6.5 Test configuration

6.6 Transmitter characteristics

Turne of equipment											
Type of equipmen		nent with or	without	ito ovro o	ontrol prov	iaiona)					
Combined		t (Fauinmer	nt wher	e the radio	onitiol prov	lv integrate	d within	anothe	r type of equipm	ent)	
		ent intende								011()	
Intended use		Conditio	n of us	e							
V fixed					than 2 m f	from all pe	ople				
V mobile					than 20 cr						
portable		May oper	ate at a	i distance	closer that	n 20 cm to	human I	body			
Assigned frequen	cy range		5725.	0 – 5850.	0 MHz						
Operating frequer	ncy range		5728.	0 – 5846.	5 MHz						
RF channel band	width		5 MH:	z, 10 MHz	<u></u>						
Maximum rated o	utput pow	er	At tra	nsmitter 5	0 Ω RF ou	tput conne	ctor				dBm for 5 MHz CBW dBm for 10 MHz CBW
				No							
						С	ontinuou	us variat	ole		
Is transmitter out	put power	variable?	v	Vaa	V	S	tepped v	variable	with stepsize	0.5	dB
			۲.	Yes		n RF powe				-21 (
					maximu	m RF powe	er			23.3	88 dBm
Antenna connecti	on										
	un line e	V -4	ا م م				1	-1	V with ten	nporarv	RF connector
unique co	upling	V star	ndard c	onnector			Integra	al	without	tempor	ary RF connector
Antenna/s technic	cal charac	teristics									
Туре		Manufac	turer	urer		Model number		G	ain		
Dual slant antenna		MTI Wire	eless E	ess Edge Ltd.		MT-465017/SVH/B (ANTN0072)		N0072)	22	2.5 dBi	
Dual slant antenna		MTI Wire	eless E	less Edge Ltd.		MT-465017/NVH (ANTN0073, NTYPE)		22	2.5 dBi		
Omnidirectional		MTI Wire	eless Edge Ltd.		MT 462008/N/A (ANTN0076, N-Female)		9.	.5 dBi			
Omnidirectional		HUBER-	SUHN	ER	SWA-0860/360/4/0/V_2, 1399.17.0099 (ANTN0075, N Female)		9.	.5 dBi			
Transmitter 99% p	oower ban	dwidth			5 MHz, 1	0 MHz					
Type of modulatio	n				QPSK 1/2	2, 16QAM 3	3/4, 64Q	AM 5/6			
Transmitter aggre	gate data ı	rate/s, Mbps	6								
Bandwidth, M	lHz	Di	irection		(QPSK 1/2			16QAM 3/4		64QAM 5/6
5	Ļ		DL		4.608			13.824		23.04	
			UL DL		1.4688 9.216			4.4064 27.648		7.344 46.08	
10	-		UL			3.024		9.072		15.12	
Type of multiplexi	na				OFDMA						
Modulating test si		eband)			PRBS						
Maximum transmi			mal us	e	33%	Tx ON	time		Period		
Transmitter duty cycle supplied for test				30%	Tx ON	time		Period			
Transmitter powe					*				•		
		minal rated	voltag				Batter				
V DC Nominal rated voltage 48 V (via DC power supply from the mains)											
AC mains		minal rated	voltag	je			Freque	ency			
Transmitter powe				· · · · ·			,				
		minal rated					Batter	y type			
V DC		minal rated	-		VDC from	power sup					
AC mains		minal rated					Freque				
Common power s	ource for	transmitter	and re	eceiver			V	у	res		no

Test specification:	Section 15.247(a)(2), 6 dB bandwidth						
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01					
Test mode:	Compliance	Verdict: PASS					
Date(s):	9/6/2012	verdict:	FA33				
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC				
Remarks:							

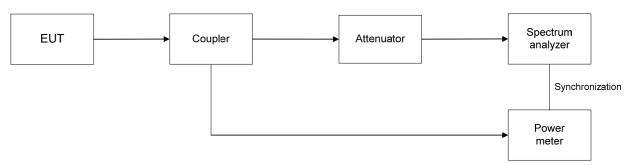
7 Transmitter tests according to 47CFR part 15 subpart C requirements

7.1 Minimum 6 dB bandwidth

7.1.1 General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 The 6 dB bandwidth limits


Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz
902.0 - 928.0		
2400.0 - 2483.5	6.0	500.0
5725.0 - 5850.0		

* - Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

7.1.2 Test procedure

- **7.1.2.1** The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was set to transmit modulated carrier.
- **7.1.2.3** The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer RBW=100 kHz as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and the associated plots.

Figure 7.1.1 The 6 dB bandwidth test setup

Test specification:	Section 15.247(a)(2), 6 dB bandwidth			
Test procedure:	558074 D01 DTS Meas Gui	dance v01		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	9/6/2012	verdict:	FA33	
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC	
Remarks:			· · · · · ·	

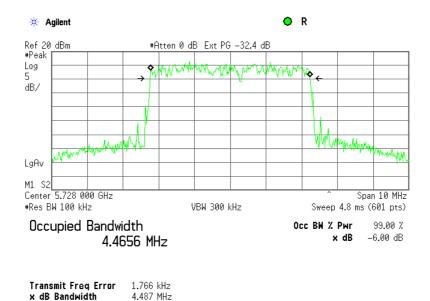
Table 7.1.2 The 6 dB bandwidth test results

ASSIGNED FREQUENCY BAND: DETECTOR USED: SWEEP TIME: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: MODULATION ENVELOPE REFERENCE POINTS: MODULATING SIGNAL: 5725-5850 MHz Peak Auto 100 kHz 300 kHz 6.0 dBc; 99% OBW PRBS

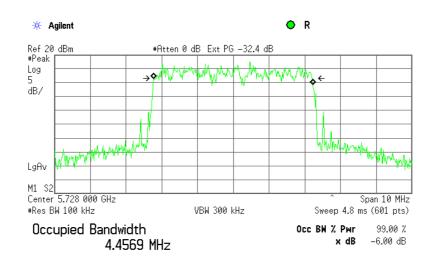
CHANNEL BANDWIDTH		5 MHz		
Carrier frequency, MHz	6 dB bandwidth, MHz	Limit, kHz	99%OBW, MHz	Verdict
QPSK				
5728.0	4.48	500	4.46	Pass
5787.5	4.45	500	4.47	Pass
5846.5	4.46	500	4.48	Pass
64 QAM				
5728.0	4.39	500	4.45	Pass
5787.5	4.36	500	4.64	Pass
5846.5	4.46	500	4.47	Pass

CHANNEL BANDWIDTH		10 MHz		
Carrier frequency, MHz	6 dB bandwidth, MHz	Limit, kHz	Margin, kHz	Verdict
QPSK				
5730.5	9.08	500	9.08	Pass
5787.5	9.09	500	9.10	Pass
5844.0	9.17	500	9.13	Pass
64 QAM				
5730.5	9.09	500	9.09	Pass
5787.5	9.10	500	9.09	Pass
5844.0	9.17	500	9.13	Pass

Reference numbers of test equipment used


ľ	HL 3301	HL 3302	HL 3442	HL 3781	HL 3818	HL 3868	HL 3903	

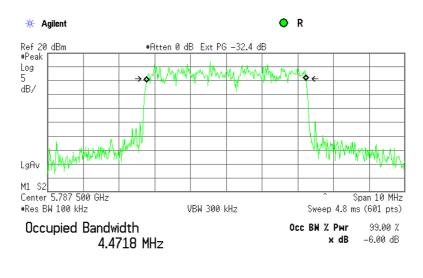
Full description is given in Appendix A.



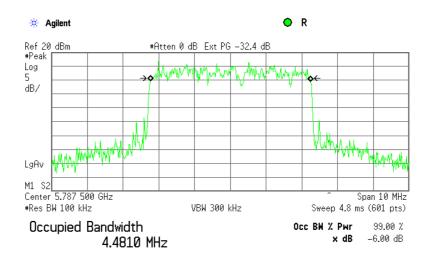
Test specification:	Section 15.247(a)(2), 6 dB bandwidth			
Test procedure:	558074 D01 DTS Meas Guidance v01			
Test mode:	Compliance			
Date(s):	9/6/2012	Verdict: PASS		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC	
Remarks:				

Plot 7.1.1 The 6 dB bandwidth test result at low frequency, 5 MHz BW, QPSK modulation

Plot 7.1.2 The 6 dB bandwidth test result at low frequency, 5 MHz BW, 64QAM modulation

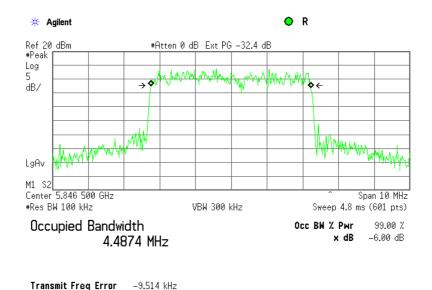


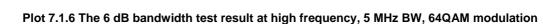
Transmit Freq Error	891.463 Hz
x dB Bandwidth	4.394 MHz


Test specification:	Section 15.247(a)(2), 6 dB bandwidth			
Test procedure:	558074 D01 DTS Meas Guidance v01			
Test mode:	Compliance	Verdict: PASS		
Date(s):	9/6/2012			
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC	
Remarks:				

Plot 7.1.3 The 6 dB bandwidth test result at mid frequency, 5 MHz BW, QPSK modulation

Transmit Freq Error -1.802 kHz x dB Bandwidth 4.455 MHz

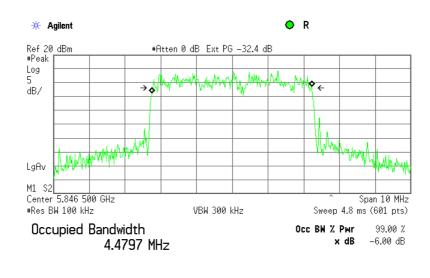



Transmit Freq Error	4.648 kHz
x dB Bandwidth	4.364 MHz

Test specification:	Section 15.247(a)(2), 6 dB bandwidth				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01			
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/6/2012	Verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.1.5 The 6 dB bandwidth test result at high frequency, 5 MHz BW, QPSK modulation

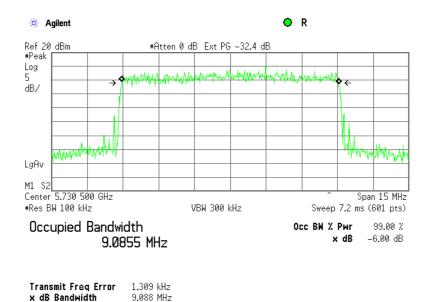
4.466 MHz

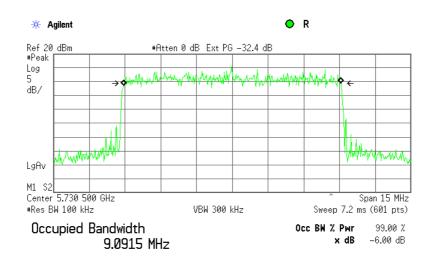

-3.801 kHz

4.465 MHz

x dB Bandwidth

Transmit Freq Error

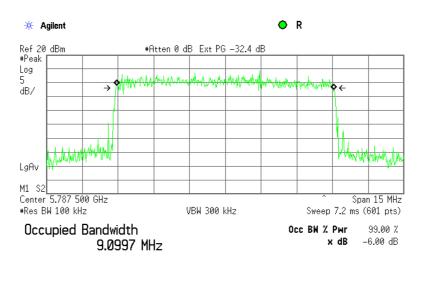

x dB Bandwidth



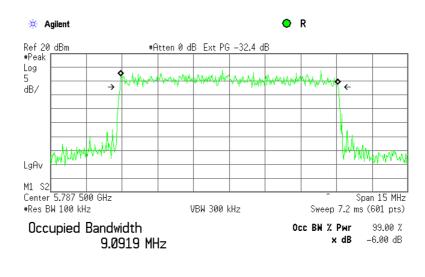
Test specification:	Section 15.247(a)(2), 6 dB bandwidth				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01			
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/6/2012	Verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.1.7 The 6 dB bandwidth test result at low frequency, 10 MHz BW, QPSK modulation

Plot 7.1.8 The 6 dB bandwidth test result at low frequency, 10 MHz BW, 64QAM modulation

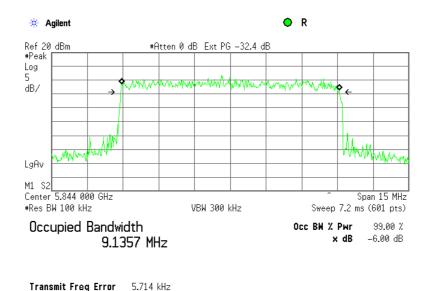


Transmit Freq Error	–2.678 kHz
x dB Bandwidth	9.097 MHz

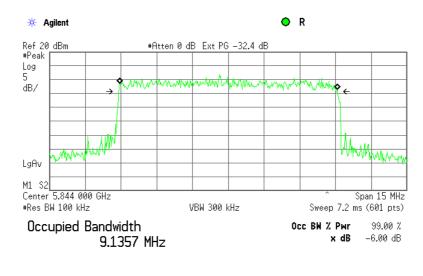

Test specification:	Section 15.247(a)(2), 6 dB bandwidth				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01			
Test mode:	Compliance				
Date(s):	9/6/2012	Verdict:	PASS		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.1.9 The 6 dB bandwidth test result at mid frequency, 10 MHz BW, QPSK modulation

Transmit Freq Error -11.773 kHz x dB Bandwidth 9.106 MHz



Transmit Freq Error	–5.614 kHz
x dB Bandwidth	9.137 MHz


Test specification:	Section 15.247(a)(2), 6 d	B bandwidth	
Test procedure:	558074 D01 DTS Meas Guid	lance v01	
Test mode:	Compliance	Vardiate	PASS
Date(s):	9/6/2012	Verdict:	PA33
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Plot 7.1.11 The 6 dB bandwidth test result at high frequency, 10 MHz BW, QPSK modulation

9.174 MHz

Tr	ans	mit Freq Error	5.714 kHz	
x	dB	Bandwidth	9.174 MHz	

x dB Bandwidth

Test specification:	Section 15.247(b)(3), Pea	k output power	
Test procedure:	ANSI C63.10-2009 section 6.1	10.3.1	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict.	FA33
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

7.2 Output power

7.2.1 General

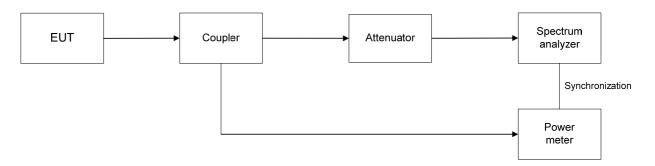
This test was performed to measure the maximum average output power at the transmitter RF antenna connector. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Output power limits

Assigned frequency range,	Maximum antenna gain,	Peak outp	out power*
MHz	dBi	W	dBm
902.0 - 928.0			
2400.0 - 2483.5	6.0	1.0	30.0
5725.0 - 5850.0			

*- If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;


without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band;

by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- **7.2.2.2** The EUT was adjusted to produce maximum available for end user RF output power.
- **7.2.2.3** The resolution bandwidth of spectrum analyzer was set to 1 MHz, VBW ≥3 MHz.
- **7.2.2.4** The peak power was measured using a sample detector and power averaging mode to find the highest level across the emission in any 1-MHz band after 100 sweeps of averaging.
- **7.2.2.5** The test results were recorded in Table 7.2.2 and shown in the associated plots.

Figure 7.2.1 Output power test setup

Test specification:	Section 15.247(b)(3), Pea	ak output power	
Test procedure:	ANSI C63.10-2009 section 6	.10.3.1	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict.	FA33
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

Table 7.2.2 Output power test results

ASSIGNED FREQUENCY RANGE:	5725-5850 MHz
MODULATING SIGNAL:	PRBS
TRANSMITTER OUTPUT POWER SETTINGS:	Maximum
DETECTOR USED:	Sample
RESOLUTION BANDWIDTH:	1 MHz
VIDEO BANDWIDTH:	> 3 MHz

EUT BANDWIDTH			5 MHz				
Carrier frequency, MHz	Spectrum analyzer reading, dBm	External attenuation, dB	Cable loss, dB	Output power, dBm	Limit, dBm	Margin*, dB	Verdict
		Q	PSK				B
5728.0	23.21	included	included	23.21	30	6.79	Pass
5787.5	22.84	included	included	22.84	30	7.16	Pass
5846.5	21.21	included	included	21.21	30	8.79	Pass
		64	QAM				
5728.0	23.38	included	included	23.38	30	6.62	Pass
5787.5	23.12	included	included	23.12	30	6.88	Pass
5846.5	21.15	included	included	21.15	30	8.85	Pass
EUT BANDWIDTH			10 MHz				
Carrier frequency, MHz	Spectrum analyzer reading, dBm	External attenuation, dB	Cable loss, dB	Output power, dBm	Limit, dBm	Margin*, dB	Verdict
		Q	PSK				
5730.5	23.20	included	included	23.20	30	6.80	Pass
5787.5	23.19	included	included	23.19	30	6.81	Pass
5844.0	21.20	included	included	21.20	30	8.80	Pass
		64	QAM				
			in almala d	23.21	30	0.70	Deee
5730.5	23.21	included	included	23.21	30	6.79	Pass
5730.5 5787.5	<u>23.21</u> 23.24	included	included	23.21	30	6.79	Pass

21.32 * - Margin, dB = Output power, dBm – specification limit, dBm.

Note: Maximum output power was obtained at Unom input power voltage.

included

Reference numbers of test equipment used

	HL 3301	HL 3302	HL 3442	HL 3781	HL 3818	HL 3868		
--	---------	---------	---------	---------	---------	---------	--	--

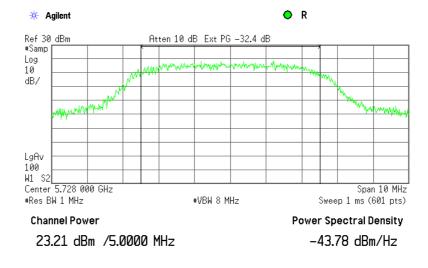
included

21.32

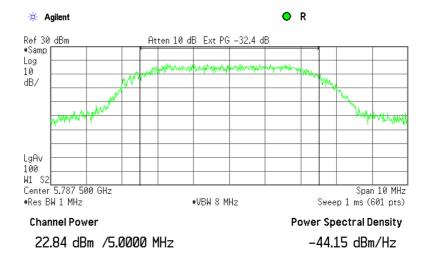
30

8.68

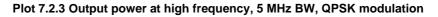
Pass

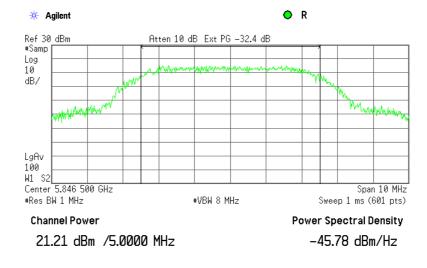

Full description is given in Appendix A.

5844.0

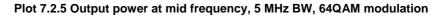


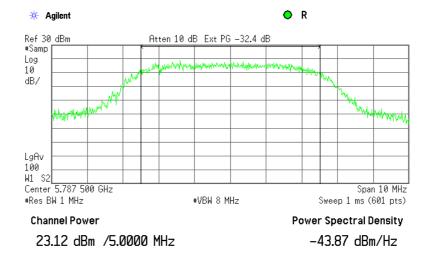
Test specification:	Section 15.247(b)(3), Pea	ak output power	
Test procedure:	ANSI C63.10-2009 section 6	.10.3.1	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict:	PASS
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			



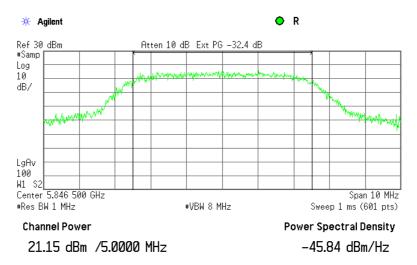

Plot 7.2.2 Output power at mid frequency, 5 MHz BW, QPSK modulation

Test specification:	Section 15.247(b)(3), Pea	ak output power	
Test procedure:	ANSI C63.10-2009 section 6	.10.3.1	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict:	PA33
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

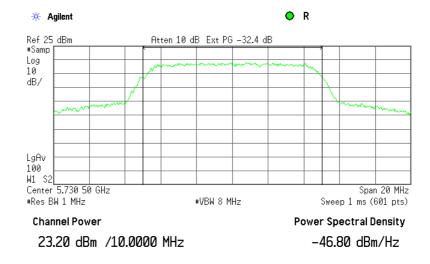

🔶 R 🔆 Agilent Ref 30_dBm Atten 10 dB Ext PG -32.4 dB #Samp Log 10 dB/ WARNAMY

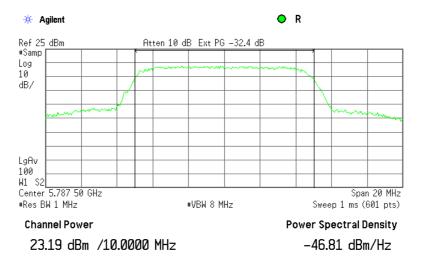

LgAv 100 W1 S2 Center 5.728 000 GHz Span 10 MHz #Res BW 1 MHz #VBW 8 MHz Sweep 1 ms (601 pts) **Channel Power Power Spectral Density** 23.38 dBm /5.0000 MHz -43.61 dBm/Hz

Plot 7.2.4 Output power at low frequency, 5 MHz BW, 64QAM modulation



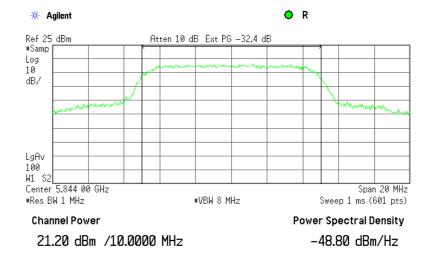
Test specification:	Section 15.247(b)(3), Pea	k output power	
Test procedure:	ANSI C63.10-2009 section 6.	10.3.1	
Test mode:	Compliance	Verdict:	DASS
Date(s):	9/6/2012	verdict:	PASS
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:		· · · ·	


Plot 7.2.6 Output power at high frequency, 5 MHz BW, 64QAM modulation



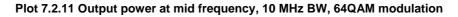
Test specification:	Section 15.247(b)(3), Peak output power				
Test procedure:	ANSI C63.10-2009 section 6.10.3.1				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/6/2012	verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

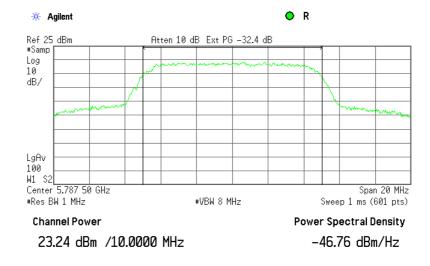
Plot 7.2.7 Output power at low frequency, 10 MHz BW, QPSK modulation

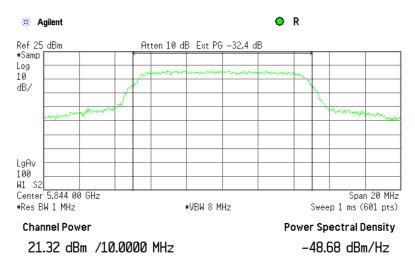

Plot 7.2.8 Output power at mid frequency, 10 MHz BW, QPSK modulation

Test specification:	Section 15.247(b)(3), Peak output power				
Test procedure:	ANSI C63.10-2009 section 6.	ANSI C63.10-2009 section 6.10.3.1			
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/6/2012	verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.9 Output power at high frequency, 10 MHz BW, QPSK modulation




Plot 7.2.10 Output power at low frequency, 10 MHz BW, 64QAM modulation



Test specification:	Section 15.247(b)(3), Peak output power				
Test procedure:	ANSI C63.10-2009 section 6	.10.3.1			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	9/6/2012	verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1008 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.2.12 Output power at high frequency, 10 MHz BW, 64QAM modulation

Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01, section 5.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012	- Verdict: PASS			
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

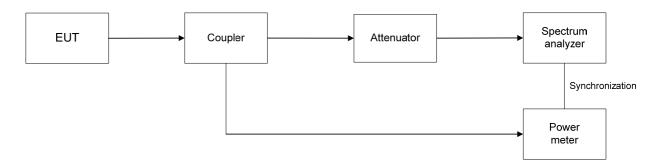
7.3 Spurious emissions at RF antenna connector

7.3.1 General

This test was performed to measure spurious emissions at RF antenna connector. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Spurious emission limits out of restricted band

Frequency*, MHz	Attenuation below carrier**, dBc
0.009 – 10 th harmonic	30.0


* - The above limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

** - Spurious emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth (100 kHz).

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- **7.3.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- 7.3.2.3 The highest emission level within the authorized band was measured.
- **7.3.2.4** The spurious emission was measured with spectrum analyzer and referenced to the highest emission level measured within the authorized band. The test results provided in Table 7.3.2 and the associated plots.

Figure 7.3.1 Spurious emission test setup

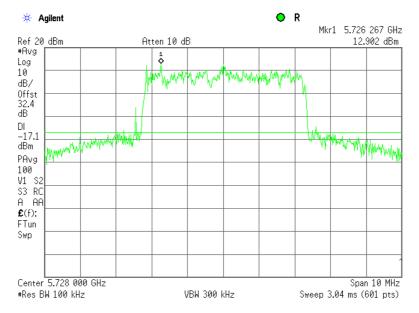
Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Gui	558074 D01 DTS Meas Guidance v01, section 5.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012				
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

Table 7.3.2 Spurious emission test results outside restricted bands

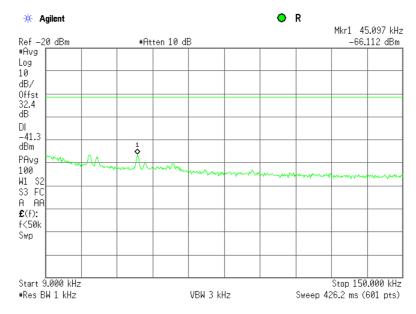
INVESTIGATED DETECTOR US RESOLUTION E VIDEO BANDW MODULATION: MODULATING	BANDWIDTH: IDTH:	Averag 100 kH 300 kH 64 QA PRBS				
Frequency, MHz	Spurious emission, dBm	Emission at carrier, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
Low carrier fr	equency					
5724.8	-29.629	12.902	42.531	30.0	12.531	Pass
17190	-36.500	12.902	49.402	30.0	19.402	Pass
Mid carrier fre	equency					
17364	-34.490	10.390	44.880	30.0	14.880	Pass
High carrier frequency						
5850.25	-29.290	9.311	38.601	30.0	8.601	Pass
17538	-34.360	9.311	43.671	30.0	13.671	Pass

*- Margin, dB = Attenuation below carrier, dBc – specification limit, dBc.

Reference numbers of test equipment used


HL 3301	HL 3302	HL 3442	HL 3786	HL 3818	HL 3868	HL 3903	HL 4342
Full description	ia aivan in Ann	andiv A					

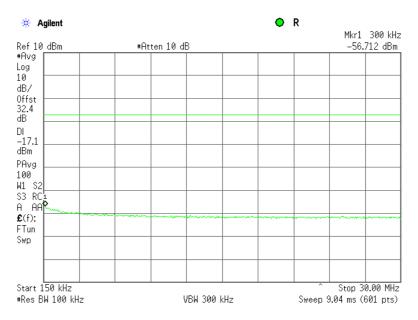
Full description is given in Appendix A.



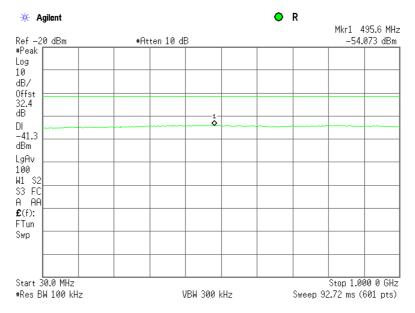
Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012	Verdict: PASS			
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.1 The highest emission level within the assigned band at low carrier frequency

DL=-17.1 dBm (12.9 dBm - 30 dB) according to 30 dBc spurious limit outside restricted band

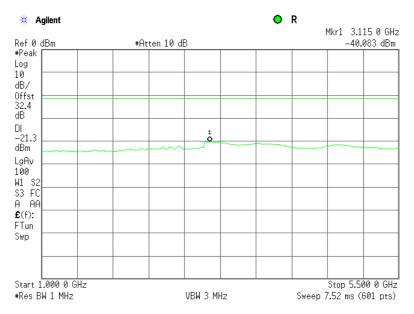

Plot 7.3.2 Spurious emission measurements in 9 - 150 kHz range at low carrier frequency

Note: the -17.1 dBm limit shall be applied

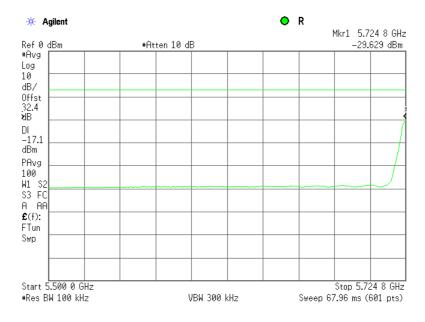


Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdiet: DASS			
Date(s):	9/10/2012	Verdict: PASS			
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.3 Spurious emission measurements in 0.15 - 30 MHz range at low carrier frequency

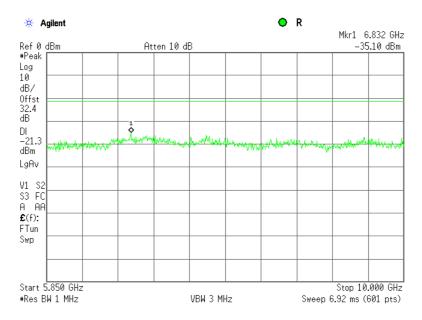


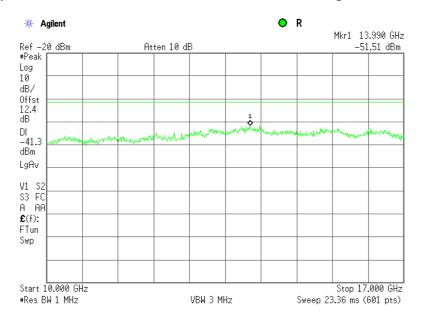
Note: the -17.1 dBm limit shall be applied


Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012				
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.5 Spurious emission measurements in 1000 – 5500 MHz range at low carrier frequency

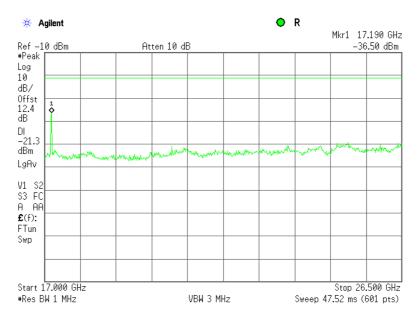
Note: the -17.1 dBm limit shall be applied

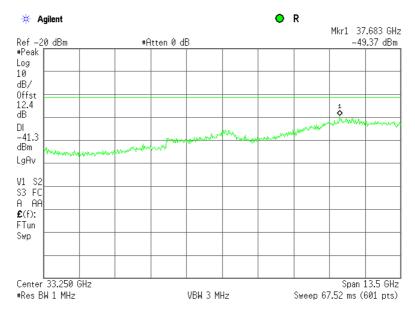

Plot 7.3.6 Spurious emission measurements in 5500 - 5724.75 MHz range at low carrier frequency


Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012				
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:		· · · ·			

Plot 7.3.7 Spurious emission measurements in 5850 - 10000 MHz range at low carrier frequency

Note: the -17.1 dBm limit shall be applied

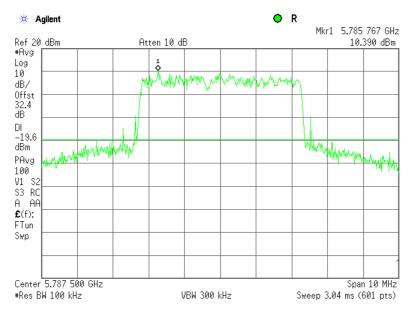

Plot 7.3.8 Spurious emission measurements in 10000 - 17000 MHz range at low carrier frequency


Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/10/2012		FA33
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			

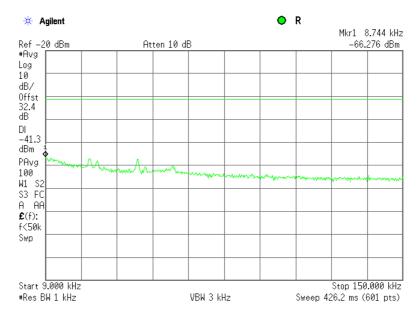
Plot 7.3.9 Spurious emission measurements in 17000 - 26500 MHz range at low carrier frequency

Note: the -17.1 dBm limit shall be applied

Plot 7.3.10 Spurious emission measurements in 26500-40000 MHz range at low carrier frequency



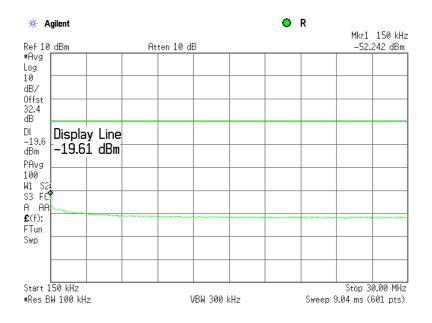
Note: the -17.1 dBm limit shall be applied



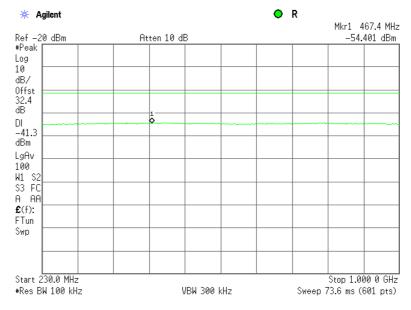
Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/10/2012		FA33
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.11 The highest emission level within the assigned band at mid carrier frequency

DL=-19.6 dBm (10.4 dBm - 30 dB) according to 30 dBc spurious limit outside restricted band


Plot 7.3.12 Spurious emission measurements in 9 - 150 kHz range at mid carrier frequency

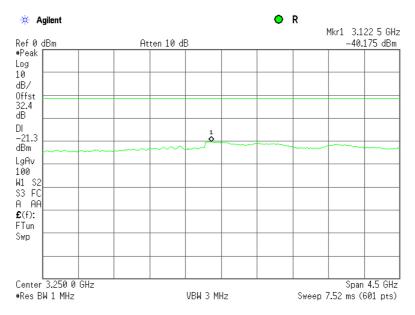
Note: the -19.6 dBm limit shall be applied



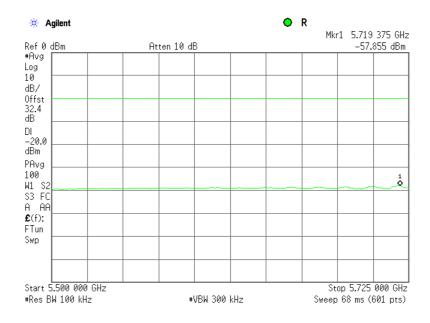
Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/10/2012		PA33
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.13 Spurious emission measurements in 0.15 - 30 MHz range at mid carrier frequency

Plot 7.3.14 Spurious emission measurements in 30 - 1000 MHz range at mid carrier frequency

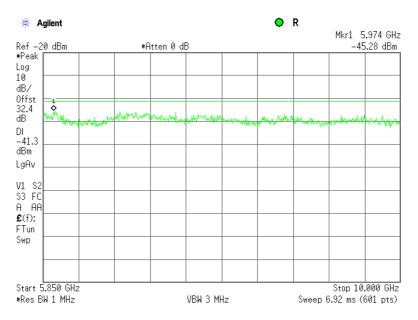


Note: the -19.6 dBm limit shall be applied

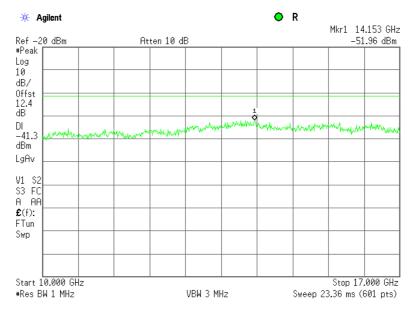

Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/10/2012		FA33
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.15 Spurious emission measurements in 1000 - 5500 MHz range at mid carrier frequency

Note: the -19.6 dBm limit shall be applied

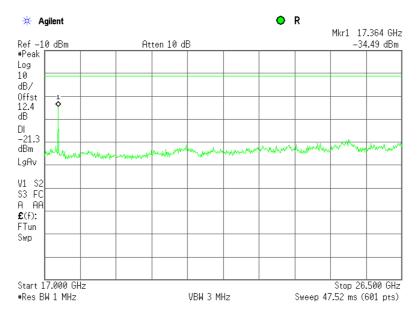

Plot 7.3.16 Spurious emission measurements in 5500 - 5725 MHz range at mid carrier frequency



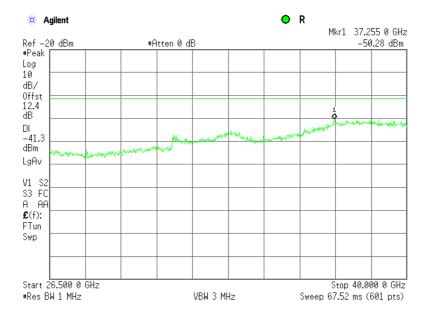

Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Vardiate	PASS
Date(s):	9/10/2012	Verdict:	PA33
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			· · · · · · · · · · · · · · · · · · ·

Plot 7.3.17 Spurious emission measurements in 5850 - 10000 MHz range at mid carrier frequency

Note: the -19.6 dBm limit shall be applied



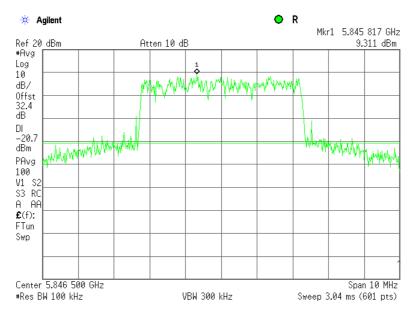
Note: the -19.6 dBm limit shall be applied



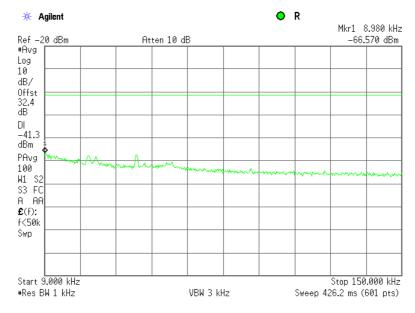
Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/10/2012		FA33
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			

Plot 7.3.19 Spurious emission measurements in 17000 - 26500 MHz range at mid carrier frequency

Note: the -19.6 dBm limit shall be applied


Plot 7.3.20 Spurious emission measurements in 26500-40000 MHz range at mid carrier frequency

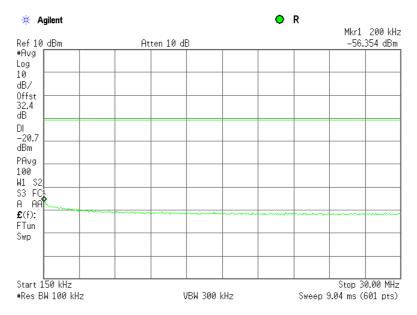
Note: the -19.6 dBm limit shall be applied



Test specification:	Section 15.247(d), Conducted spurious emissions		
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4		
Test mode:	Compliance	Vardiate	PASS
Date(s):	9/10/2012	Verdict:	PASS
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC
Remarks:			

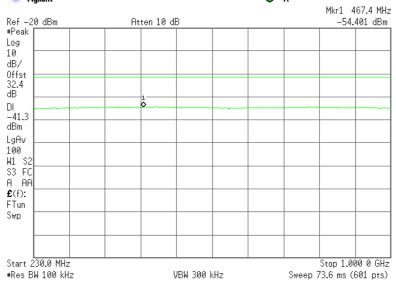
Plot 7.3.21 The highest emission level within the assigned band at high carrier frequency

DL=-20.7 dBm (9.3 dBm – 30 dB) according to 30 dBc spurious limit outside restricted band


Plot 7.3.22 Spurious emission measurements in 9 - 150 kHz range at high carrier frequency

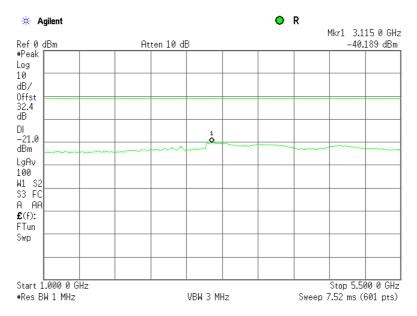
Note: the -20.7 dBm limit shall be applied

Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012	Verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

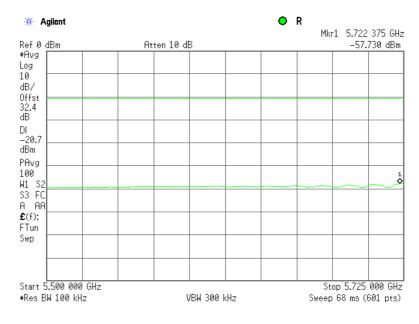

Plot 7.3.23 Spurious emission measurements in 0.15 - 30 MHz range at high carrier frequency

Note: the -20.7 dBm limit shall be applied

Plot 7.3.24 Spurious emission measurements in 30 - 1000 MHz range at high carrier frequency

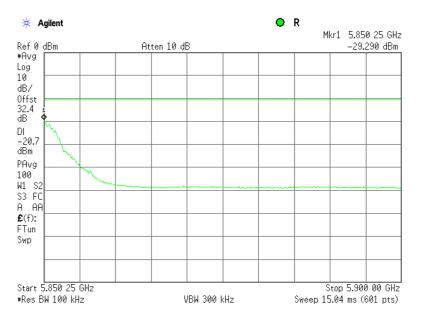


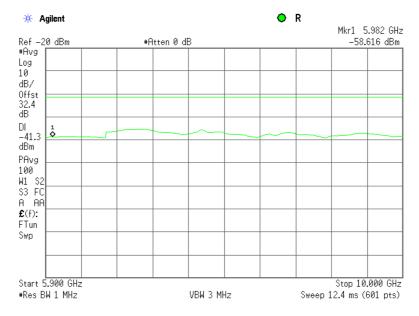
Note: the -20.7 dBm limit shall be applied


Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012	Verdict:	FA33		
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.3.25 Spurious emission measurements in 1000 - 5500 MHz range at high carrier frequency

Note: the -20.7 dBm limit shall be applied

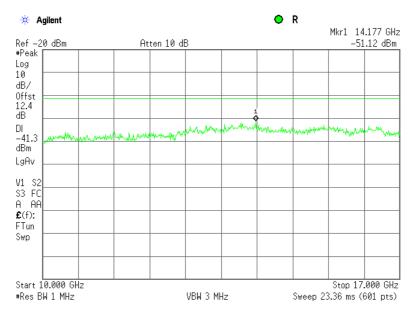

Plot 7.3.26 Spurious emission measurements in 5500 – 5725 MHz range at high carrier frequency



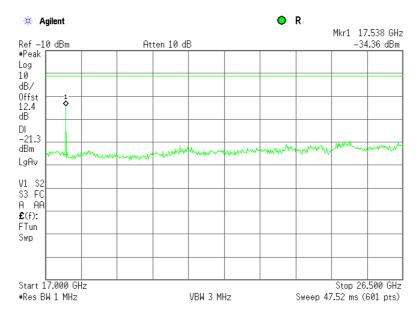
Test specification:	Section 15.247(d), Conducted spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	9/10/2012	Verdict:	PA33		
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC		
Remarks:		· · · ·			

Plot 7.3.27 Spurious emission measurements in 5850.25 - 5900 MHz range at high carrier frequency

Plot 7.3.28 Spurious emission measurements in 5900-10000 MHz range at high carrier frequency



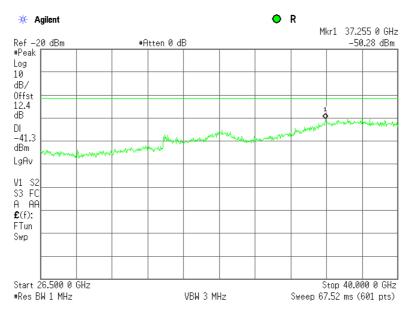
Note: the -20.7 dBm limit shall be applied


Test specification:	Section 15.247(d), Conducted spurious emissions					
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	9/10/2012	Verdict:	FA33			
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.3.29 Spurious emission measurements in 10000 - 17000 MHz range at high carrier frequency

Note: the -20.7 dBm limit shall be applied

Plot 7.3.30 Spurious emission measurements in 17000 - 26500 MHz range at high carrier frequency



Note: the -20.7 dBm limit shall be applied

Test specification:	Section 15.247(d), Conducted spurious emissions					
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01, section 5.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	9/10/2012	verdict.	FA33			
Temperature: 24 °C	Air Pressure: 1006 hPa	Relative Humidity: 44 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.3.31 Spurious emission measurements in 26500-40000 MHz range at high carrier frequency

Note: the -20.7 dBm limit shall be applied

Larker 1	50 g 1.81767 m Input		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:26:29 PM Sep 23, 2012 TRACE 2 3 4 5 TYPE	Marker
	Input	IFGain:Low	Atten: 10 dB		Mkr1 1.818 ms	Select Marker
0 dB/div	Ref 0.00 dBn	1			3.28 dB	
0.0 0.0	radianary	X2	1Δ2	mp.m-		Norm
0.0						
a.a a.o						Del
0.0						
0.0	4.49.449.444	mumphana	YMAN	MANAYANAVIA	rel Marcharter	Fixed
enter 5.7 es BW 10	87500000 GH				Span 0 Hz 3.67 ms (1001 pts)	c
KR MODE TRO	t (Δ)	× 1.818 ms (Δ)	3.28 dB	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 F 1 3 4 5 6	t	5.043 ms	-15.79 dBm			Properties
7 B 9 0						Ma
1						1 0

Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	10/24/2012 - 10/25/2012	verdict.	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks:						

7.4 Field strength of spurious emissions

7.4.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.4.1.

Frequency, MHz	Field streng	th at 3 m within res dB(μV/m)*	Attenuation of field strength of spurious versus	
r requeriey, initz	Peak Quasi Peak Average		Average	carrier outside restricted bands, dBc***
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**	
0.090 – 0.110	NA	108.5 – 106.8**	NA	
0.110 – 0.490	126.8 – 113.8	NA	106.8 - 93.8**	
0.490 – 1.705		73.8 – 63.0**		
1.705 – 30.0*		69.5		30.0
30 – 88	NA	40.0	NA	30.0
88 – 216	INA	43.5	NA	
216 – 960		46.0		
960 - 1000		54.0		
1000 – 10 th harmonic	74.0	NA	54.0	

Table 7.4.1 Radiated spurious emissions limits

*- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 40 \log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

**- The limit decreases linearly with the logarithm of frequency.

*** - The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

7.4.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.4.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.4.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.4.3.1 The EUT was set up as shown in Figure 7.4.2, energized and the performance check was conducted.
- **7.4.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.4.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	10/24/2012 - 10/25/2012	verdict:	PA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks:					

Figure 7.4.1 Setup for spurious emission field strength measurements below 30 MHz

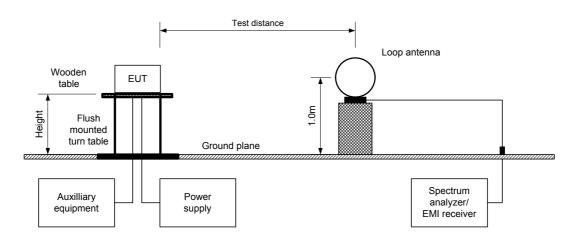
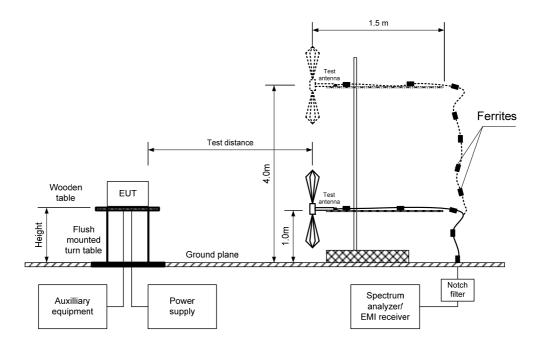



Figure 7.4.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dB	Remarks: EUT with 9.5 dBi omnidirectional antenna					

Table 7.4.2 Field strength of emissions outside restricted bands with 9.5 dBi antenna

ASSIGNED	SSIGNED FREQUENCY BAND:			57	725 - 5850 MHz	<u> </u>			
INVESTIGA	TED FREQUE	NCY RANGE:		0.	009 - 40000 MI	Hz			
TEST DIST	ANCE:			3	m				
MODULATI	ON:			64QAM					
	NG SIGNAL:			PRBS					
BIT RATE:				23	3.04Mbps				
DUTY CYCI	.E:) %				
TRANSMIT	TRANSMITTER OUTPUT POWER SETTINGS:			M	aximum				
TRANSMITTER OUTPUT POWER:			23	3.38 dBm at lov	v carrier frequen	ICV			
HV MOMITTER COTT OT FOWER.					d carrier frequer				
					h carrier freque	•			
DETECTOR	USED:				eak		,		
RESOLUTION BANDWIDTH: 100 kHz									
VIDEO BANDWIDTH: 300 kHz									
TEST ANTE	NNA TYPE:			Active loop (9 kHz – 30 MHz)					
-						lz – 1000 MHz)			
					•	ide (above 100	0 MHz)		
_	Field strength				Field strength				
Frequency, MHz	of spurious,	Antenna polarization	Antenna height, m	Azimuth, degrees*	of carrier,	below carrier,	Limit, dBc	Margin, dB**	Verdict
dB(µV/m) polarization neight, in			degrees	dB(μV/m)	dBc	abc	uв		
Low carrier frequency									
No emissions were found					Pass				
Mid carrier frequency									
							Pass		
High carrier	frequency								
No emissions were found Pa							Pass		

*- EUT front panel refers to 0 degrees position of turntable. **- Margin = Attenuation below carrier – specification limit.

Table 7.4.3 Restricted bands

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 28.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	Above 38.6

Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS					
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC				
Remarks: EUT with 9.5 dBi omnidirectional antenna							

Table 7.4.4 Field strength of spurious emissions above 1 GHz within restricted bands with 9.5 dBi antenna

ASSIGNED FREQUENCY BAND: 5725 - 5850 MHz 1000 - 40000 MHz INVESTIGATED FREQUENCY RANGE: TEST DISTANCE: 3 m MODULATION: 64QAM MODULATING SIGNAL: PRBS BIT RATE: 23.04Mbps DUTY CYCLE: 40 % TRANSMITTER OUTPUT POWER SETTINGS: Maximum TRANSMITTER OUTPUT POWER: 23.38 dBm at low carrier frequency 23.12 dBm at mid carrier frequency 21.15 dBm at high carrier frequency DETECTOR USED: Peak **RESOLUTION BANDWIDTH:** 1000 kHz

1.2002011											
TEST ANT	ENNA TYPE				Do	ouble ridge	ed guide				
_	Anteni	na		Peak field s	strength(VB	W=3 MHz)	Averag	e field stren	gth(VBW=1	0 Hz)	
Frequency, MHz	Polarization	Height, m	Azimuth, degrees*	measured,	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(µV/m)	Margin, dB***	Verdict
Low carrier frequency											
11456.00	Hor	1.6	210	60.77	74.0	-13.2	47.31	40.29	54.0	-13.71	Deee
17183.93	Vert	1.1	80	62.33	74.0	-11.7	48.25	41.23	54.0	-12.77	Pass
Mid carrier	frequency										
11574.95	Hor	1.3	96	53.55	74.0	-20.5	40.49	33.47	54.0	-20.53	Deee
17362.32	Vert	1.1	10	65.00	74.0	-9.0	48.45	41.43	54.0	-12.57	Pass
High carrie	High carrier frequency										
11693.00	Vert	1.0	185	49.91	74.0	-24.1	41.52	34.50	54.0	-19.50	Pass

*- EUT front panel refers to 0 degrees position of turntable.

**- Margin = Measured field strength - specification limit.

***- Margin = Calculated field strength - specification limit,

where Calculated field strength = Measured field strength + average factor.

Table 7.4.5 Average factor calculation

Transmiss	sion pulse	Transmission burst		Transmission train	Average factor,
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB
2.24	5.029	NA	NA	NA	-7.02
		S: Average factor $= 20 \times 10^{-10}$		t duration a duration t duration t duration 00 ms × Number of burs	

Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC				
Remarks: EUT with 9.5 dBi omnidirectional antenna							

Table 7.4.6 Field strength of spurious emissions below 1 GHz within restricted bands with 9.5 dBi antenna

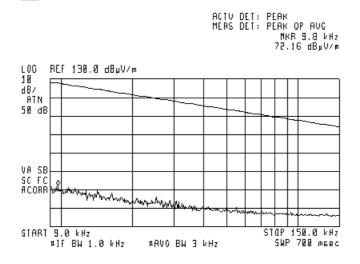
ASSIGNED FREQUENCY BAND: INVESTIGATED FREQUENCY RANGE:	5725 - 5850 MHz 0.009 – 1000 MHz
TEST DISTANCE:	3 m
MODULATION:	64QAM
MODULATING SIGNAL:	PRBS
BIT RATE:	23.04Mbps
DUTY CYCLE:	40 %
TRANSMITTER OUTPUT POWER SETTINGS:	Maximum
TRANSMITTER OUTPUT POWER:	23.38 dBm at low carrier frequency
	23.12 dBm at mid carrier frequency
	21.15 dBm at high carrier frequency
RESOLUTION BANDWIDTH:	0.2 kHz (9 kHz – 150 kHz)
	9.0 kHz (150 kHz – 30 MHz)
	120 kHz (30 MHz – 1000 MHz)
VIDEO BANDWIDTH:	> Resolution bandwidth
TEST ANTENNA TYPE:	Active loop (9 kHz – 30 MHz)
	Biconilog (30 MHz – 1000 MHz)

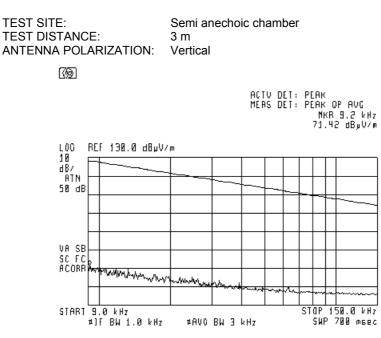
F	Peak	Qua	asi-peak		Antenna	Automa	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	polarization	Antenna height, m	position**, degrees	Verdict
Low carrier	frequency							
37.528	34.4	33.0	40.0	-7.0	Vert	1.0	39	
117.0524	34.5	31.8	43.5	-11.7	Vert	1.0	0	Pass
136.9065	34.4	32.8	43.5	-10.7	Vert	1.2	60	
Mid carrier	frequency							
37.528	34.5	33.2	40.0	-6.8	Vert	1.0	39	
117.0524	34.5	31.8	43.5	-11.7	Vert	1.0	0	_
136.9065	34.4	32.8	43.5	-10.7	Vert	1.2	60	Pass
275.0221	38.8	35.0	46.0	-11.0	Vert	1.0	45	
High carrier	frequency							
37.528	34.5	33.2	40.0	-6.8	Vert	1.0	39	
117.0524	34.5	31.8	43.5	-11.7	Vert	1.0	0	Deee
136.9065	34.4	32.8	43.5	-10.7	Vert	1.2	60	Pass
275.0221	38.8	35.0	46.0	-11.0	Vert	1.0	45	

*- Margin = Measured emission - specification limit.
**- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

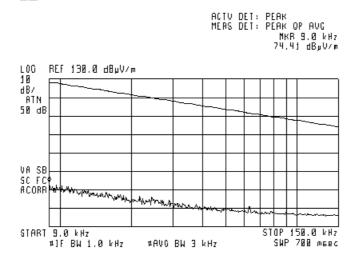
HL 0446	HL 0521	HL 0604	HL 0768	HL 0769	HL 1984	HL 2909	HL 3533
HL 3535	HL 3818	HL 3901	HL 4114	HL 4276	HL 4352	HL 4353	

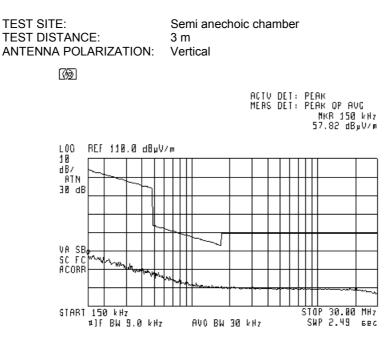

Full description is given in Appendix A.


Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict.	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dBi omnidirectional antenna						

Plot 7.4.1 Radiated emission measurements from 9 to 150 kHz at the low carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical
(%)	

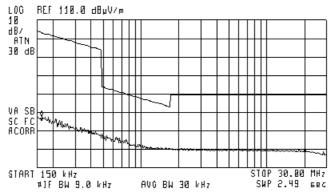



Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict.	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dBi omnidirectional antenna						

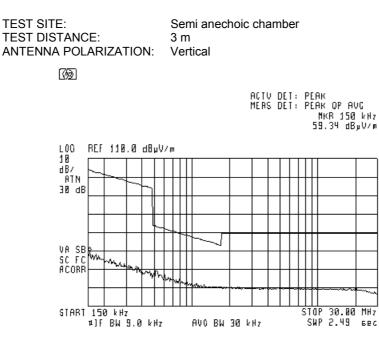
Plot 7.4.3 Radiated emission measurements from 9 to 150 kHz at the high carrier frequency

TEST SITE:	Semi anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical
(@)	

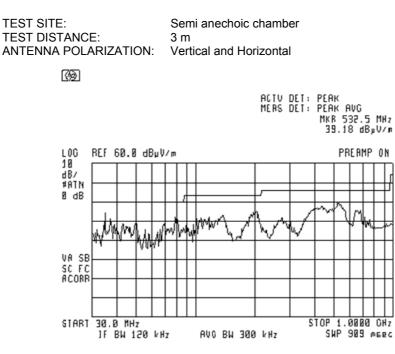
Plot 7.4.4 Radiated emission measurements from 0.15 to 30 MHz at the low carrier frequency


Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict.	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dBi omnidirectional antenna						

Plot 7.4.5 Radiated emission measurements from 0.15 to 30 MHz at the mid carrier frequency


TEST SITE:SeTEST DISTANCE:3 rANTENNA POLARIZATION:Ve	
--	--

ACIV DEI: PEAK MERS DEI: PEAK OP AVG NKR 160 kHz 50.00 dByV/m

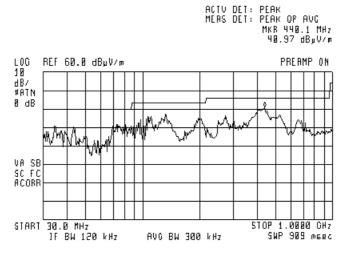

Plot 7.4.6 Radiated emission measurements from 0.15 to 30 MHz at the high carrier frequency

Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 9.5 dBi omnidirectional antenna				

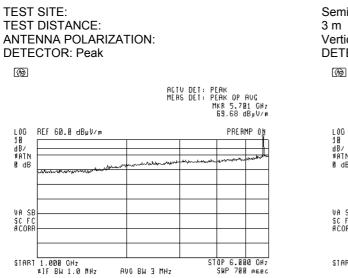
Plot 7.4.7 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

Plot 7.4.8 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

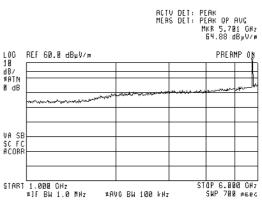
TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical and Horizontal 6 ACTV DET: PEAK Mers det: Peak op avg Mkr 300.5 MHz 40.74 dbjv/j L00 10 PREAMP ON REF 60.0 dBµV/m dB/ ≢ATN Ø dB LA AMMIN VA SB SC FC ACORR START 30.0 MHz Jf BW 120 kHz)Р 1.0000 CHz SWP 909 мвес STOP AVG BW 300 kHz


Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					

Plot 7.4.9 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

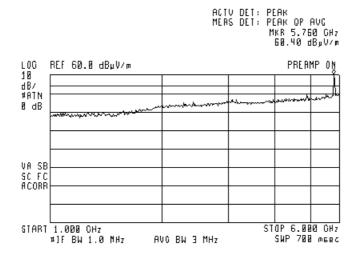

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

Semi anechoic chamber 3 m Vertical and Horizontal



Plot 7.4.10 Radiated emission measurements from 1000 to 6000 MHz at the low carrier frequency

Semi anechoic chamber 3 m Vertical and Horizontal DETECTOR: Average

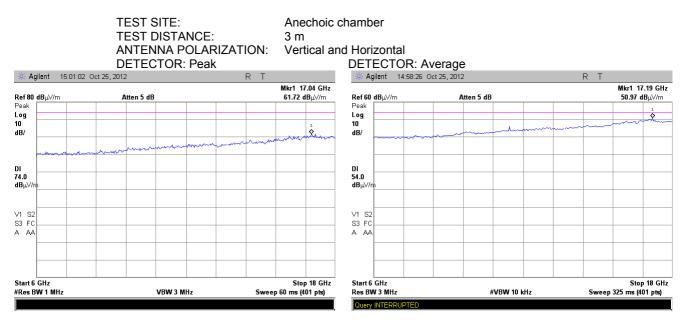

Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 9.5 dBi omnidirectional antenna				

Plot 7.4.11 Radiated emission measurements from 1000 to 6000 MHz at the mid carrier frequency

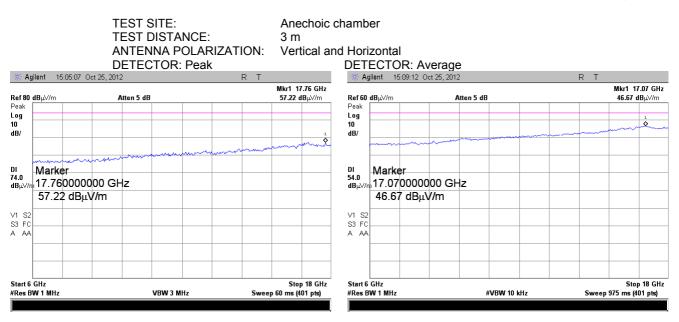
 TEST SITE:
 Semi anechoic chamber

 TEST DISTANCE:
 3 m

 ANTENNA POLARIZATION:
 Vertical and Horizontal

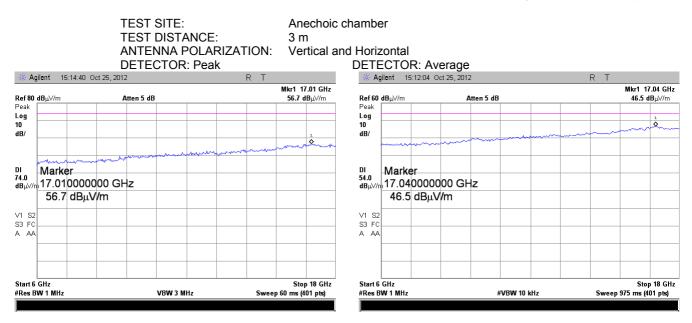


TEST SITE: TEST DISTANC ANTENNA POL	Semi anechoic chamber E: 3 m ARIZATION: Vertical and Horizontal						
(D)							
				ACTI Meri) DET: P 5 DET: P M	EAK EAK OP Ikr 5.88 57.88 c	0 GHz
	REF 60.0 dBµV∕	ш				PRER	MP ON
10 dB/							
¥ATN Ø db		. And the second	mpromenter	~~~~~			and the state of the
	Mandalahan Kabulatan	A					
VA SB							
SC FC ACOBB							
псорр							
START	1.000 GHz ¤]F BW 1.0 MHz	A	VG BW 3 M	Hz	ST	0P 6.00 SWP 700	

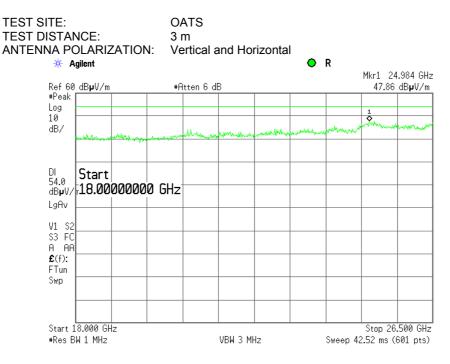


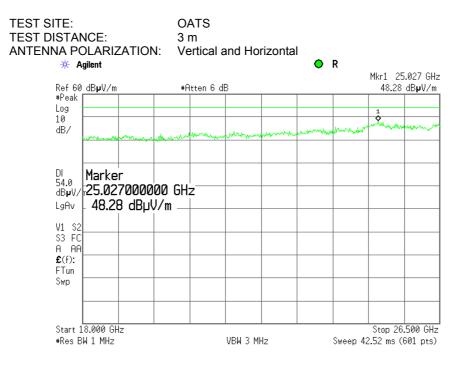
Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					

Plot 7.4.13 Radiated emission measurements from 6000 to 18000 MHz at the low carrier frequency


Plot 7.4.14 Radiated emission measurements from 6000 to 18000 MHz at the mid carrier frequency

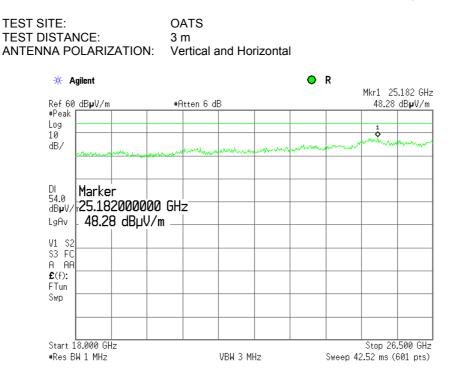
Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 9.5 dBi omnidirectional antenna				


Plot 7.4.15 Radiated emission measurements from 6000 to 18000 MHz at the high carrier frequency

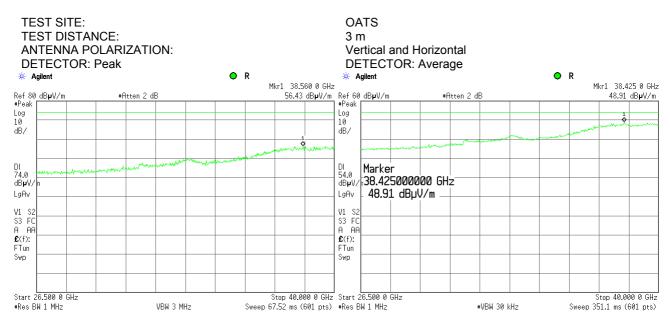


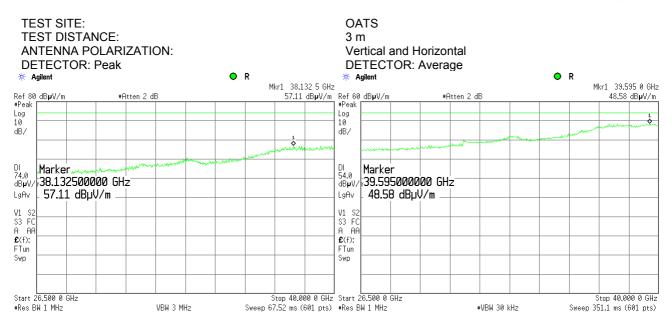
Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	Verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					

Plot 7.4.16 Radiated emission measurements from 18000 to 26500 MHz at the low carrier frequency

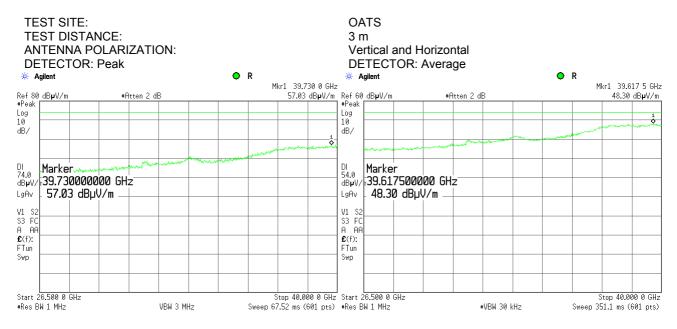

Plot 7.4.17 Radiated emission measurements from 18000 to 26500 MHz at the mid carrier frequency

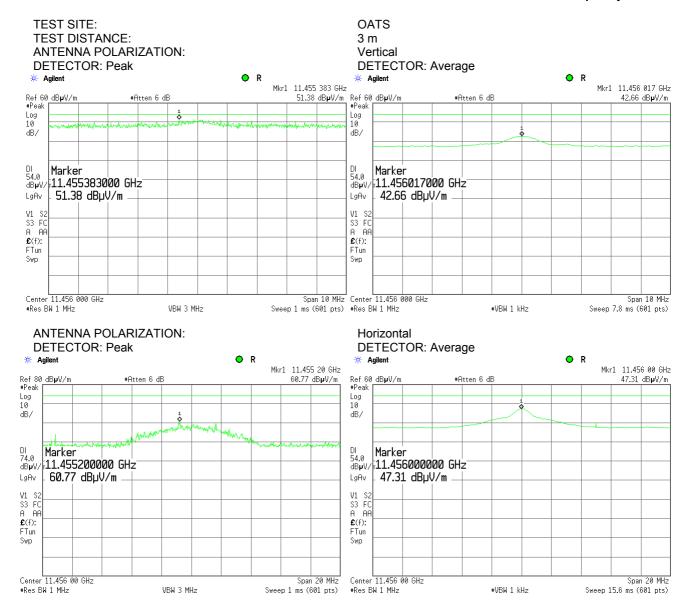
Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					


Plot 7.4.18 Radiated emission measurements from 18000 to 26500 MHz at the high carrier frequency

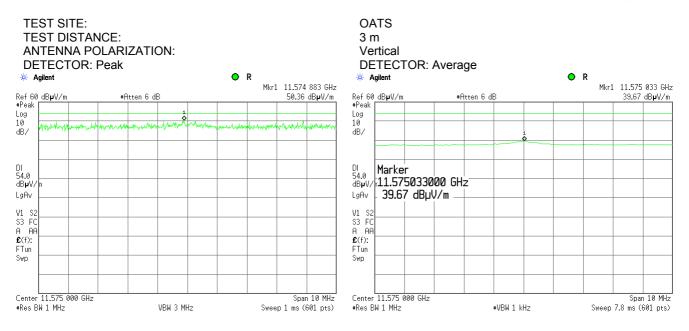


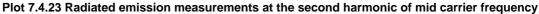
Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	- Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					


Plot 7.4.20 Radiated emission measurements from 26500 to 40000 MHz at the mid carrier frequency

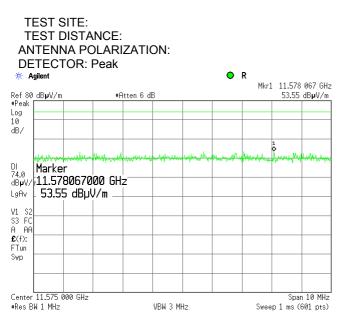

Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	10/24/2012 - 10/25/2012	Verdict:	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dBi omnidirectional antenna						

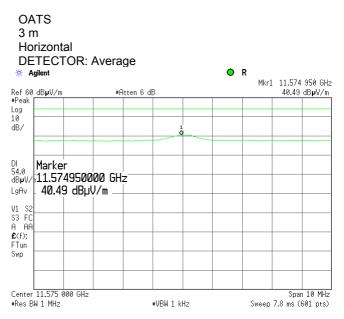
Plot 7.4.21 Radiated emission measurements from 26500 to 40000 MHz at the high carrier frequency

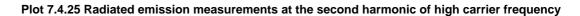

Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict.	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					

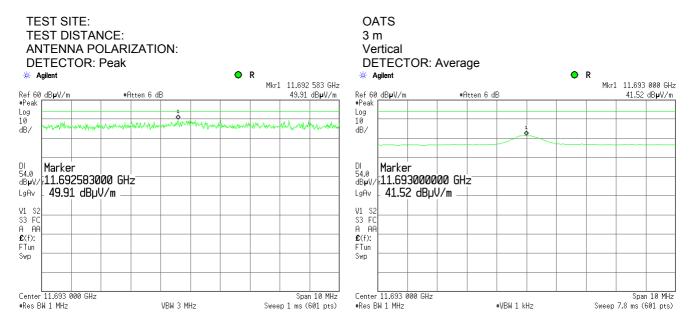


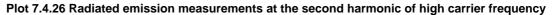
Plot 7.4.22 Radiated emission measurements at the second harmonic of low carrier frequency



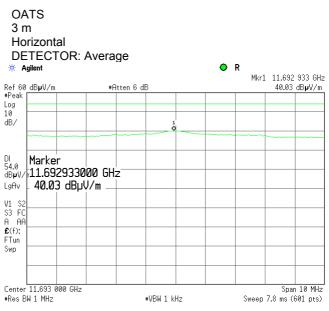

Test specification:	Section 15.247(d), Radiated spurious emissions						
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS					
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC				
Remarks: EUT with 9.5 dBi omnidirectional antenna							

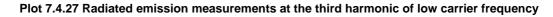


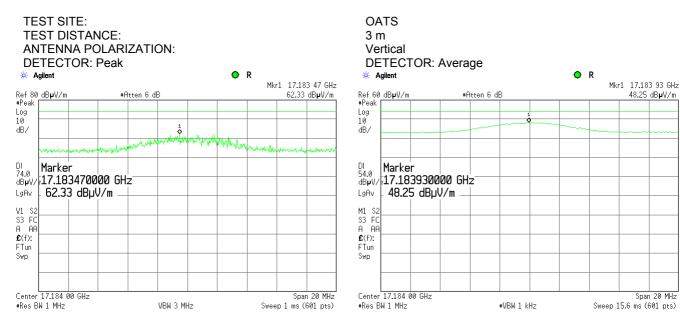


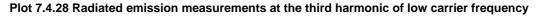


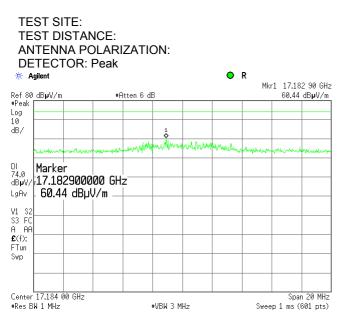


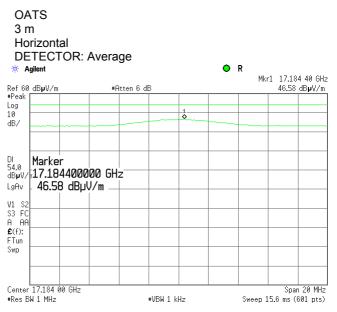

Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					

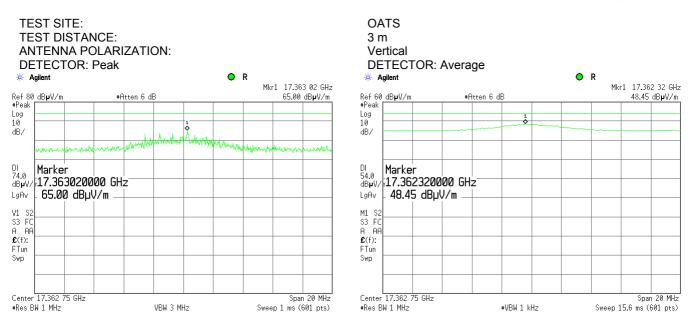


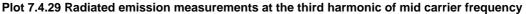


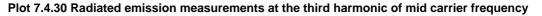


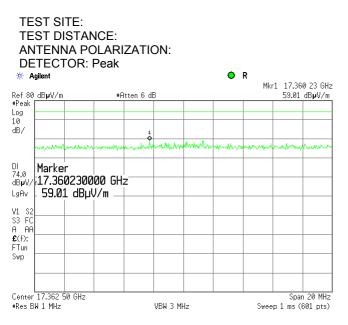


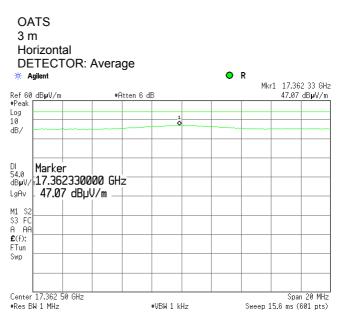

Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dBi omnidirectional antenna						



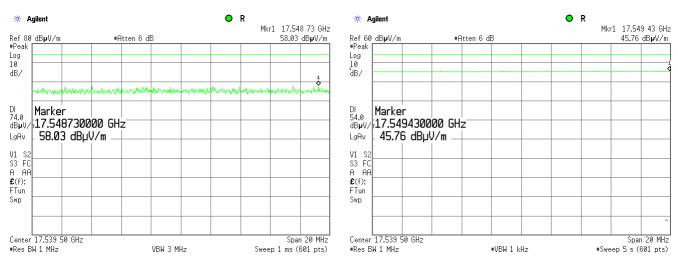







Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	- Verdict: PASS			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 9.5 dBi omnidirectional antenna					

Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	10/24/2012 - 10/25/2012	Verdict: PASS				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 9.5 dBi omnidirectional antenna						


Plot 7.4.31 Radiated emission measurements at the third harmonic of high carrier frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

OATS 3 m Vertical and Horizontal

DETECTOR: Peak

DETECTOR: Average

Test specification:	Section 15.247(d), Radiate	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 22.5 dBi dual slant antenna						

Table 7.4.7 Field strength of emissions outside restricted bands with 22.5 dBi antenna

ASSIGNED FREQUENCY BAND:5725-5850 MHzINVESTIGATED FREQUENCY RANGE:0.009 – 40000 MHzTEST DISTANCE:3 mMODULATION:64QAMMODULATING SIGNAL:PRBSBIT RATE:23.04 MbpsDUTY CYCLE:40 %TRANSMITTER OUTPUT POWER SETTINGS:MaximumTRANSMITTER OUTPUT POWER:23.38 dBm at low carrier frequency23.12 dBm at mid carrier frequency21.15 dBm at high carrier frequencyDETECTOR USED:PeakRESOLUTION BANDWIDTH:100 kHzVIDEO BANDWIDTH:300 kHzTEST ANTENNA TYPE:Active loop (9 kHz – 30 MHz)Biconilog (30 MHz – 1000 MHz)Double ridged guide (above 1000 MHz)					
Frequency, MHzField strength of spurious, dB(μV/m)Antenna polarizationAntenna height, mAzimuth, degrees*Field strength of carrier, dB(μV/m)Attenuation below carrier, dB(μV/m)Limit, dBcMargin, dB**	Verdict				
Low carrier frequency	Pass				
No emissions were found					
Mid carrier frequency	Pass				
No emissions were found					
High carrier frequency	_				
No emissions were found	Pass				

*- EUT front panel refers to 0 degrees position of turntable. **- Margin = Attenuation below carrier – specification limit.

Table 7.4.8 Restricted bands

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 29.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	Above 38.6

Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions					
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4					
Test mode:	Compliance						
Date(s):	10/24/2012 - 10/25/2012	Verdict: PASS					
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC				
Remarks: EUT with 22.5 dBi dual slant antenna							

Table 7.4.9 Field strength of spurious emissions above 1 GHz within restricted bands with 22.5 dBi antenna

ASSIGNED FREQUENCY BAND: INVESTIGATED FREQUENCY RANGE: TEST DISTANCE: MODULATION: MODULATING SIGNAL: BIT RATE: DUTY CYCLE: TRANSMITTER OUTPUT POWER SETTINGS: TRANSMITTER OUTPUT POWER: 5725-5850 MHz 1000 – 40000 MHz 3 m 64QAM PRBS 23.04 Mbps 40 % Maximum 23.38 dBm at low carrier frequency 23.12 dBm at mid carrier frequency 21.15 dBm at high carrier frequency Peak 1000 kHz Double ridged guide

DETECTOR USED: RESOLUTION BANDWIDTH: TEST ANTENNA TYPE:

-	Anten	na		Peak field strength(VBW=3 MHz)		Average field strength(VBW=10 Hz)					
Frequency, MHz	Polarization	Height, m	Azimuth, degrees*	Measured, dB(μV/m)	.,	Margin, dB**	Measured, dB(μV/m)	Calculated, dB(μV/m)	Limit, dB(µV/m)	Margin, dB***	Verdict
Low carrie	r frequency										
11455.73	Hor	1.0	170	63.57	74.0	-10.43	51.32	44.3	54.0	-9.70	Daaa
17184.07	Hor	1.0	0	63.37	74.0	-10.63	48.89	41.87	54.0	-12.13	Pass
Mid carrier	frequency										
11574.95	Hor	1.0	178	54.10	74.0	-19.90	43.69	36.67	54.0	-17.33	Daaa
17362.32	Vert	1.0	0	65.00	74.0	-9.00	48.45	41.43	54.0	-12.57	Pass
High carrier frequency											
11693.07	Hor	1.0	184	59.45	74.0	-14.55	46.54	39.52	54.0	-14.48	Pass

*- EUT front panel refers to 0 degrees position of turntable.

**- Margin = Measured field strength - specification limit.

***- Margin = Calculated field strength - specification limit,

where Calculated field strength = Measured field strength + average factor.

Table 7.4.10 Average factor calculation

Transmis	sion pulse	Transmis	sion burst	Transmission train	Average factor,
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	dB
2.24	5.029	NA	NA	NA	-7.02
*- Average factor was for pulse tra			$pg_{10}\left(\frac{Pulseduration}{Pulseperiod} \times \frac{Burst}{Train}\right)$	t duration duration × Number of burst	s within pulse train)
for pulse tra	in longer than 100 ms	S: Average factor $=20 \times 10^{-10}$	$\log_{10}\left(\frac{Pulse\ duration}{Pulse\ period} \times \frac{Burs}{1}\right)$	$\frac{t duration}{00 ms} \times Number of burs$	ts within 100 ms

Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC			
Remarks: EUT with 22.5 dBi dual slant antenna						

Table 7.4.11 Field strength of spurious emissions below 1 GHz within restricted bands with 22.5 dBi antenna

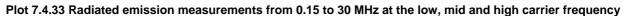
ASSIGNED FREQUENCY BAND:	5725-5850 MHz
INVESTIGATED FREQUENCY RANGE:	0.009 – 1000 MHz
TEST DISTANCE:	3 m
MODULATION:	64 QAM
MODULATING SIGNAL:	PRBS
BIT RATE:	23.04 Mbps
DUTY CYCLE:	40 %
TRANSMITTER OUTPUT POWER SETTINGS:	Maximum
TRANSMITTER OUTPUT POWER:	23.38 dBm at low carrier frequency
	23.12 dBm at mid carrier frequency
	21.15 dBm at high carrier frequency
RESOLUTION BANDWIDTH:	0.2 kHz (9 kHz – 150 kHz)
	9.0 kHz (150 kHz – 30 MHz)
	120 kHz (30 MHz – 1000 MHz)
VIDEO BANDWIDTH:	> Resolution bandwidth
TEST ANTENNA TYPE:	Active loop (9 kHz – 30 MHz)
	Biconilog (30 MHz – 1000 MHz)

_	Peak	Qua	isi-peak				Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	position**, degrees	Verdict
Low carrier	frequency							
37.528	34.4	33.0	40.0	-7.0	Vert	1.0	39	
117.0524	34.5	31.8	43.5	-11.7	Vert	1.0	0	Pass
136.9065	34.4	32.8	43.5	-10.7	Vert	1.2	60	
Mid carrier	Mid carrier frequency							
37.528	34.5	33.2	40.0	-6.8	Vert	1.0	39	
117.0524	34.5	31.8	43.5	-11.7	Vert	1.0	0	Deee
136.9065	34.4	32.8	43.5	-10.7	Vert	1.2	60	Pass
275.022	38.8	35.0	46.0	-11.0	Vert	1.0	45	
High carrie	frequency							
37.528	34.5	33.2	40.0	-6.8	Vert	1.0	39	
117.0524	34.5	31.8	43.5	-11.7	Vert	1.0	0	Deee
137.9054	37.9	35.4	43.5	-8.1	Vert	1.2	60	Pass
275.022	38.8	35.0	46.0	-11.0	Vert	1.0	45	

*- Margin = Measured emission - specification limit. **- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

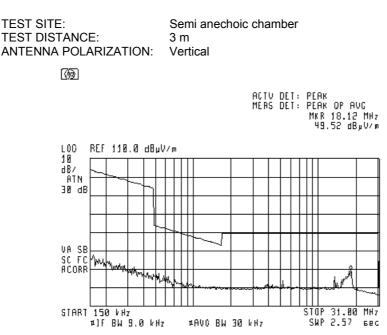
HL 0446	HL 0521	HL 0604	HL 0768	HL 0769	HL 1984	HL 2909	HL 3533
HL 3535	HL 3818	HL 3901	HL 4114	HL 4276	HL 4352	HL 4353	


Full description is given in Appendix A.

Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	- Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 22.5 dBi dual slant antenna					

Plot 7.4.32 Radiated emission measurements from 9 to 150 kHz at the low, mid and high carrier frequency

> START 9.0 kHz ¤]F BW 1.0 kHz

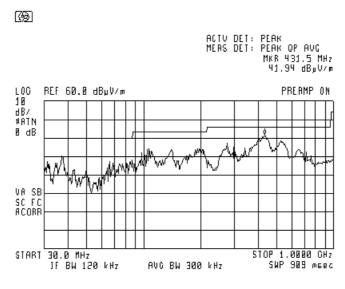


#AVC BW 3 kHz

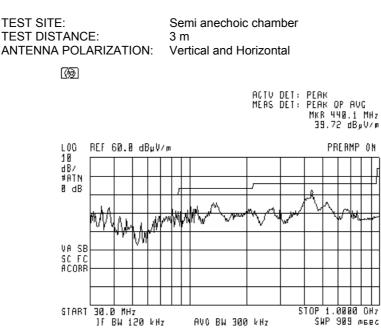
150.0 kHz

SWP 700 meec

STOP

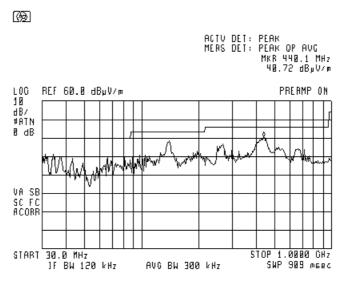


Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	- Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 22.5 dBi dual slant antenna					

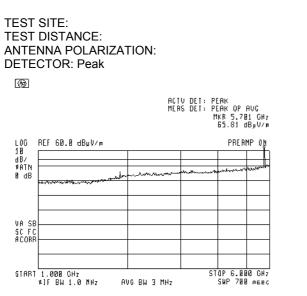

Plot 7.4.34 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

Semi anechoic chamber 3 m Vertical and Horizontal

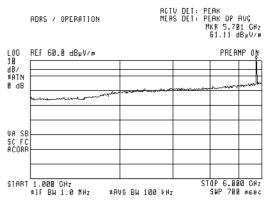


Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 22.5 dBi dual slant antenna					

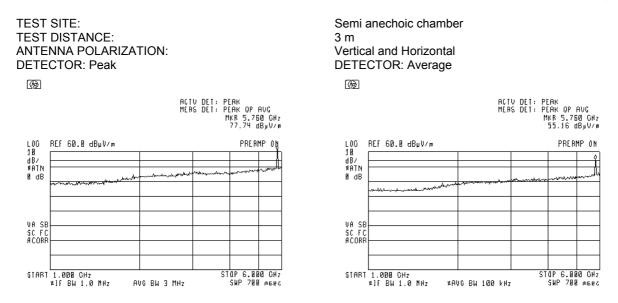

Plot 7.4.36 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

Semi anechoic chamber 3 m Vertical and Horizontal

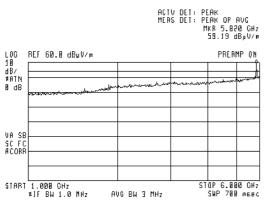


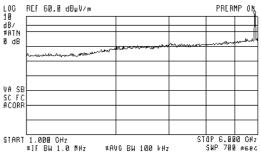
Plot 7.4.37 Radiated emission measurements from 1000 to 6000 MHz at the low carrier frequency


Semi anechoic chamber 3 m Vertical and Horizontal DETECTOR: Average

())

Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 22.5 dBi dual slant antenna					

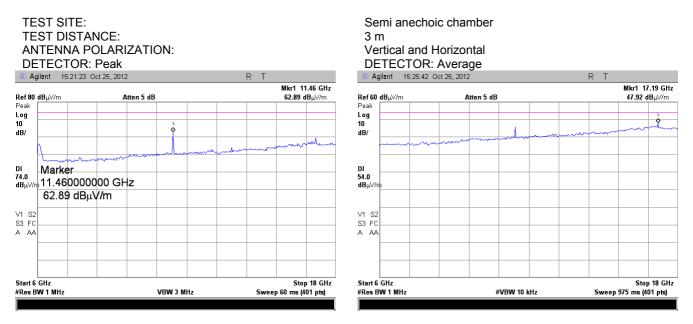

Plot 7.4.38 Radiated emission measurements from 1000 to 6000 MHz at the mid carrier frequency


Plot 7.4.39 Radiated emission measurements from 1000 to 6000 MHz at the high carrier frequency

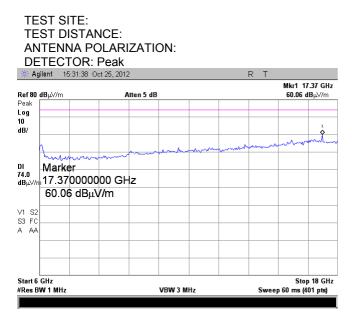
TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION: DETECTOR: Peak

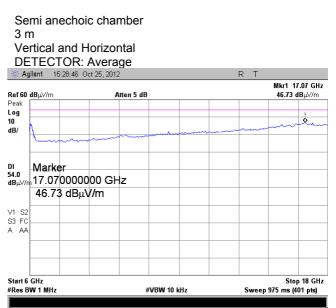
[@]

Semi anechoic chamber 3 m Vertical and Horizontal DETECTOR: Average

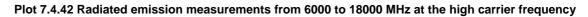


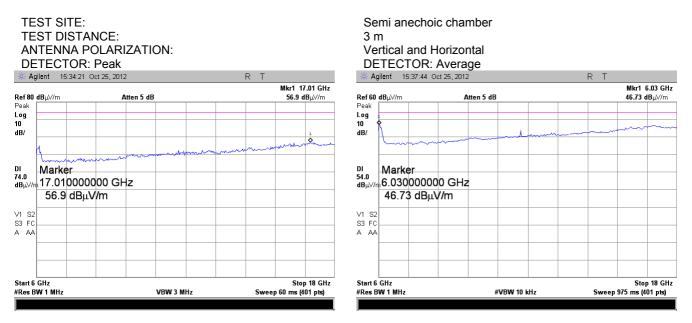
ACTV DET: PEAK MEAS DET: PEAK OP AUG MKR 5.820 GHz 67.12 dByV/m

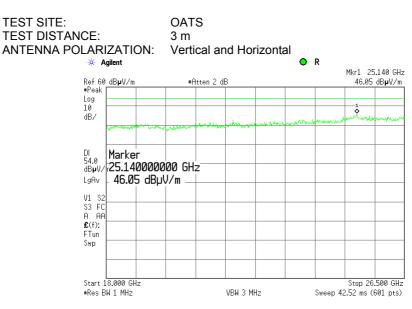



Test specification:	Section 15.247(d), Radiated spurious emissions				
Test procedure:	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS			
Date(s):	10/24/2012 - 10/25/2012				
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC		
Remarks: EUT with 22.5 dBi dual slant antenna					

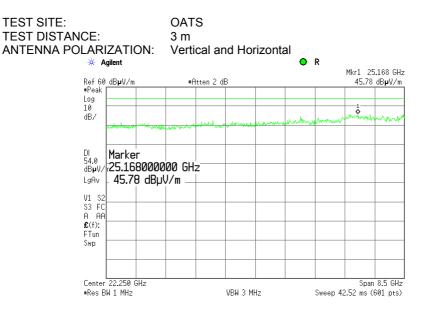
Plot 7.4.40 Radiated emission measurements from 6000 to 18000 MHz at the low carrier frequency

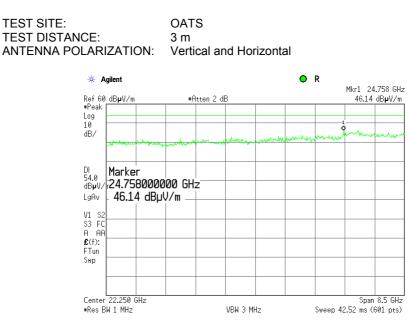

Plot 7.4.41 Radiated emission measurements from 6000 to 18000 MHz at the mid carrier frequency





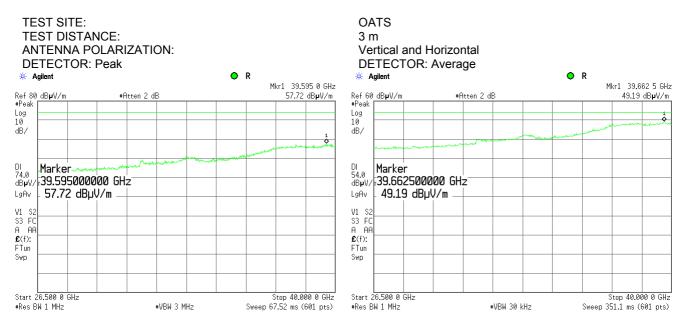
Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions		
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

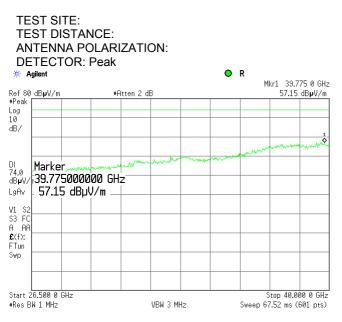

Plot 7.4.43 Radiated emission measurements from 18000 to 26500 MHz at the low carrier frequency

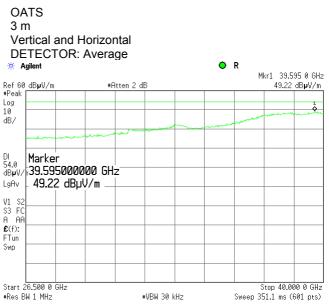


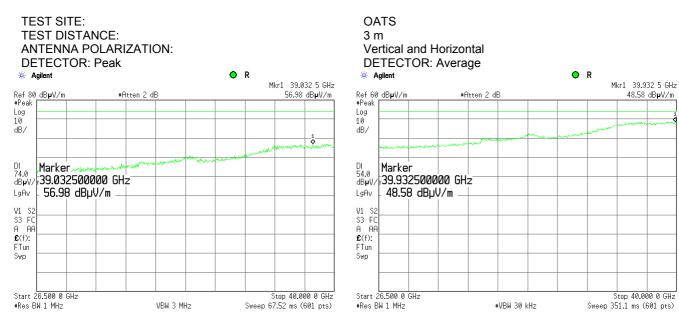
Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions		
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	- Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

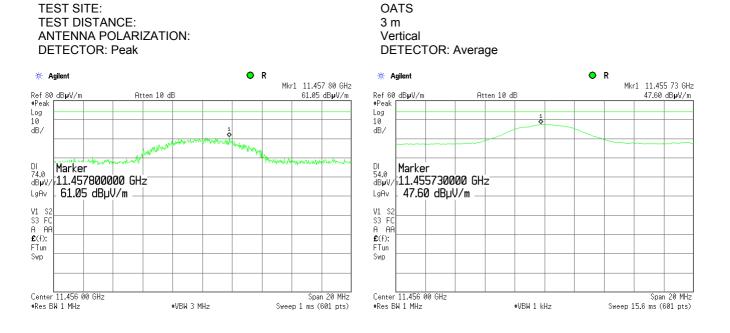
Plot 7.4.44 Radiated emission measurements from 18000 to 26500 MHz at the mid carrier frequency


Plot 7.4.45 Radiated emission measurements from 18000 to 26500 MHz at the high carrier frequency




Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions		
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

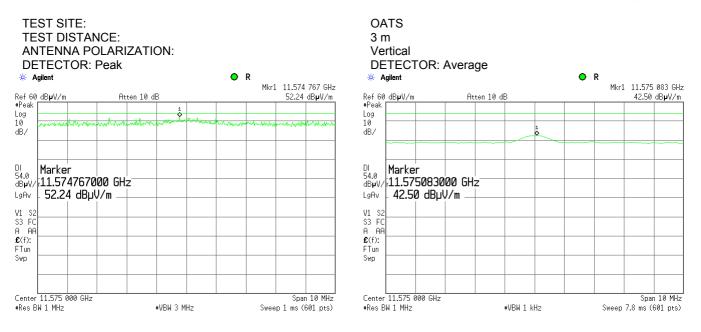

Plot 7.4.47 Radiated emission measurements from 26500 to 40000 MHz at the mid carrier frequency


Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions		
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

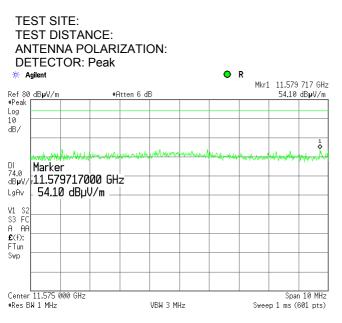


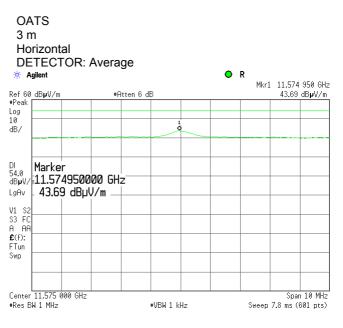
Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	- Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

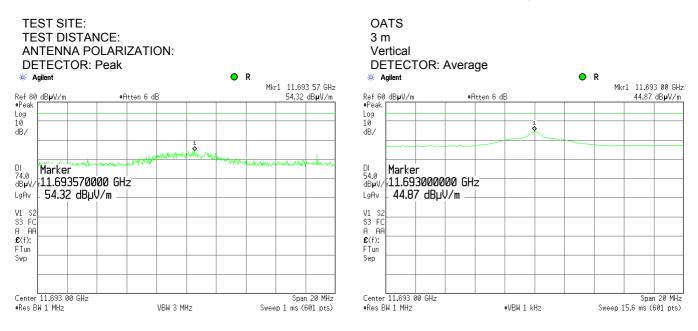
Plot 7.4.49 Radiated emission measurements at the second harmonic of low carrier frequency

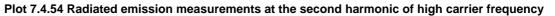


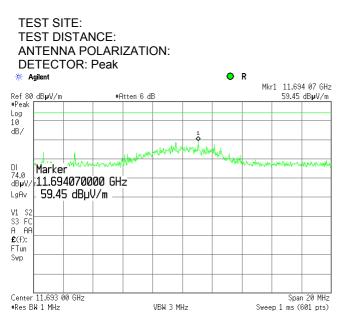
Plot 7.4.50 Radiated emission measurements at the second harmonic of low carrier frequency

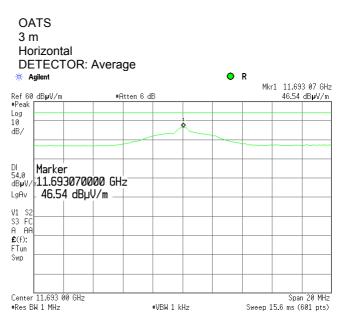



Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	- Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

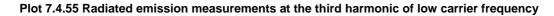


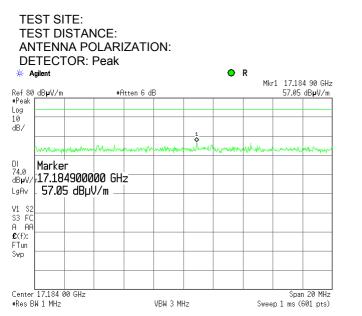


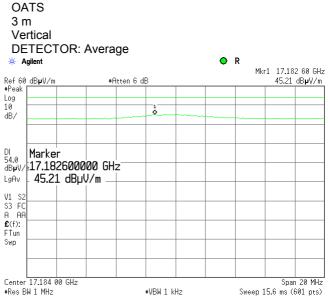


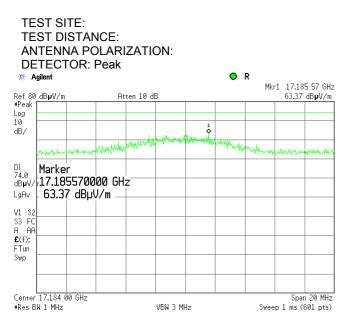

Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	- Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

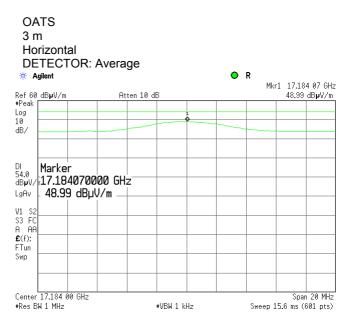
Plot 7.4.53 Radiated emission measurements at the second harmonic of high carrier frequency







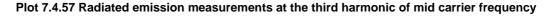

Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions		
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	- Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

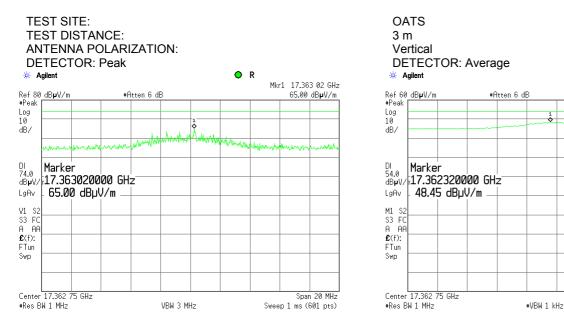


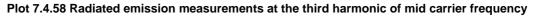
Plot 7.4.56 Radiated emission measurements at the third harmonic of low carrier frequency

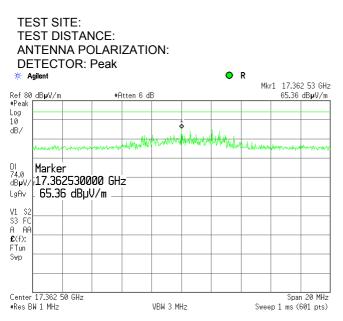
O R

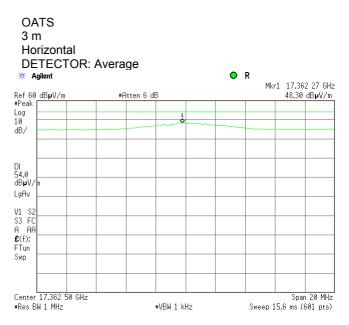
Mkr1 17.362 32 GHz

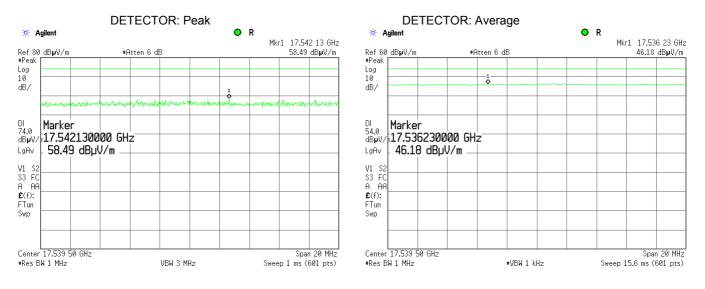

48.45 dB**µ**V/m


Span 20 MHz


Sweep 15.6 ms (601 pts)




Test specification:	Section 15.247(d), Radia	Section 15.247(d), Radiated spurious emissions		
Test procedure:	558074 D01 DTS Meas Guid	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				



Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01/ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date(s):	10/24/2012 - 10/25/2012			
Temperature: 24.1 °C	Air Pressure: 1015 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks: EUT with 22.5 dBi dual slant antenna				

Plot 7.4.59 Radiated emission measurements at the third harmonic of high carrier frequency

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION: OATS 3 m Vertical and Horizontal

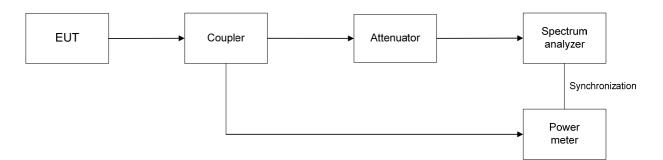
Test specification:	Section 15.247(d), Band edge emissions			
Test procedure:	558074 D01 DTS Meas Guida	558074 D01 DTS Meas Guidance v01		
Test mode:	Compliance	Verdict: PASS		
Date(s):	9/6/2012			
Temperature: 25.1 °C	Air Pressure: 1008 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:				

7.5 Band edge emissions at RF antenna connector

7.5.1 General

This test was performed to measure band edge emissions at RF antenna connector. Specification test limits are given in Table 7.5.1.

Output power	Assigned frequency, MHz	Attenuation below carrier*, dBc
	902.0 - 928.0	
Peak	2400.0 - 2483.5	20.0
	5725.0 - 5850.0	
	902.0 - 928.0	
Averaged over a time interval	2400.0 - 2483.5	30.0
	5725.0 - 5850.0	


Table 7.5.1 Band edge emission limits

* - Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.5.2 Test procedure

- **7.5.2.1** The EUT was set up as shown in Figure 7.5.1, energized normally modulated at the maximum data rate and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.5.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.5.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.5.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.5.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.5.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.

Figure 7.5.1 Band edge emission test setup

0.63

0.88

Pass

30.0

Test specification:	Section 15.247(d), Band	l edge emissions	
Test procedure:	558074 D01 DTS Meas Gui	dance v01	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict:	FA33
Temperature: 25.1 °C	Air Pressure: 1008 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC
Remarks:			

Table 7.5.2 Band edge emission test results

ASSIGNED FREQUENCY RANGE:	5725-5850 MHz
DETECTOR USED:	Average
MODULATING SIGNAL:	PRBS
TRANSMITTER OUTPUT POWER SETTINGS:	Maximum
RESOLUTION BANDWIDTH:	100 kHz
VIDEO BANDWIDTH:	≥ RBW

CANNEL BANI	OWIDTH	5 MHz				
Frequency, MHz	Band edge emission, dBm	Emission at carrier, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
QPSK						
5728	-21.13	11.893	33.023	30	3.023	Pass
5846.5	-20.01	10.02	30.03	30	0.03	rass
64 QAM						
5728	-21.07	11.73	32.80	30.0	2.80	Pass
5846.5	-21.06	9.10	30.16	30.0	0.16	rass
CANNEL BANI	OWIDTH	10 MH	Z			
Frequency, MHz	Band edge emission, dBm	Emission at carrier, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
QPSK						
5730.5	-23.09	7.518	30.608	30	0.608	Pass
5844.0	-26.01	4.94	30.95	30	0.95	FdSS

-25.20 *- Margin = Attenuation below carrier – specification limit.

-23.41

Reference numbers of test equipment used

HL 3301	HL 3302	HL 3442	HL 3781	HL 3818	HL 3868	
Full description	is given in Ann	andix A				

7.220

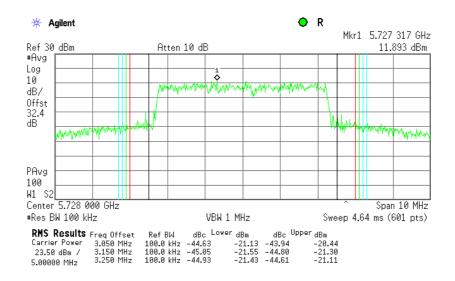
5.68

30.63

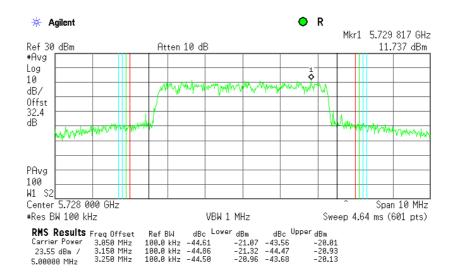
30.88

Full description is given in Appendix A.

64 QAM

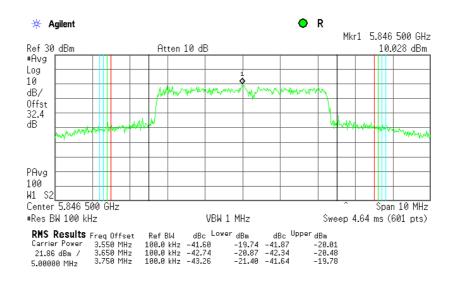

5730.5

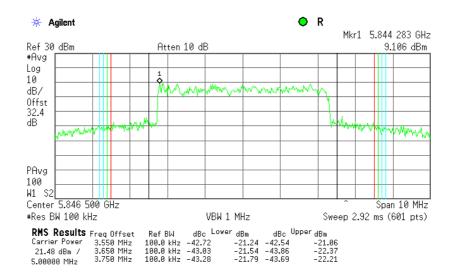
5844.0



Test specification:	Section 15.247(d), Band edge emissions			
Test procedure:	558074 D01 DTS Meas Guid	lance v01		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	9/6/2012	verdict:	FA33	
Temperature: 25.1 °C	Air Pressure: 1008 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:				

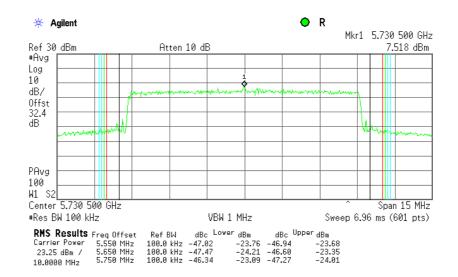
Plot 7.5.1 The highest band edge emission at low carrier frequency, 5 MHz BW, QPSK modulation

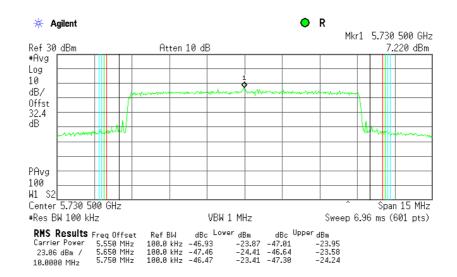

Plot 7.5.2 The highest band edge emission at low carrier frequency, 5 MHz BW, 64QAM modulation



Test specification:	Section 15.247(d), Band e	edge emissions	
Test procedure:	558074 D01 DTS Meas Guida	ance v01	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict: PASS	
Temperature: 25.1 °C	Air Pressure: 1008 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC
Remarks:			

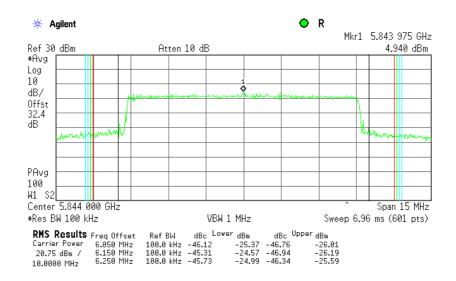
Plot 7.5.3 The highest band edge emission at high carrier, 5 MHz BW, QPSK modulation

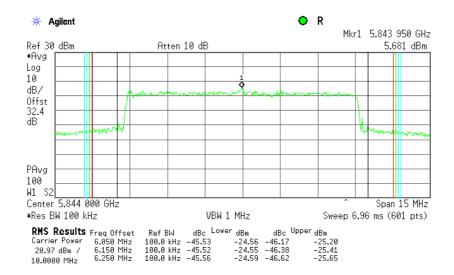

Plot 7.5.4 The highest band edge emission at high carrier frequency, 5 MHz BW, 64QAM modulation



Test specification:	Section 15.247(d), Band	edge emissions	
Test procedure:	558074 D01 DTS Meas Guida	ance v01	
Test mode:	Compliance	Vardiate	PASS
Date(s):	9/6/2012	Verdict: PASS	
Temperature: 25.1 °C	Air Pressure: 1008 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC
Remarks:			

Plot 7.5.5 The highest band edge emission at low carrier frequency, 10 MHz BW, QPSK modulation


Plot 7.5.6 The highest band edge emission at low carrier frequency, 10 MHz BW, 64QAM modulation



Test specification:	Section 15.247(d), Band e	edge emissions	
Test procedure:	558074 D01 DTS Meas Guida	ance v01	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict: PASS	
Temperature: 25.1 °C	Air Pressure: 1008 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC
Remarks:			

Plot 7.5.7 The highest band edge emission at high carrier frequency, 10 MHz BW, QPSK modulation

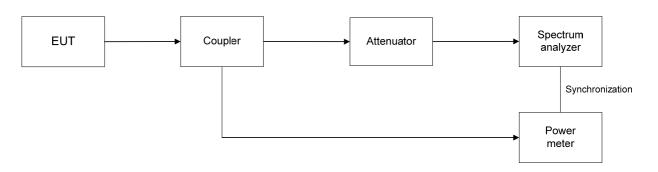
Plot 7.5.8 The highest band edge emission at high carrier frequency, 10 MHz BW, 64QAM modulation

Test specification:	Section 15.247(e), Peak power density			
Test procedure:	ANSI C63.10-2009 section 6.	11.2.4		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	9/6/2012	verdict: PASS		
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC	
Remarks:				

7.6 Peak spectral power density

7.6.1 General

This test was performed to measure the peak spectral power density at the transmitter RF antenna connector. Specification test limits are given in Table 7.6.1.


Table 7.6.1 Peak spectral power density limits

Assigned frequency range,	Measurement bandwidth,	Peak spectral power density,
MHz	kHz	dBm
5725-5850	3.0	8.0

7.6.2 Test procedure

- 7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked.
- 7.6.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.6.2.3** The peak power spectral density was measured using a sample detector and power averaging mode with resolution bandwidth set to 3 kHz, video bandwidth wider than resolution bandwidth to find the highest level across the 100 sweeps of averaging. The test results are provided in Table 7.6.2 and associated plots.

Figure 7.6.1 Peak spectral power density test setup

Test specification:	Section 15.247(e), Peak p	ower density	
Test procedure:	ANSI C63.10-2009 section 6.2	11.2.4	
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/6/2012	verdict.	FA33
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC
Remarks:			

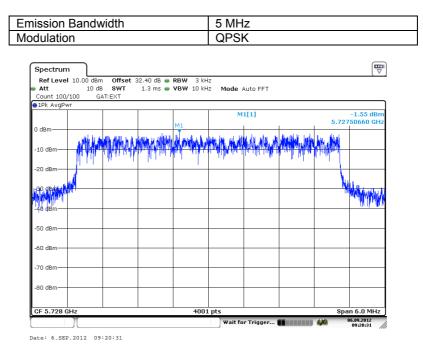
Table 7.6.2 Peak spectral power density test results

ASSIGNED FREQUENCY:	5725-5850MHz
MODULATING SIGNAL:	PRBS
TRANSMITTER OUTPUT POWER SETTINGS:	Maximum
DETECTOR USED:	Average
RESOLUTION BANDWIDTH:	3 kHz
VIDEO BANDWIDTH:	10 kHz

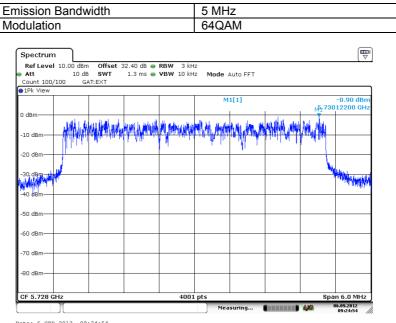
CHANNEL BANDV	VIDTH		5 MHz					
Carrier frequency, MHz	Spectrum analyzer reading, dBm	External attenuation, dB	Cable loss, dB	Peak power density, dBm/3 kHz	Limit, dBm/3 kHz	Margin*, dB	Verdict	
QPSK								
5728.0	-1.55	included	included	-1.55	8	-9.55	Pass	
5787.5	-1.95	included	included	-1.95	8	-9.95	Pass	
5846.5	-2.90	included	included	-2.90	8	-1090	Pass	
64 QAM								
5728.0	-0.90	included	included	-0.90	8	-8.90	Pass	
5787.5	-1.25	included	included	-1.25	8	-9.25	Pass	
5846.5	-2.39	included	included	-2.39	8	-10.39	Pass	
CHANNEL BANDV	VIDTH		10 MHz					
Carrier frequency, MHz	Spectrum analyzer	External	Cable loss,	Deels new on density				
111112	reading, dBm	attenuation, dB	dB	Peak power density, dBm/3 kHz	Limit, dBm/3 kHz	Margin*, dB	Verdict	
1411 12	reading, dBm	attenuation, dB					Verdict	
5730.5	-5.05	attenuation, dB	dB				Verdict Pass	
			dB QPSK	dBm/3 kHz	dBm/3 kHz	dB		
5730.5	-5.05	included	dB QPSK included	dBm/3 kHz -5.05	dBm/3 kHz	dB -13.05	Pass	
5730.5 5787.5	-5.05 -6.21	included included	dB QPSK included included	-5.05 -6.21	dBm/3 kHz 8 8	dB -13.05 -14.21	Pass Pass	
5730.5 5787.5	-5.05 -6.21	included included	dB QPSK included included included	-5.05 -6.21	dBm/3 kHz 8 8	dB -13.05 -14.21	Pass Pass	
5730.5 5787.5 5844.0	-5.05 -6.21 -8.06	included included included	dB QPSK included included included 64 QAM	dBm/3 kHz -5.05 -6.21 -8.06	dBm/3 kHz 8 8 8 8	dB -13.05 -14.21 -16.06	Pass Pass Pass	

* - Margin = Peak power density – specification limit.

Reference numbers of test equipment used


HL 3301	HL 3302	HL 3442	HL 3781	HL 3868	HL 3903	HL 4355	

Full description is given in Appendix A.



Test specification:	Section 15.247(e), Peak power density					
Test procedure:	ANSI C63.10-2009 section 6.	11.2.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	9/6/2012	verdict:	PA33			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.6.1 Peak spectral power density at low frequency within 6 dB band

Plot 7.6.2 Peak spectral power density at low frequency within 6 dB band

Test specification:	Section 15.247(e), Peak power density					
Test procedure:	ANSI C63.10-2009 section 6.	11.2.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	9/6/2012	verdict:	PASS			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.6.3 Peak spectral power density at low frequency within 6 dB band

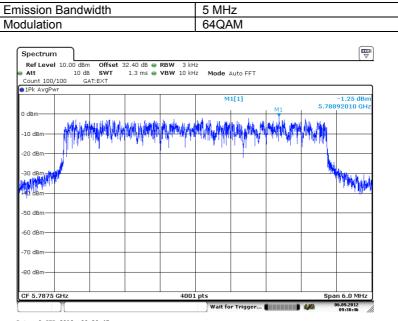
nission Bandwid	lth		10 M	Hz			
dulation / Bit ra	te		QPS	<			
Spectrum							₩
RefLevel 10.00 dBm C	Offset 32.40 dB 🖷 R						(``.
 Att 10 dB 5 Count 100/100 GAT:E 	3WT 1.9 ms 🖶 V XT	BW 10 kH:	z Mode /	Auto FFT			
●1Pk AvgPwr							
			M	1[1]		5.730	-5.05 dBm 49700 GHz
0 dBm		м	1				
-10 dBm	and provide the second	day and the good	Maria ang Kabupatén Barakan Bar	وويس والالتوجيل	and surface and	and a second	
-10 dBill	and a literative second in the second	des durant	and the states	dama damata	an an the standard	an <mark>ihan kana</mark> han	
-20 dBm							
-30 dBm							
-30 dBm						4	* extended to the
-40 dBm							and the second state
-50 dBm							
-60 dBm							
-70 dBm							
-80 dBm							

Plot 7.6.4 Peak spectral power density at low frequency within 6 dB band

nission	Bandy	vidth			10MI	lz			
dulatio	n / Bit	rate			64 Q	AM			
Att	10.00 dBn 10 dB	SWT	12.40 dB 👄 1.9 ms 👄	RBW 3 k⊢ VBW 10 k⊢		Auto FFT			
Count 100/ 1Pk AvqPw		AT: EXT							
					M	1[1]		5 72	-4.90 dBm 973220 GHz
0 dBm				M1					
-10 dBm	فيراقا والمراطل	المراجع المعالي أطعال	al handest but	huden			manhauraha	all the second shall be	
-10 0011	Al hour when	And when a substitute	a dd.dddd.a	and and a start of the	a se el la se	a national data	in hailin	Mr. American	
-20 dBm									
-30 dBm									
-40 dBm	1								M-MANAGANANA
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 5.7305	GHz			4001	pts			Spa	n 12.0 MHz
	1				Mea	suring		4,70	06.09.2012 10:12:50

Date: 6.SEP.2012 10:12:49

Date: 6.SEP.2012 10:06:18



Test specification:	Section 15.247(e), Peak power density					
Test procedure:	ANSI C63.10-2009 section 6	.11.2.4				
Test mode:	Compliance	Verdict: PASS				
Date(s):	9/6/2012	verdict:	PASS			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.6.5 Peak spectral power density at mid frequency within 6 dB band

nission Bandwidth	5 MHz
odulation	QPSK
Spectrum Ref Level 10.00 dBm Offset 32.40 dB RBW 3 Att 10 dB SWT 1.3 ms VBW 10 Count 100/100 GAT.EXT 0 91% AvgPwr	
	M1[1] -1.95 dBm
0 dBm 1	5.78542600 GHz
	NAME IN A DECEMBER OF
	a second seco
-20 dBm	
-30 dBm 000	
140 dBm	A A A A A A A A A A A A A A A A A A A
-50 dBm	
-60 dBm	
-70 dBm-	
-80 dBm	
CF 5.7875 GHz 4	D01 pts Span 6.0 MHz
	Measuring (06.09.2012 09:28:56

Plot 7.6.6 Peak spectral power density at I mid frequency within 6 dB band

Date: 6.SEP.2012 09:30:47

Test specification:	Section 15.247(e), Peak power density					
Test procedure:	ANSI C63.10-2009 section 6.	11.2.4				
Test mode:	Compliance	Verdict:	DASS			
Date(s):	9/6/2012	verdict:	PASS			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.6.7 Peak spectral power density at mid frequency within 6 dB band

nission Bandwidth	10 MHz
dulation	QPSK
Spectrum Ref Level 10.00 dBm Offset 32.40 dB RBW 3 kd Att 10 dB SWT 1.9 ms VBW 10 kd Count 100/00 GAT:EXT VBW 10 kd VBW 10 kd	
● 1Pk AvgPwr	
	M1[1] -6.21 dBm 5.78345100 GHz
0 dBm	
-10 dBm	
TO ODDI	an na ang ang ang ang ang ang ang ang an
-20 dBm	
-30 dBm	
	Mathematiku
an and a state of the state of	
410'dem	
-50 dBm	1 pts Span 12.0 MHz

Plot 7.6.8 Peak spectral power density at mid frequency within 6 dB band

ission Bandwidth	10M	Hz	
dulation	64 0	QAM	
	2.40 dB ● RBW 3 kHz 1.9 ms ● VBW 10 kHz Mode	Auto FFT	
91Pk AvgPwr			
		M1[1]	-6.00 dBm 5.78423680 GHz
0 dBm M1			0.70423000 GH2
and a set of the set o	a kisaha ing na nalakisa na ang akisi kita a	a linear contract of the	1
-10 dBm			WWA
-20 dBm	and the second s	a sector and	
-30 dBm			
AND A REAL PROPERTY AND A REAL			HANNING MARK
			a second second
-50 dBm			
-60 dBm			
-70 dBm			
-80 dBm			
00 00.0			
CF 5.7875 GHz	4001 pts		Span 12.0 MHz

Test specification:	Section 15.247(e), Peak power density				
Test procedure:	ANSI C63.10-2009 section 6.2	1.2.4			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	9/6/2012	verdict:	PASS		
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.6.9 Peak spectral power density at high frequency within 6 dB band

ission Bandwidth	5 MHz
dulation	QPSK
	■ RBW 3 kHz VBW 10 kHz Mode Auto FFT
Count 100/100 GAT:EXT PIPk AvgPwr	
	M1[1] -2.90 dBn
0 dBm	5.84442600 GH
	the one was a particular and a second s
-20 dBm	lation is not consider and the new case periods which here had not
132,052,000	
-40 dBm	
-50 dBm	
-60 dBm	
-70 dBm	
80 dBm	
CF 5.8465 GHz	4001 pts Span 6.0 MHz

Plot 7.6.10 Peak spectral power density at high frequency within 6 dB band

mission	nission Bandwidth				5 MH	z			
odulatio	odulation				64QAM				
Spectrum Ref Level Att Count 100/	10.00 dBm 10 dB		32.40 dB 👄 1.3 ms 🖶	RBW 3 kH VBW 10 kH		Auto FFT			(III V
●1Pk AvgPw	/r	1	1	1					0.00.10
					M	1[1]	I M1	5.84	-2.39 dBr 792010 GH
0 dBm		ر بال			ي الله		Ju	u d.	
-10 dBm	- Million	en narther	hyvi il Davah	A MAY HAYA	MAN, ANN	hay May M	WHAT ANY	(M. M.	
-20 dBm	l luta :	<u> - 1</u>	140	1 I.	in ti	n 11 .u	1.4.1	1.1.1	
	J								had sold as
	d.								under and a state
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 5.8465	GHz			4001	pts			· · ·	an 6.0 MHz
	JL				Mea	suring		4/0	06.09.2012 09:36:16

Date: 6.SEP.2012 09:36:16

Test specification:	Section 15.247(e), Peak power density					
Test procedure:	ANSI C63.10-2009 section 6.	11.2.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	9/6/2012	verdict:	PA55			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 48 %	Power Supply: 48 VDC			
Remarks:						

Plot 7.6.11 Peak spectral power density at high frequency within 6 dB band

ission Bandwidth	10 MHz	
dulation	QPSK	
Spectrum		l □ □
Ref Level 10.00 dBm Offset 32.40		(•
Att 10 dB SWT 1.9 Count 100/100 GAT:EXT	ms 👄 VBW 10 kHz 🛛 Mode Auto FFT	
1Pk AvgPwr		
	M1[1]	-8.06 dBm 5.83995100 GHz
0 dBm		
	hallow a second second ballow whether second s	serve a faite de la faite de la faite de la constant
and in the local sector of the parts	and a state of the second s	a factor de la construction de la c
-20 dBm		
-30 dBm		
140 dBm		An internet of the second s
-50 dBm		
-60 dBm-		
-70 dBm		
-80 dBm		
CF 5.844 GHz	4001 pts	Span 12.0 MHz 06.09.2012

Plot 7.6.12 Peak spectral power density at high frequency within 6 dB band

nission Bandwidth	10MHz
odulation	64 QAM
Spectrum Ref Level 10.00 dBm Offset 32.40 dB RBW Att 10 dB SWT 1.9 ms VBW Count 100/100 GAT:EXT 1.9 ms VBW	
●1Pk AvgPwr	
	M1[1] -6.84 dBm 5.84429390 GHz
0 dBm	M1
no son and the second states of the second states o	ato en la Tranto a late en la construcción das
-10 dBm	
-20 dBm	A SHILL SET A REPORT OF
-30 dBm	
-40 dBm	
-50 dBm	
-60 dBm	
-70 dBm	
-80 dBm	
-ou ubiii	
CF 5.844 GHz	4001 pts Span 12.0 MHz

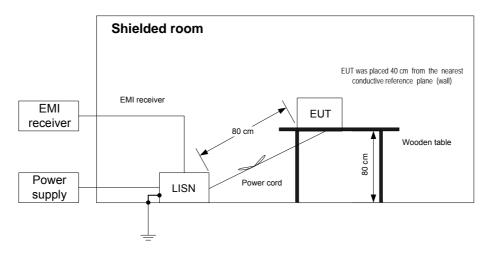
Test specification:	Section 15.207(a), Condu	cted emission	
Test procedure:	ANSI C63.4, Section 13.1.3		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/19/2012 - 9/23/2012	verdict:	FA33
Temperature: 24 °C	Air Pressure: 1009 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks: with POE			

7.7 Conducted emissions

7.7.1 General

This test was performed to measure common mode conducted emissions at the power port. Specification test limits are given in Table 7.7.1.

Table 7.7.1	Limits for	r conducted	emissions


Frequency,	Class B limit, dB(μV)					
MHz	QP	AVRG				
0.15 - 0.5	66 - 56*	56 - 46*				
0.5 - 5.0	56	46				
5.0 - 30	60	50				

* The limit decreases linearly with the logarithm of frequency.

7.7.2 Test procedure

- **7.7.2.1** The EUT was set up as shown in Figure 7.7.1 and associated photographs, energized and the performance check was conducted.
- **7.7.2.2** The measurements were performed at power terminals with the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 7.7.2. Unused coaxial connector of the LISN was terminated with 50 Ohm. Quasi-peak and average detectors were used throughout the testing.
- 7.7.2.3 The position of the device cables was varied to determine maximum emission level.
- 7.7.2.4 The worst test results (the lowest margins) were recorded in Table 7.7.2 and shown in the associated plots.

Figure 7.7.1 Setup for conducted emission measurements, table-top equipment

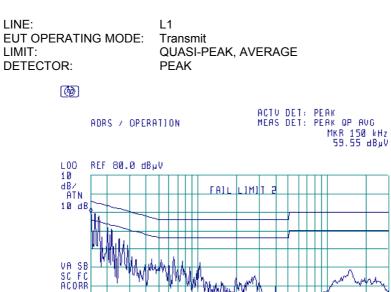
Test specification:	Section 15.207(a), Condu	cted emission	
Test procedure:	ANSI C63.4, Section 13.1.3		
Test mode:	Compliance	Vardiate	PASS
Date(s):	9/19/2012 - 9/23/2012	Verdict:	FA00
Temperature: 24 °C	Air Pressure: 1009 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks: with POF		·	

Table 7.7.2 Conducted emission test results

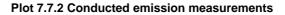
LINE: EUT OPERATIN EUT SET UP: TEST SITE: DETECTORS U FREQUENCY F RESOLUTION I	JSED: RANGE:	AC mains Transmit TABLE-TOP with POE SHIELDED ROOM PEAK / QUASI-PEAK / AVERAGE 150 kHz - 30 MHz 9 kHz							
Frequency, MHz	Peak emission, dB(μV)	Q Measured emission, dB(µV)	uasi-peak Limit, dB(µV)	Margin, dB*	Measured emission, dB(μV)	Average Limit, dB(μV)	Margin, dB*	Line ID	Verdict
0.150232	59.90	59.15	65.99	-6.84	41.52	55.99	-14.47		
0.199700	52.52	48.37	63.67	-15.30	36.27	53.67	-17.40		
0.202770	52.52	51.68	63.55	-11.87	40.20	53.55	-13.35	L1	Pass
0.451550	36.15	33.22	56.91	-23.69	24.29	46.91	-22.62		
1.049120	35.70	32.04	56.00	-23.96	20.24	46.00	-25.76		
0.150256	59.40	58.93	65.99	-7.06	47.84	55.99	-8.15		
0.199421	52.85	51.74	63.68	-11.94	36.27	53.68	-17.41		
0.205021	52.73	51.91	63.46	-11.55	40.25	53.46	-13.21	L2	Pass
0.356950	36.15	34.45	58.86	-24.41	17.75	48.86	-31.11	LZ	F d 5 5
0.504665	34.94	30.24	56.00	-25.76	21.67	46.00	-24.33		
0.668735	37.74	33.92	56.00	-22.08	25.08	46.00	-20.92		

*- Margin = Measured emission - specification limit.

Reference numbers of test equipment used

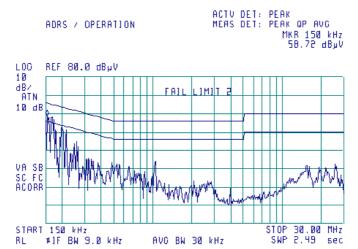

HL 0163	HL 0787	HL 1425	HL 1553	HL 3612			

Full description is given in Appendix A.



Test specification:	Section 15.207(a), Condu	cted emission	
Test procedure:	ANSI C63.4, Section 13.1.3		
Test mode:	Compliance	Verdict:	PASS
Date(s):	9/19/2012 - 9/23/2012	verdict.	FA33
Temperature: 24 °C	Air Pressure: 1009 hPa	Relative Humidity: 39 %	Power Supply: 120 VAC
Remarks: with POE			

Plot 7.7.1 Conducted emission measurements



LINE:	L2
EUT OPERATING MODE:	Transmit
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

Ø

Test specification:	Section 15.203, Antenna	Section 15.203, Antenna requirement		
Test procedure:	Visual inspection			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	9/23/2012	verdict:	PASS	
Temperature: 24 °C	Air Pressure: 1013 hPa	Relative Humidity: 39 %	Power Supply: 48 VDC	
Remarks:				

7.8 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.8.1.

Table 7.8.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	NA	
The transmitter employs a unique antenna connector	Visual inspection	Comply
The transmitter requires professional installation	NA	

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0163	LISN FCC/VDE/50 Ohm/50 uH + 5 Ohm, MIL-STD-461E, CISPR 16-1	Electro-Metrics	ANS 25/2	1314	01-Jul-12	01-Jul-13
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	03-Jul-12	03-Jul-13
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	24-Sep-12	24-Sep-13
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	20-May-12	20-May-14
0768	Antenna Standard Gain Horn, 18-26.5 GHz, WR-42, 25 dB gain	Quinstar Technology	QWH- 4200-BA	110	03-Feb-12	03-Feb-15
0769	Antenna Standard Gain Horn, 26.5-40 GHz, WR28, 25 dB gain	Quinstar Technology	QWH- 2800-BA	112	03-Feb-12	03-Feb-15
0787	Transient Limiter 9 kHz-200 MHz	Hewlett Packard	11947A	3107A018 77	18-Oct-12	18-Oct-13
1425	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1426, HL1427	Agilent Technologies	8542E	3710A002 22, 3705A002 04	26-Aug-12	26-Aug-13
1553	Cable RF, 3.5 m, N/N-type	Alpha Wire	RG-214	1553	01-Jan-12	01-Jan-13
3301	Power Meter, P-series, 50 MHz to 40 GHz	Agilent Technologies	N1911A	MY451010 57	14-Dec-11	14-Dec-12
3302	Power sensor, P-Series, 50 MHz to 40 GHz, -35/30 to 20 dBm	Agilent Technologies	N1922A	MY452405 86	14-Dec-11	14-Dec-12
3442	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini-Circuits	BW- S20W5+	NA	07-Mar-12	07-Mar-13
3531	Amplifier, low noise, 2 to 8 GHz	Quinstar Technology	QLJ- 02084040 -J0	111590020 02	25-Dec-11	25-Dec-12
3533	Amplifier, low noise, 6 to 18 GHz	Quinstar Technology	QLJ- 06184040 -J0	111590010 01	25-Dec-11	25-Dec-12
3535	Amplifier, low noise, 18 to 40 GHz	Quinstar Technology	QLJ- 18404537 -J0	111590030 01	10-Jul-12	10-Jul-13
3612	Cable RF, 17.5 m, N type-N type	Teldor	RG-214/U	NA	01-Dec-11	01-Dec-12
3781	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz	Mini-Circuits	BW- S10W5+	NA	19-Dec-11	19-Dec-12
3786	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz	Mini-Circuits	BW- S10W5+	NA	19-Dec-11	19-Dec-12
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	16-Feb-12	16-Feb-13
3868	Directional coupler, 2 GHz to 8 GHz, 10 dB, SMA Female	Narda	4203-10	06978	13-Dec-10	13-Dec-12
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	08-Feb-12	08-Feb-13
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1226/2A	08-Feb-12	08-Feb-13
4114	Antenna, Double-Ridged Waveguide Horn, 1-18 GHz	ETS Lindgren	3117	00123515	23-Jan-12	23-Jan-13
4342	High Pass Filter, 50 Ohm, 10.6 to 26.5 GHz,SMA-M / SMA-FM	RLC Electronics	F-5738A	8425	25-Mar-12	25-Mar-13
4352	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 002	06-Jun-12	06-Mar-13

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
4353	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	06-Jun-12	06-Mar-13
4355	Signal and Spectrum Analyzer, 9 kHz to 7 GHz, with Preamplifier 20 dB	Rohde & Schwarz	FSV 7	191000086 881	08-Mar-12	08-Mar-13

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements	surements
--	-----------

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS, IC 2186A-2 for anechoic chamber, IC 2186A-3 for full-anechoic chamber for RE measurements above 1 GHz), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address:	P.O. Box 23, Binyamina 30500, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D	Specification references
FCC 47CFR part 15: 2011	Radio Frequency Devices
558074 D01 DTS Meas Guidance v01, 1/18/2012	FCC Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications
ANSI C63.4: 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10: 2009	American National Standard for Testing Unlicensed Wireless Devices

12 APPENDIX E Test equipment correction factors

Correction factor Line impedance stabilization network Model ANS-25/2, Electro-Metrics, HL 0163

Frequency, kHz	Correction factor, dB
10	4.9
15	2.86
20	1.83
25	1.25
30	0.91
35	0.69
40	0.53
50	0.35
60	0.25
70	0.18
80	0.14
90	0.11
100	0.09
125	0.06
150	0.04

The correction factor in dB is to be added to meter readings of an interference analyzer or a spectrum analyzer.

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Standard gain horn antenna Quinstar Technology Model QWH Ser.No.112, HL 0768, HL 0769

Frequency min, GHz	Frequency max, GHz	Antenna factor, dB(1/m)
18.000	26.500	32.01
26.500	40.000	35.48
40.000	60.000	39.03
60.000	90.000	42.55
90.000	140.000	46.23
140.000	220.000	50.11

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Frequency, MHz Antenna factor, dB(1/m) Frequency, MHz Antenna factor, dB(1/m) Antenna factor, dB(1/m) 26 7.8 580 20.6 1320 27.8 28 7.8 600 21.3 1340 28.3 30 7.8 600 21.5 1360 28.2 40 7.2 640 21.2 1380 27.9 60 7.1 660 21.4 1400 27.9 70 8.5 680 21.9 1420 27.9 80 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 23.4 1600 29.5 140 9.2 820 <th></th> <th></th> <th>Ser.No.1</th> <th>011, HL 0604</th> <th></th> <th></th>			Ser.No.1	011, HL 0604		
28 7.8 600 21.3 1340 28.3 30 7.8 620 21.5 1360 28.2 40 7.2 640 21.2 1380 27.9 60 7.1 660 21.4 1400 27.9 70 8.5 680 21.9 1420 27.9 80 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.6 1820 30.7 360						
30 7.8 620 21.5 1360 28.2 40 7.2 640 21.2 1380 27.9 60 7.1 660 21.4 1400 27.9 70 8.5 680 21.9 1420 27.9 80 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.4 1660 29.5 170 10.4 880 23.4 1600 29.5 170 10.4 890 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.6 1880 30.6 220 11.6 960 24.5 1720 30.3 260 12.4 980 24.5 1720 30.3 260 <td>26</td> <td>7.8</td> <td>580</td> <td>20.6</td> <td>1320</td> <td>27.8</td>	26	7.8	580	20.6	1320	27.8
40 7.2 640 21.2 1380 27.9 60 7.1 660 21.4 1400 27.9 70 8.5 680 21.9 1420 27.9 80 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 990 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1820 30.7 360 </td <td>28</td> <td>7.8</td> <td>600</td> <td>21.3</td> <td>1340</td> <td>28.3</td>	28	7.8	600	21.3	1340	28.3
607.1 660 21.4 1400 27.9 70 8.5 680 21.9 1420 27.9 70 8.5 680 21.9 1420 27.9 90 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.5 1720 30.3 260 12.8 1000 24.5 1720 30.3 260 12.8 1000 24.4 1820 30.6 220 11.6 960 24.1 170 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 <td>30</td> <td>7.8</td> <td>620</td> <td>21.5</td> <td>1360</td> <td>28.2</td>	30	7.8	620	21.5	1360	28.2
70 8.5 680 21.9 1420 27.9 80 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1120 26.0 1860 30.6 440 17.0 1180 27.0 1940 30.6 440 17.0 1180 27.0 1940 30.6 <t< td=""><td>40</td><td>7.2</td><td>640</td><td>21.2</td><td>1380</td><td>27.9</td></t<>	40	7.2	640	21.2	1380	27.9
80 9.4 700 22.2 1440 27.8 90 9.8 720 22.2 1440 27.8 100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 27.0 1900 30.6 440 17.0 1180 27.0 1900 30.6 440 17.0 1180 27.0 1940 30.9 <tr< td=""><td>60</td><td>7.1</td><td>660</td><td></td><td>1400</td><td>27.9</td></tr<>	60	7.1	660		1400	27.9
90 9.8 720 22.2 1460 27.8 100 9.7 740 22.1 1480 28.5 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.6 160 10.2 860 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.2 190 10.3 920 24.1 1640 29.2 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1060 25.2 1780 31.0 320 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 440 15.4 1080 25.6 1820 30.7 360 16.4 1120 26.0 1860 30.6 440 17.0 1180 27.0 1990 30.6 <td>70</td> <td>8.5</td> <td>680</td> <td>21.9</td> <td>1420</td> <td></td>	70	8.5	680	21.9	1420	
100 9.7 740 22.1 1480 28.0 110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.7 1840 30.6 340 15.4 1080 25.6 1820 30.6 400 16.6 1140 26.6 1860 30.6 440 17.0 1180 27.0 1940 30.9 460 17.7 1200 26.5 1980 31.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
110 9.3 760 22.3 1500 28.5 120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 11.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1820 30.7 360 16.1 1100 25.7 1840 30.6 440 17.0 1180 27.0 1900 30.6 440 17.0 1180 27.0 1900 30.6 440 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1980 31.6 520 19.1 1260 26.5 1980 31.6	90		720	22.2		27.8
120 8.8 780 22.6 1520 28.9 130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.7 1840 30.6 380 16.4 1120 26.0 1860 30.6 400 16.6 1140 27.0 1900 30.6 440 17.0 1180 27.0 1940 30.9 480 18.1 1220 26.5 1980 31.6 520 19.1 1260 26.5 1980 31.6 520 19.1 1220 26.5 1980 31.6 <td>100</td> <td>9.7</td> <td></td> <td>22.1</td> <td>1480</td> <td>28.0</td>	100	9.7		22.1	1480	28.0
130 8.7 800 22.7 1540 29.6 140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 420 16.7 1180 27.0 1900 30.6 440 17.0 1180 27.0 1900 30.6 440 17.7 1200 26.5 1980 31.6 520 19.1 1260 26.5 1980 31.6 520 19.1 1260 26.5 1980 31.6 <	110	9.3	760	22.3	1500	28.5
140 9.2 820 22.9 1560 29.8 150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1820 30.7 360 16.1 1100 25.7 1840 30.6 440 15.4 1080 27.0 1900 30.6 440 17.0 1180 27.0 1900 30.6 440 17.0 1180 27.0 1940 30.9 480 18.1 1220 26.5 1980 31.2 500 18.5 1280 26.6 5200 32.0	120	8.8	780	22.6	1520	28.9
150 9.8 840 23.1 1580 29.6 160 10.2 860 23.4 1600 29.5 170 10.4 880 23.8 1620 29.3 180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 400 16.6 1140 26.4 1880 30.6 420 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0	130		800	22.7	1540	29.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	140	9.2	820	22.9	1560	29.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	150	9.8	840	23.1	1580	29.6
180 10.4 900 24.1 1640 29.2 190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 400 16.6 1140 26.4 1880 30.6 420 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1920 30.7 460 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0	160	10.2	860	23.4	1600	29.5
190 10.3 920 24.1 1660 29.4 200 10.6 940 24.0 1680 29.6 220 11.6 960 24.1 1700 29.8 240 12.4 980 24.5 1720 30.3 260 12.8 1000 24.9 1740 30.8 280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 380 16.4 1120 26.0 1860 30.6 440 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1920 30.7 460 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0	170	10.4	880	23.8	1620	29.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	180	10.4	900	24.1	1640	29.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	190	10.3	920	24.1	1660	29.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200	10.6	940	24.0	1680	29.6
26012.8100024.9174030.828013.7102025.0176031.130014.7104025.2178031.032015.2106025.4180030.934015.4108025.6182030.736016.1110025.7184030.638016.4112026.0186030.640016.6114026.4188030.644017.0118027.0190030.644017.7120026.7194030.948018.1122026.5196031.250018.5124026.5198031.652019.1126026.5200032.054019.5128026.6198031.6	220	11.6	960	24.1	1700	29.8
280 13.7 1020 25.0 1760 31.1 300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 380 16.4 1120 26.0 1860 30.6 400 16.6 1140 26.4 1880 30.6 420 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1920 30.7 460 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0 540 19.5 1280 26.6 <td>240</td> <td>12.4</td> <td>980</td> <td>24.5</td> <td>1720</td> <td>30.3</td>	240	12.4	980	24.5	1720	30.3
300 14.7 1040 25.2 1780 31.0 320 15.2 1060 25.4 1800 30.9 340 15.4 1080 25.6 1820 30.7 360 16.1 1100 25.7 1840 30.6 380 16.4 1120 26.0 1860 30.6 400 16.6 1140 26.4 1880 30.6 420 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1920 30.7 460 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0 540 19.5 1280 26.6 46.6 46.6	260	12.8	1000	24.9	1740	30.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	280	13.7	1020	25.0	1760	31.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	300	14.7	1040		1780	31.0
360 16.1 1100 25.7 1840 30.6 380 16.4 1120 26.0 1860 30.6 400 16.6 1140 26.4 1880 30.6 420 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1920 30.7 460 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0 540 19.5 1280 26.6 46.6 46.6	320	15.2	1060	25.4	1800	30.9
380 16.4 1120 26.0 1860 30.6 400 16.6 1140 26.4 1880 30.6 420 16.7 1160 27.0 1900 30.6 440 17.0 1180 27.0 1920 30.7 460 17.7 1200 26.7 1940 30.9 480 18.1 1220 26.5 1960 31.2 500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0 540 19.5 1280 26.6 46.6 46.6	340	15.4	1080	25.6	1820	30.7
40016.6114026.4188030.642016.7116027.0190030.644017.0118027.0192030.746017.7120026.7194030.948018.1122026.5196031.250018.5124026.5198031.652019.1126026.5200032.054019.5128026.646.646.6	360	16.1	1100	25.7	1840	30.6
42016.7116027.0190030.644017.0118027.0192030.746017.7120026.7194030.948018.1122026.5196031.250018.5124026.5198031.652019.1126026.5200032.054019.5128026.646.646.6	380		1120	26.0	1860	30.6
44017.0118027.0192030.746017.7120026.7194030.948018.1122026.5196031.250018.5124026.5198031.652019.1126026.5200032.054019.5128026.64		16.6	1140	26.4	1880	30.6
46017.7120026.7194030.948018.1122026.5196031.250018.5124026.5198031.652019.1126026.5200032.054019.5128026.626.62000	420	16.7	1160	27.0		30.6
48018.1122026.5196031.250018.5124026.5198031.652019.1126026.5200032.054019.5128026.626.62000						30.7
500 18.5 1240 26.5 1980 31.6 520 19.1 1260 26.5 2000 32.0 540 19.5 1280 26.6 2000 32.0						
520 19.1 1260 26.5 2000 32.0 540 19.5 1280 26.6 32.0			1220		1960	31.2
540 19.5 1280 26.6						
	520	19.1	1260	26.5	2000	32.0
560 19.8 1300 27.0	540	19.5	1280			
	560	19.8	1300	27.0		

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

		Antenna factor, dB/m	
Frequency, MHz	Measured	Manufacturer	Deviation
1000	28.0	28.4	-0.4
1500	28.0	27.4	0.6
2000	31.2	30.9	0.3
2500	32.5	33.4	-0.9
3000	32.9	32.6	0.3
3500	32.7	32.8	-0.1
4000	33.1	33.4	-0.3
4500	33.8	33.9	-0.1
5000	33.8	34.1	-0.3
5500	34.4	34.5	-0.1
6000	35.0	35.2	-0.2
6500	35.4	35.5	-0.1
7000	35.7	35.7	0.0
7500	35.9	35.7	0.2
8000	35.8	35.8	0.0
8500	35.9	35.8	0.1
9000	36.3	36.2	0.1
9500	36.6	36.6	0.0
10000	37.1	37.1	0.0
10500	37.6	37.5	0.1
11000	37.9	37.7	0.2
11500	38.5	38.1	0.4
12000	39.2	38.7	0.5
12500	39.0	38.9	0.1
13000	39.1	39.1	0.0
13500	38.9	38.8	0.1
14000	39.0	38.8	0.2
14500	39.6	39.9	-0.3
15000	39.9	39.7	0.2
15500	39.9	40.1	-0.2
16000	40.7	40.8	-0.1
16500	41.3	41.8	-0.5
17000	42.5	42.1	0.4
17500	41.3	41.2	0.1
18000	41.4	40.9	0.5

Antenna factor Double-ridged waveguide horn antenna ETS Lindgren, Model 3117, serial number: 00123515, HL 4114

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field strength in $dB(\mu V)$ meter)

No.	Frequency, MHz	Cable loss, dB	Measurement uncertainty, dB
1	1	0.01	
2	10	0.07	
3	30	0.12	
4	50	0.22	
5	100	0.26	
6	200	0.40	
7	300	0.52	
8	400	0.60	±0.05
9	500	0.70	
10	600	0.77	
11	700	0.84	
12	800	1.00	
13	900	1.00	
14	1000	1.05	
15	2000	1.70	

Cable loss RF cable 3.5 m, Alpha Wire, model RG-214, S/N 149, HL 1553

Frequency, MHz	Cable loss, dB
0.1	0.05
0.5	0.07
1	0.10
3	0.22
5	0.29
10	0.39
30	0.68
50	0.90
100	1.27
150	1.58
200	1.80
250	2.12
300	2.36
350	2.60
400	2.82
450	2.99
500	3.23
550	3.40
600	3.56
650	3.71
700	3.90
750	4.04
800	4.23
850	4.39
900	4.55
950	4.65
1000	4.79

Cable loss Cable coaxial, RG-214/U, N type-N type, 17 m Teldor, HL 3612

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 3.5 m, SMA-SMA, S/N 1225/2A HL 3901

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	9500	4.29	21000	6.67
100	0.41	10000	4.40	22000	6.92
500	0.93	10500	4.52	23000	7.00
1000	1.33	11000	4.64	24000	7.18
1500	1.63	11500	4.76	25000	7.29
2000	1.90	12000	4.87	26000	7.55
2500	2.12	12500	4.99	27000	7.70
3000	2.33	13000	5.11	28000	7.88
3500	2.50	13500	5.20	29000	8.02
4000	2.67	14000	5.31	30000	8.15
4500	2.82	14500	5.42	31000	8.35
5000	2.99	15000	5.51	32000	8.40
5500	3.16	15500	5.58	33000	8.62
6000	3.32	16000	5.68	34000	8.73
6500	3.51	16500	5.78	35000	8.78
7000	3.65	17000	5.91	36000	8.94
7500	3.79	17500	5.99	37000	9.21
8000	3.92	18000	6.07	38000	9.37
8500	4.04	19000	6.36	39000	9.45
9000	4.18	20000	6.49	40000	9.52

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 1.5 m, SMA-SMA, S/N 1226/2A HL 3903

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	-0.02	9500	1.84	21000	2.98
100	0.15	10000	1.86	22000	3.07
500	0.38	10500	1.93	23000	3.13
1000	0.56	11000	1.99	24000	3.21
1500	0.69	11500	2.04	25000	3.26
2000	0.82	12000	2.10	26000	3.48
2500	0.90	12500	2.15	27000	3.44
3000	0.98	13000	2.21	28000	3.53
3500	1.06	13500	2.25	29000	3.59
4000	1.11	14000	2.29	30000	3.66
4500	1.17	14500	2.34	31000	3.70
5000	1.24	15000	2.36	32000	3.79
5500	1.32	15500	2.40	33000	3.88
6000	1.40	16000	2.45	34000	3.94
6500	1.50	16500	2.48	35000	3.91
7000	1.56	17000	2.56	36000	4.05
7500	1.62	17500	2.58	37000	4.22
8000	1.68	18000	2.60	38000	4.25
8500	1.74	19000	2.84	39000	4.27
9000	1.78	20000	2.88	40000	4.33

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 002, HL 4352

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.81
100	0.28	9500	2.89
300	0.49	10000	3.00
500	0.63	10500	3.07
1000	0.90	11000	3.15
1500	1.10	11500	3.23
2000	1.28	12000	3.30
2500	1.44	12500	3.38
3000	1.57	13000	3.47
3500	1.71	13500	3.55
4000	1.85	14000	3.61
4500	1.95	14500	3.68
5000	2.05	15000	3.76
5500	2.14	15500	3.86
6000	2.27	16000	3.92
6500	2.38	16500	3.97
7000	2.47	17000	4.03
7500	2.58	17500	4.10
8000	2.65	18000	4.18
8500	2.74		

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

13 APPENDIX F Abbreviations and acronyms

AampereACalternating currentA/mampere per meterAMamplitude modulationAVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μV)decibel referred to one microvolt per meterdB(μV)decibel referred to one microvolt per meterdB(μA)decibel referred to one microvolt per meterdB(μA)decibel referred to one microvolt per meterdB(μA)decibel referred to one microwolt per meterGRDgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillimetermsmillisecondμsmicrosecond
A/mampere per meterAMamplitude modulationAVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microwolt per meterBRequivalent isotropically radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzLOlocal oscillatormmeterMHzmegahertzminmillimeterms
AMamplitude modulationAVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one miliwattdB(μV)decibel referred to one microvolt per meterdB(μA)decibel referred to one microvolt per meterdB(μA)gigahertzGNDgigahertzGNDgroundHLHermon laboratoriesHzhertzkkilohertzLOlocal oscillatormmeterMHzmegahertz<
AVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V/m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecond
cmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecond
$\begin{array}{lcl} dB & decibel \\ dBm & decibel referred to one milliwatt \\ dB(\mu V) & decibel referred to one microvolt \\ dB(\mu V/m) & decibel referred to one microvolt per meter \\ dB(\mu A) & decibel referred to one microampere \\ DC & direct current \\ EIRP & equivalent isotropically radiated power \\ ERP & effective radiated power \\ EUT & equipment under test \\ F & frequency \\ GHz & gigahertz \\ GND & ground \\ H & height \\ HL & Hermon laboratories \\ Hz & hertz \\ k & kilo \\ kHz & kilohertz \\ LO & local oscillator \\ m & meter \\ MHz & megahertz \\ min & minute \\ mm & millimeter \\ ms & millisecond \\ \mus & microsecond \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
DCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecondµsmicrosecond
EIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecond μ smicrosecond
ERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecondµsmicrosecond
EUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecond μ smicrosecond
FfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecond
GNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
HheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
HLHermon laboratoriesHzhertzkzkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
HzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
kkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
kHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
LOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
mmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
MHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecond
min minute mm millimeter ms millisecond μs microsecond
mm millimeter ms millisecond μs microsecond
ms millisecond μs microsecond
μs microsecond
· · · · · · · · · · · · · · · · · · ·
NB narrow band
OATS open area test site
Ω Ohm
PM pulse modulation
PS power supply
ppm part per million (10 ⁻⁶)
QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square
Rx receive
s second
T temperature
Tx transmit
V volt
WB wideband

END OF DOCUMENT