

www.nemko.com

Via del Carroccio, 4 - 20853 Biassono (MB) - Italy

Report Reference ID:	318873-1TRFFCC

Test specification:	Title 47-Telecommunication Chapter I - Federal Communications Commission Subchapter A - General Part 15 - Radio Frequency Devices Subpart C - Intentional Radiators
	§15.231 Periodic operation in the band 40.66–40.70 MHz and above 70 MHz

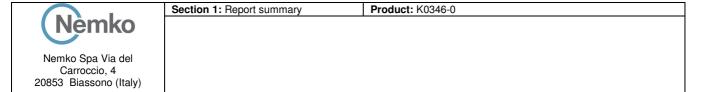
Applicant:	ZADI S.P.A. – Via C.Marx, 138 – 41012 Carpi (MO) – Italy	
Apparatus:	RSS Active key/remote control	
FCC ID:	VFZKLGKZADI01	
Model:	K0346-0	

Testing laboratory:	Nemko Spa		
	Via del Carroccio, 4 – 20853 Biassono (MB) – Italy		
	Telephone:	+039 039 2201201	
	Facsimile:	+39 039 220 1221	

	Name and title	Date
	P. Barbieri, Wireless/EMC Specialist	
Tested by:	Barbin Port	2016-11-16
	G. Curioni, Wireless/EMC Specialist	
Reviewed by:	Guiori f	2016-11-16

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.


This report shall not be reproduced except in full without the written approval of the testing laboratory.

Product: K0346-0

Table of contents

Section 1:	Report summary	3
1.1	Test specification	
1.2	Statement of compliance	
1.3	Exclusions	
1.4	Registration number	
1.5	Test report revision history	
1.6	Limits of responsibility	
Section 2:	Summary of test results	
2.1	FCC Part 15 Subpart C – Intentional Radiators, test results	4
Section 3:	Equipment under test (EUT) and application details	5
3.1	Applicant details	5
3.2	Modular equipment	
3.3	Product details	
3.4	Application purpose	
3.5 3.6	Composite/related equipment	
3.7	EUT technical specifications.	
3.8	Operation of the EUT during testing	
3.9	EUT setup diagram	
	Engineering considerations	
4.1	Modifications incorporated in the EUT	۶
4.2	Deviations from laboratory tests procedures	E
4.3	Technical judgment	
Section 5:	Test conditions	9
5.1	Power source and ambient temperatures	9
Section 6:	Measurement uncertainty	10
Section 7:	Test equipment	11
7.1	Test equipment list	11
Section 8:	Testing data	12
8.1	Clause 15.31(e) Variation of power source	12
8.2	Clause 15.31(m) Number of operating frequencies	
8.3	Clause 15.203 Antenna requirement	
8.4	Clause 15.231(a) Conditions for intentional radiators to comply with periodic operation	
8.5	Clause 15.231(b) Field strength of emissions	
8.6	Clause 15.231(c) Emission bandwidth	
8.7 8.8	Clause 15.231(d) Requirements for devices operating within 40.66–40.70 MHz band	
	Block diagrams of test set-ups	
	·	
Section 10	: EUT photos	36

Section 1: Report summary

1.1 Test specification		
Specifications	FCC Part 15 Subpart C, 15.231	
	Periodic operation in the band 40.66-40.70 MHz and above 70 MHz	

1.2 Statement of compliance		
Compliance	_ '	
	Yes ⊠ No □	
	This report contains an assessment of apparatus against specifications based upon tests carried out on samples submitted at Nemko Canada Inc. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15; Subpart C. Radiated tests were conducted in accordance with ANSI C63.4-2014.	

1.3 Exclusions		
Exclusions	None	

1.4 Registration number		
Test site FCC ID number	Test Firm Registration Number FCC: 481407	

1.5 Test report revision history		
Revision #	Details of changes made to test report	
TRF	Original report issued	

1.6 Limits of responsibility

The date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025.

Nemko S.p.A. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko S.p.A. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Section 2: Summary of test results	Product: K0346-0

Section 2: Summary of test results

2.1 FCC Part 1	5 Subpart C – Intentional Radiators, test results			
General requir	ements for FCC Part 15			
Part	Test description	Verdict		
§15.31(e)	Variation of power source	Р		
§15.31(m)	Number of operating frequencies	Р		
§15.203	Antenna requirement	Р		
§15.207(a)	Conducted limits	N/A		
Specific requirements for FCC Part 15 Subpart C, 15.231				
Part	Test description	Verdict		
§15.231(a)	Conditions for intentional radiators to comply with periodic operation	Р		
§15.231(b)	Field strength of emissions	Field strength of emissions		
§15.231(c)	Emission bandwidth	Emission bandwidth P		
§15.231(d)	Requirements for devices operating within 40.66–40.70 MHz band N/A			
§15.231(e)	Conditions for intentional radiators to comply with periodic operation N/A			
test object does	ase verdicts: not apply to the test object: s meet the requirement: N/A (Not applicable) P (Pass) F (Fail)			

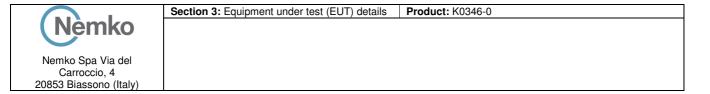
	Section 3: Equipment under test (EUT) details	Product: K0346-0
(Nèmko		
Nemko Spa Via del		
Carroccio, 4		
20853 Biassono (Italy)		

Section 3: Equipment under test (EUT) and application details

Name:	ZADI S.P.A.
Federal Registration Number (FRN):	0016647257
Grantee code	VFZ
Address:	Via C.Marx, 138
City:	Carpi
Province/State:	Modena
Post code:	41012
Country:	Italy
	Federal Registration Number (FRN): Grantee code Address: City: Province/State: Post code:

3.2 Modular equipment		
a) Single modular	Single modular approval	
approval	Yes □	No 🖂
b) Limited single	Limited single modular approva	I
modular approval	Yes 🗌	No ⊠

3.3 Product details			
FCC ID	Grantee code:	VFZ	
	Product code:	KLGKZADI01	
Equipment class	DSC – Part 15 Remote Control/Security Device Transmitter 15.231		
Description of	RSS Active key/remote control		
product as it is	Model name/number: K0346-0		
marketed	Serial number:	Not provided	

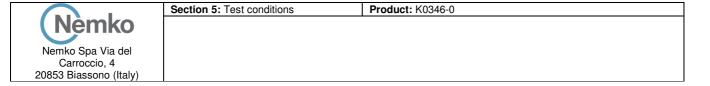

3.4 Application purpose	
Type of application	Original certification
	Change in identification of presently authorized equipment
	Original FCC ID: Grant date:
	Class II permissive change or modification of presently authorized equipment

	Seelles O. E. Seerest and establish (EUT) datable	Browley I 1/00/10/0
. 5	Section 3: Equipment under test (EUT) details	Product: K0346-0
(Nèmko		
Nemko Spa Via del		
Carroccio, 4		
I		
20853 Biassono (Italy)		

3.5 Composite/related e	quipment	
a) Composite	The EU	T is a composite device subject to an additional equipment authorization
equipment	Yes 🗌	No ⊠
b) Related equipment		T is part of a system that operates with, or is marketed with, another device that
		an equipment authorization
	Yes ⊠	No 🗌
c) Related FCC ID	If either of the above is "yes":	
		has been granted under the FCC ID(s) listed below:
	\boxtimes	is in the process of being filled under the FCC ID(s) listed below:
		is pending with the FCC ID(s) listed below:
		has a mix of pending and granted statues under the FCC ID(s) listed below:
	i	FCC ID: VFZKLGMZADI01
	ii	FCC ID:

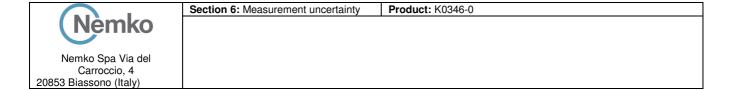
3.6 Sample information		
Receipt date:	2016-11-07	
Nemko sample ID number:	318873	

3.7 EUT technical specifications			
Operating band:	-		
Operating frequency:	368.35 MHz		
Modulation type:	FSK		
Occupied bandwidth:	idth: 250 kHz		
Channel spacing:	g: Single channel		
Emission designator: 250KF1D			
Antenna type: Integral printed on board			
Power source: 3 V CR2032 battery			


3.8 Operation of the EUT during testing

Details: Constant transmitting at maximum power

3.9 EUT setup diagram
See page 35

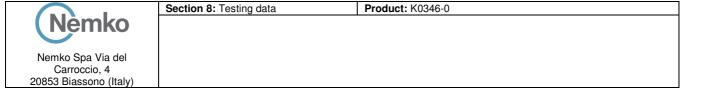

	Section 4: Engineering considerations	Product: K0346-0
(Nèmko		
Nemko Spa Via del		
Carroccio, 4		
20853 Biassono (Italy)		

Section 4: Engine	eering co	nsiderations	
4.1 Modifications incorp	orated in the	EUT	
Modifications	Modificatio	ns performed to the EUT during this assessment	
	None ⊠	Yes ☐, performed by Client ☐ or Nemko ☐	
	None 🖂	Details:	
4.2 Deviations from laborations	oratory tests	procedures	
Deviations	Deviations	Deviations from laboratory test procedures	
	None ⊠	Yes ☐ - details are listed below:	
	None 🖂	Details:	
4.3 Technical judgment			
Judgment	None		

Section 5: Test conditions

5.1 Power source and a	5.1 Power source and ambient temperatures		
Normal temperature,	Temperature: 15–30 °C		
humidity and air	Relative humidity: 20–75 %		
pressure test	Air pressure: 86–106 kPa		
conditions	When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.		
Power supply range:	The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ± 5 %, for which the equipment was designed. The declared voltage is 3 Vdc nominal (2.50 – 3.16 voltage working range)		
	The declared voltage is 3 vac nominal (2.30 – 3.16 voltage working range)		

Section 6: Measurement uncertainty


The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the Nemko Spa Technical Procedure WML1002. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device

Section 7: Test equipment	Product: K0346-0

Section 7: Test equipment

Equipment	Manufacturer	Model No.	Asset/Serial No.	Next cal.
Loop antenna	R&S	HFH2-Z2	831247/011	02/2017
Trilog Broad Band Antenna 25 MHz÷2 GHz	Schwarzbeck	VULB 9162	9162-025	07/2018
Bilog antenna 1 ÷18 GHz	Schwarzbeck	STLP 9148	9148-123	06/2018
Broadband preamplifier 1 ÷18 GHz	Schwarzbeck	BBV 9718	9718-137	12/2016
EMI receiver 20 Hz ÷ 8 GHz	R&S	ESU8	100202	09/2017
Spectrum Analizer 9 KHz ÷ 40 GHz	R&S	FSEK	848255/005	01/2017
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	10/2018
Shielded room	Siemens	10m control room	1947	NCR

Section 8: Testing data

8.1 Clause 15.31(e) Variation of power source

§ 15.31 Measurement standards.

(e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Special notes

None

Test data

New battery was used during the tests

Section 8: Testing data Product: K0346-0

Nemko Spa Via del Carroccio, 4 20853 Biassono (Italy)

8.2 Clause 15.31(m) Number of operating frequencies

§ 15.31 Measurement standards.

(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which device operates	Number of frequencies	Location in the range of operation
1 MHz and less	1	Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Special notes

None

Test data		
The EUT has only one channel at 868.35 MHz		
Low frequency / channel NA		
Mid frequency / channel	NA	
High frequency / channel NA		

Section 8: Testing data Product: K0346-0

8.3 Clause 15.203 Antenna requirement

§ 15.203 Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Special notes

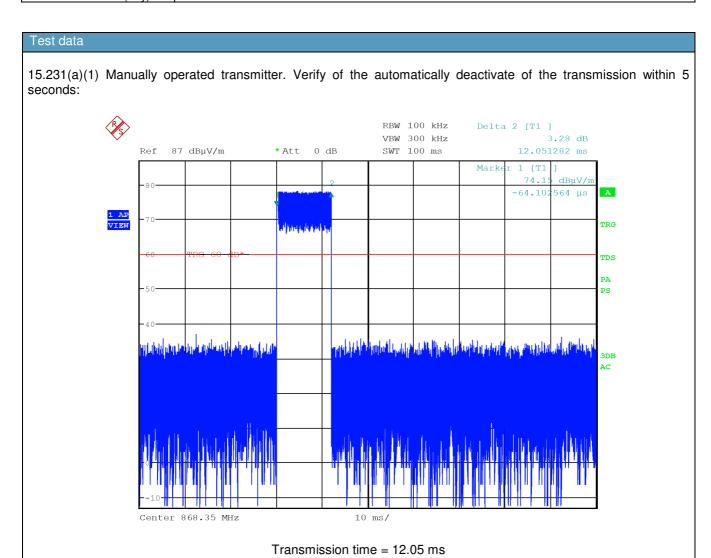
None

Test data

Detailed photo of the antenna:

Section 8: Testing data	Product: K0346-0

8.4 Clause 15.231(a) Conditions for intentional radiators to comply with periodic operation


§ 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

- (a) The provisions of this section are restricted to periodic operation within the band 40.66–40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
 - (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
 - (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition
 - (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

Special notes	
None	

Section 8: Testing data Product: K0346-0

Section 8: Testing data Product: K0346-0	

8.5 Clause 15.231(b) Field strength of emissions

§ 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

(b) In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency	Field strength of fundamental		Field strength of spurious emissions	
(MHz)	(μV/m)	(dBμV/m)	(μV/m)	(dBµV/m)
40.66-40.70	2,250	67	225	47
70–130	1,250	61.9	125	41.9
130–174	1,250 to 3,750*	61.9 to 71.5*	125 to 375*	41.9 to 51.5*
174–260	3,750	71.5	375	51.5
260-470	3,750 to 12,500*	71.5 to 81.9*	375 to 1,250*	51.5 to 61.9*
Above 470	12,500	81.9	1,250	61.9

^{*} Linear interpolations

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Section 8: Testing data Product: K0346-0

Nemko Spa Via del Carroccio, 4 20853 Biassono (Italy)

Special notes

§15.209 - Radiated emission limits

Frequency	Field strength		Measurement distance
(MHz)	(μV/m)	(dBμV/m)	(m)
0.009-0.490	2400/F	67.6-20log(F)	300
0.490-1.705	24000/F	87.6-20log(F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

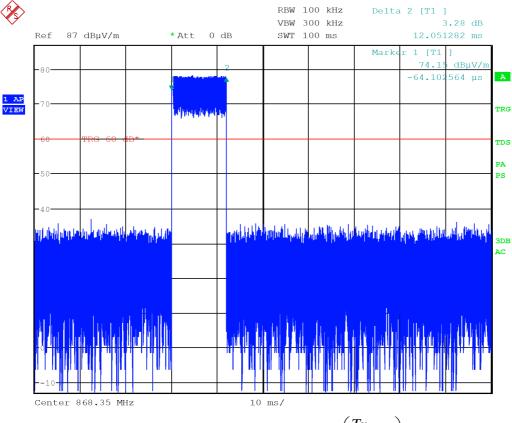
Notes:

- F = fundamental frequency in kHz
- In the emission table above, the tighter limit applies at the band edges.
- For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

§15.205 – Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29-12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322–335.4	3600–4400	Above 38.6
13.36-13.41		·	·

- The spectrum was searched from 30 MHz to the 10th harmonic.
- The EUT was measured on three orthogonal axis.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
 - below 30 MHz: using a quasi-peak detector with 9 kHz/30 kHz RBW/VBW,
 - within 30-1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
 - within 30–1000 MHz range: using a peak detector with 100 kHz/300 kHz RBW/VBW,
 - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
 - and using peak detector with 1 MHz/10 Hz RBW/VBW for average results or using average detector with 1 MHz/3 MHz RBW/VBW for average results


Section 8: Testing data	Product: K0346-0

Test data

Duty cycle/average factor calculations

§15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Duty cycle/average factor calculations:

Duty cycle / average factor =
$$20 \times \log_{10} \left(\frac{Tx_{100 \, ms}}{100 \, ms} \right)$$

Transmission time = 12.05 ms

Duty cycle correction = -18.38 dB

Section 8: Testing data Product: K0346-0

Test data, continu	ıed											
Test faci	lity	Me	easuring di	stance (m)	Ante	enna he	ight vari	ation	(m)	Tu	rn ta	able position (°)
10m Semi anecho	ic chambe	er	3 1–4 0					0–360				
Results												
Refer to spectral	plots and	tables o	f this secti	on.								
Spectral plots												
\$	>		At:	odB AUTO	RBW MT PREA	120 1 s MP ON	kHz Ma		1 [T1 79.2	7 dBµ		
dBµV /m	90		10	0 MHz							GHz 1	SGL
1 PK CLRW	-70			1								
	#6C231 -60											TDS
	-50 FCC209											
	-30-									1.11		6DB AC
	-20				_	<u>.</u>	white white	المسيل	human day	Hardand.		
	<u>nhipytunudd</u>	m/www.	Marin Marin	-Vallander Jack	whoma	Jan Market	Ja/Aller					
	0 30 MHz	Antenna	in horizor	tal polarization	on – E	UT in h	orizontal	pos	ition	1	GHz	
. ,	rization //H		ld strength μV/m)	Duty cycle (dB)	corr.		eld streng ΒμV/m)	ıth		g limit µV/m		Avg margin (dB)
868.35	Н	7	9.3	-18.3			61.0		8	31.9		-20.9

Section 8: Testing data Product: K0346-0

Test data, continued															
Test facility		Me	eası	ırinç	g dis	tance (m)	Ante	enna he	ight va	riatio	n (m)) -	Tur	n ta	able position (°)
10m Semi anechoic ch	hamber				3		1–4 0–30			0–360					
Results															
Refer to spectral plots	s and ta	bles o	f thi	s se	ectio	n.									
Spectral plots															
					Att	0 dB AUTO	RBW MT PREA	120 1 s MP ON	kHz	Marke 86	68	T1] .96 d			
dBµV 90					100	MHz							1 G	Hz	
1 PK CLRWR													1		SGL
<u>r</u> -60	0 <mark>6</mark> C231														TDS
- 50	0														
F)	CC209														6DB
-30	0-				_								اسار	und or	AC
-20	0									De Warne de	المستلام	v~vm~	_		
Mari	3 Marchan	lithe whenth	Mus	when	W.M	Handlandan Ayman	Mala	moundered	- elle						
0) MHz												1	GHz	
30		Antenr	na in	ver	rtical	l polarizatior	ı – El	JT in ho	rizonta	l posi	tion			J11Z	
Frequency Polarization (MHz) V/H	on P	eak fie (dB	ld st μV/n		gth	Duty cycle (dB)	corr.		eld streι ΒμV/m)			Avg lii dBμV			Avg margin (dB)
868.35 V		6	9.0			-18.3			50.7			81.9	9		-31.2

Section 8: Testing data Product: K0346-0

Test data, continued	<u> </u>													
Test facility	1	Me	Measuring distance (m)				Antenna height variation (m)				•	Turn table position (°)		
10m Semi anechoic	chamber		3 1–4							0–360				
Results														
Refer to spectral plo	ts and ta	ables o	f this	sectio	on.									
Spectral plots														
R _S				Att	0 dB AUTO	RBW MT PREA	120 1 s MP ON	kHz	Marke 86		.47 d			
dBµV /m	90			100	MHz							1 GI	Hz 	
	-80													SGL
1 PK CLRWR												1		501
	70				1	-								
	F6C231											Ш		TDS
	-60											T		
	-50												Щ	
												+	Н	
	FCC209				1							+		6DB
														AC
	30				†						مغرر المان	Munio,	 	
	-20								السمالي	W WILLIAM				
4	my wy how	phollowly	the strong but	4	he memorian day provide	day.	March	nhank	W					
				Villa	Mur									
L	0												Ш	
3	30 MHz	Antenn	a in h	orizo	ntal polarizat	ion –	EUT in	vertica	l posi	tion		1 0	HZ	
Frequency Polariza (MHz) V/H		Peak fie (dB	ld stre μV/m)		Duty cycle (dB)	corr.		eld strer BµV/m)			Avg lii dBµV			Avg margin (dB)

-18.3

56.2

Н

74.5

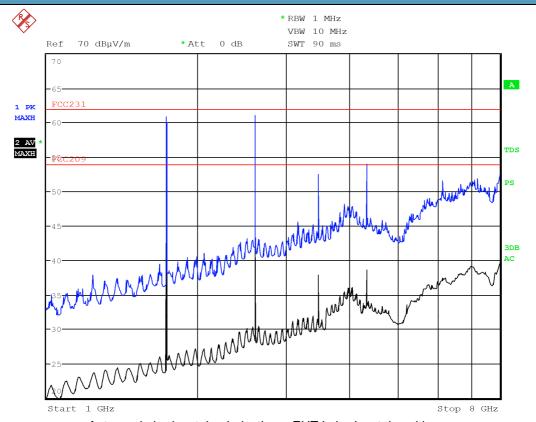
868.35

-25.7

81.9

Section 8: Testing data	Product: K0346-0

Test data, con Test t	facility		/leas	urin	a dis	tance (m)	Ant	enna he	eiaht va	riatio	n (m)	Т	urı	n ta	lble position (°)
10m Semi ane	•				3	()			1–4		()				0–360
Results															
Refer to spect	tral plots and	l tables	of th	is se	ectio	n.									
Spectral plots															
<					Att	0 dB AUTO	RBW MT PRE <i>F</i>	120 1 s	kHz		r 1 [1 80. 8.3200	.27 di			
	dBµV 90 /m -80				100	MHz						1	GI		SGL
	-70	L													TDS
	-50)													6DB
	-30										س,	walan	,,,,,		AC
	-20	post solutions	Mary	hoy		and the state of t	Miller	White have the	whombolish	Milwaa.or	\^\\\				
	0 30 MHz	Ante	enna	in v	ertic	al polarizatio	on – E	UT in v	ertical	positi	on		1 G	Hz	
Frequency P (MHz)	Polarization V/H	Peak f	ield s IBμV/		gth	Duty cycle (dB)	corr.		eld stre BμV/m)			ινg lin ΙΒμV/			Avg margin (dB)
868.35	V		80.3			-18.3			62.0			81.9			-19.9



Section 8: Testing data Product: K0346-0

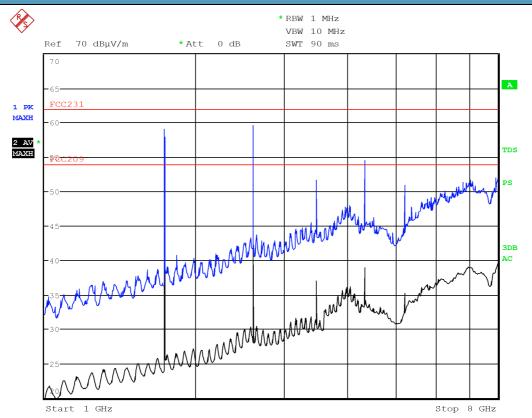
Test data, continued			
Test facility	Measuring distance (m)	Antenna height variation (m)	Turn table position (°)
10m Semi anechoic chamber	3	1–4	0–360

Results

Refer to spectral plots and tables of this section.

Antenna in horizontal polarization – EUT in horizontal position

Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBμV/m)	Avg limit (dBμV/m)	Avg margin (dB)
1.74	Н	60.77	-18.3	42.47	61.9	-19.4
2.61	Н	61.02	-18.3	42.72	61.9	-19.2
3.47	Н	52.51	-18.3	34.21	61.9	-27.7
4.34	Н	54.00	-18.3	35.70	53.9	-18.2
6.08	Н	51.52	-18.3	33.22	61.9	-28.7



Section 8: Testing data Product: K0346-0

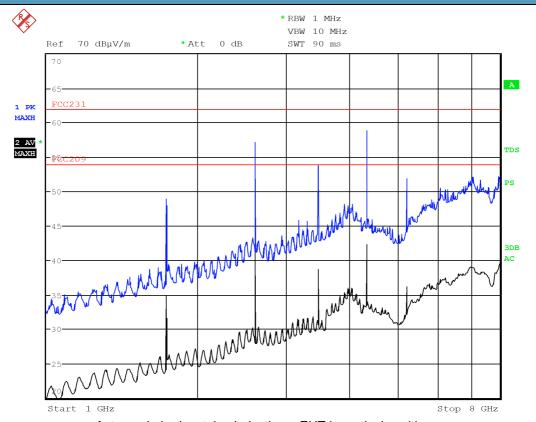
Test data, continued			
Test facility	Measuring distance (m)	Antenna height variation (m)	Turn table position (°)
10m Semi anechoic chamber	3	1–4	0–360

Results

Refer to spectral plots and tables of this section.

Antenna in vertical polarization – EUT in horizontal position

Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBμV/m)	Avg limit (dBμV/m)	Avg margin (dB)
1.74	V	58.97	-18.3	40.67	61.9	-21.2
2.61	V	59.60	-18.3	41.30	61.9	-20.6
3.47	V	51.67	-18.3	33.37	61.9	-28.5
4.34	V	54.46	-18.3	36.16	53.9	-17.7
5.21	V	50.94	-18.3	32.64	61.9	-29.3



Section 8: Testing data Product: K0346-0

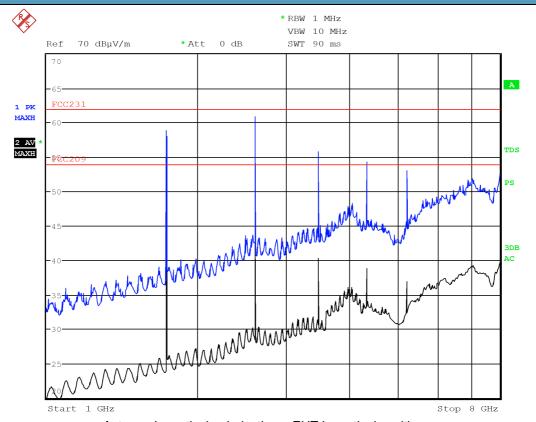
Test data, continued			
Test facility	Measuring distance (m)	Antenna height variation (m)	Turn table position (°)
10m Semi anechoic chamber	3	1–4	0–360

Results

Refer to spectral plots and tables of this section.

Antenna in horizontal polarization – EUT in vertical position

Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBμV/m)	Avg limit (dBμV/m)	Avg margin (dB)
1.74	Н	48.90	-18.3	30.60	61.9	-31.3
2.61	Н	57.18	-18.3	38.88	61.9	-23.0
3.47	Н	53.84	-18.3	35.54	61.9	-26.4
4.34	Н	58.78	-18.3	40.48	53.9	-13.4
5.21	Н	51.88	-18.3	33.58	61.9	-28.3



Section 8: Testing data Product: K0346-0

Test data, continued			
Test facility	Measuring distance (m)	Antenna height variation (m)	Turn table position (°)
10m Semi anechoic chamber	3	1–4	0–360

Results

Refer to spectral plots and tables of this section.

Antenna in vertical polarization – EUT in vertical position

Frequency (MHz)	Polarization V/H	Peak field strength (dBμV/m)	Duty cycle corr. (dB)	Avg field strength (dBμV/m)	Avg limit (dBμV/m)	Avg margin (dB)
1.74	V	58.82	-18.3	40.52	61.9	-21.4
2.61	V	60.80	-18.3	42.50	61.9	-19.4
3.47	V	55.77	-18.3	37.47	61.9	-24.4
4.34	V	54.27	-18.3	35.97	53.9	-17.9
5.21	V	53.03	-18.3	34.73	61.9	-27.2

Section 8: Testing data Product: K0346-0

Test data, continued						
Test facility	Measuring dist	ance (m) A	ntenna height variatio	on (m) Turn t	able position (°)	
10m Semi anechoic chamber	3		1–4		0–360	
Results						
Refer to spectral plots and table	Refer to spectral plots and tables of this section.					
Spectral plots		-	DIL A MIL DE	A 1 1 2 18		
Ref Lvl 80 dB*		\	BW 1 MHz RF BW 3 MHz WT 10 ms Un	Att 0 dB it $dB\mu V/m$		
80						
75	.				A	
	*					
70						
65 1MAX					1MA	
2MAX 60					2AV	
55—D1 54 dB*—						
50					TDS	
45						
45	March My while		Market John Jacobs Color			
40				- Off- comp. a co-clic		
35		4001/264pan-1/11/41/10th				
30	, via			offer offer of the One		
Start 8 GHz	anna in harizanta	100 MHz/	EUT in horizontal po	Stop 9 GHz		
Anti	ziiila iii HOHZONla	ıı polanzalion –		วอเนบท		
Frequency Polarization Pea	ak field strength (dBμV/m)	Duty cycle corr (dB)	Avg field strength (dBμV/m)	Avg limit (dBµV/m)	Avg margin (dB)	
	_	_	_	_	_	

Section 8: Testing data Product: K0346-0

Test data, co	ontinued									
Tes	st facility	Measuri	ng dista	nce (m)	Ante	enna heig	ht variation	on (m)	Turn t	able position (°)
10m Semi aı	nechoic chambe	r	3			1	-4			0–360
Results										
Refer to spec	ctral plots and	tables of this	section.							
Spectral plot	S				2.2				0.15	
	Ref Lvl				RBU VBU			Att	0 dB	
	80 dB*				SWT	10 m	is Un	i t	dBμV∕m	
	00									A
	75D2 74	- dB*								
	70									
	65									
	1MAX 2MAX									1MA 2AV
	60									
	55 D1 54 dE	3*								TDS
	50									103
	45 Maly 14 M	Why property of the second	July 100	Anthony (Marchetter)	hillih	MANAMA	n je hallen hallet	4	allah intulny l	
	40						•	•	• •••	
	35 WWW.W.W.		لەرىلىلىد ىل	- Holledon Are	- 	ALALALIA LA	- House	Mumu	Morting to the same of the sam	
	30									
	Start 8 G		•		MHz/		· · · ·		p 9 GHz	
		Antenna in v	ertical p	olarizatio	n – EU	T in horiz	ontal pos	ition		
Frequency (MHz)	Polarization V/H	Peak field stre (dBμV/m)	ngth	Duty cycle (dB)	corr.		d strength uV/m)		/g limit BμV/m)	Avg margin (dB)
-	- 1	-		_			_		_	_
<u> </u>					<u> </u>			1		ı

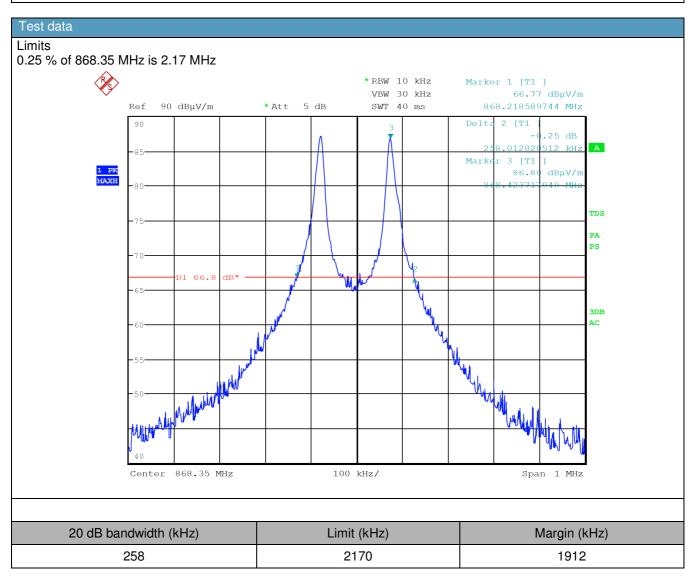
Section 8: Testing data	Product: K0346-0	

Test data, continued			
Test facility	Measuring distance (m)	Antenna height variation (m)	Turn table position (°)
10m Semi anechoic chamber	3	1–4	0–360
Results			
Refer to spectral plots and table	les of this section.		
Spectral plots			0 -10
Ref Lvl		RBW 1 MHz RFAtt VBW 3 MHz	0 dB
80 dB*		SWT 10 ms Unit	dBμV∕m
			A
75D2	3*-		
70			
70			
65			
1MAX 2MAX			1MA 2AV
60			
55—D1 54 dB*—			
—D1 34 UD*—			TDS
50			
45			
, haballa Mahyal	hap handride her halder project free to dishibited		while hard
40			
35		La constant de la con	
		White the state of	Mudanhalle
30	400	MIL	
Start 8 GHz		MHz/ Station – EUT in vertical position	top 9 GHz
Frequency Polarization Pea (MHz) V/H	ak field strength Duty cycle (dBµV/m) (dB)	e corr. Avg field strength (dBμV/m)	Avg limit Avg margin dBμV/m) (dB)
		-	

Section 8: Testing data	Product: K0346-0	

Test facility Measuring distance (m) 10m Semi anechoic chamber Results Refer to spectral plots and tables of this section. Spectral plots Ref Lv1 90 d9 Parization Ref Lv1 90 d9 Parization Star 1 8 SHz Antenna in vertical polarization — EUT in vertical position Frequency Polarization Peak field strength QH2N/m Antenna height variation (m) Turn table position (e) 1-4 0-360 Turn table position (e) 1-4 0-360 RBH 1 NH2 RF Att 0 dB B NH2 RF Att 0 dB NH2/m NBH 1 NH2 RF Att 0 dB NH2/m NB	Test data, o	continued										
Refer to spectral plots and tables of this section. Spectral plots Ref Lv I	Te	st facility	N	/leasurin	ıg dista	nce (m)	Ante	nna heig	ht variation	on (m)	Turn	table position (°)
Refer to spectral plots and tables of this section. Spectral plots Ref Lv1	10m Semi	anechoic chamb	er		3			1	I <i>-</i> 4			0–360
Ref Lv1 80 dB+ SNT 10 ms Unit dB W/m 80 75 -02 74 dB+ -01 54 dB+ -01 54 dB+ Start 8 BHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization Peak field strength (dB W/m)	Results	Results										
Ref Lv1 80 dB+ SHT 10 ms Unit dBpV/m 80 75 -02 74 dB+	Refer to spe	ectral plots and	l tables	of this s	ection.							
Ref Lv I BB dB+ SHT 10 ms Unit dB \(\text{dB} \text{v/m} \) To the start B GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization Peak field strength (dB) \(\text{v/m} \) Avg margin (dB) \(\text{v/m} \) Avg margin (dB) \(\text{v/m} \)	Spectral plo	ots					DDI	4 N	11.	A 1 1	0 10	
TDS TDS TDS TDS TDS TDS TDS TDS		Ref Lvl								ATT	и ав	
TDS TDS TDS TDS TDS TDS TDS TDS							SWT	10 m	ns Un	i t	dBμV/m	
TDS TDS TDS TDS TDS TDS TDS TDS												A
1 HAX 2AV 1 MA		75D2 _7	⁷ 4 dB*-									
1 HAX 2 MAX 60												
TDS TDS TDS TDS TDS TDS TDS TDS		70										
2AV 55 D1 54 dB TD5 TD5 TD5 TD5 TD5 TD5 TD5 TD		65										
TDS TDS TDS TDS TDS TDS TDS TDS												
TDS TDS TDS TDS TDS TDS TDS TDS						1						
TDS TDS TDS TDS TDS TDS TDS TDS		55										
Start 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Peak field strength (dBµV/m)		D1 54 c	dB*									TDS
35 Start 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization Peak field strength (dBμV/m) Polarization Po		50										103
35 Start 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization Peak field strength (dBμV/m) Polarization Po												
Start 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization V/H Peak field strength (dBμV/m) Outy cycle corr. Avg field strength (dBμV/m) Avg margin (dBμV/m) (dBμV/m) Avg margin (dBμV/m)		45	Millette	Inh. A.A.h.	Mulh	Mr Chantha	4 1414	Mukula	LAM AIR AMI	la Adhah	يت المتالية	
Stant 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization V/H Peak field strength (dBμV/m) Peak field strength (dBμV/m) Puty cycle corr. Avg field strength (dBμV/m) Avg margin (dBμV/m) (dBμV/m)		40		•••••		V V V		100000	,,	A. Mallada	· white	
Stant 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization V/H Peak field strength (dBμV/m) Peak field strength (dBμV/m) Puty cycle corr. Avg field strength (dBμV/m) Avg margin (dBμV/m) (dBμV/m)												
Stant 8 GHz Antenna in vertical polarization — EUT in vertical position Frequency (MHz) Polarization V/H Polarization V/H Outy cycle corr. (dBμV/m) Outy cycle corr. (dBμV/m) Avg limit (dBμV/m) (dBμV/m) (dBμV/m) Avg margin (dBμV/m)		35 Nwww.	model bloom	Nothhalina	direction.	Carrier Manuel Comment	MM	" White tax tay tay tay		white Market	Millianily	
Start 8 GHz Antenna in vertical polarization – EUT in vertical position Frequency (MHz) Polarization Peak field strength (dBμV/m) U/H (dBμV/m) Duty cycle corr. Avg field strength (dBμV/m) Avg margin (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m)		30								•		
Frequency (MHz) Polarization V/H Peak field strength (dBμV/m) Duty cycle corr. Avg field strength (dBμV/m) Avg margin (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m)				•	•			-			p 9 GHz	
$(\dot{M}Hz) \qquad V/H \qquad (dB\mu V/m) \qquad (\dot{d}B) \qquad (dB\mu V/m) \qquad (dB\mu V/m) \qquad (dB)$			Ante	enna in v	/ertical	polarizati	on – El	JT in ver	tical posit	tion		
					igth	Duty cycle (dB)	corr.	Avg field (dBµ	d strength uV/m)			Avg margin (dB)
	_	-		_		_					_	_

Section 8: Testing data	Product: K0346-0
·	


8.6 Clause 15.231(c) Emission bandwidth

§ 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

(c) The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Special notes

The test was performed using peak detector of the spectrum analyzer with RBW no narrower than 1 % of the emission bandwidth.

Section 8: Testing data	Product: K0346-0				
İ					

8.7 Clause 15.231(d) Requirements for devices operating within 40.66–40.70 MHz band

§ 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

(d) For devices operating within the frequency band 40.66–40.70 MHz, the bandwidth of the emission shall be confined within the band edges and the frequency tolerance of the carrier shall be ±0.01 %. This frequency tolerance shall be maintained for a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 degrees C. For battery-operated equipment, the equipment tests shall be performed using a new battery.

Special notes	
None	

Test data	
N/A	

Section 8: Testing data	Product: K0346-0

8.8 Clause 15.231(e) Field strength of emissions for periodic radiators

§ 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

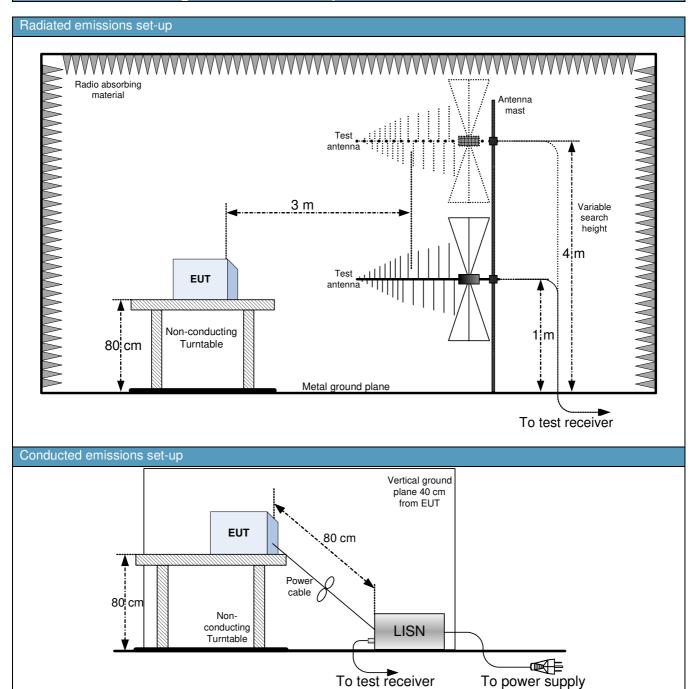
(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

, ,	9	1 9 1 (/	1 ,	3
Fundamental frequency	Field strength of fundamental		Field strength of spurious emissions	
(MHz)	(μV/m)	(dBµV/m)	(μV/m)	(dBµV/m)
40.66-40.70	1,000	60	100	40
70–130	500	53.9	50	33.9
130–174	500 to 1,500*	53.9 to 63.5*	50 to 150*	33.9 to 43.5*
174–260	1,500	63.5	150	43.5
260-470	1,500 to 5,000*	63.5 to 73.9*	150 to 500*	43.5 to 53.9*
Above 470	5,000	73.9	500	53.9

 ^{*} Linear interpolations.

In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

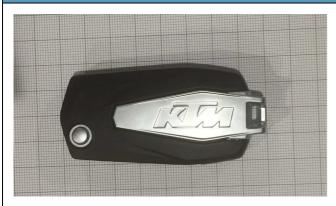
Special Notes None


Test data	
N/A	

⁻ The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

Section 9: Block diagrams of test set-ups Product: K0346-0

Section 9: Block diagrams of test set-ups



Section 10: EUT photos

Product: K0346-0

Section 10: EUT photos

EUT

