1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 General Information

Client Information	
Applicant:	K-Mark Industrial Limited.
Address of applicant:	Flat A, 7/F., Mai On Ind. Bldg 17-21 Kung Yip St., Kwai Chung Hong Kong
Manufacturer:	Robern Inc.
Address of manufacturer:	James A. DeHope 701 North Wilson Ave Bristol, PA 19007 USA
Factory:	NEW JIN DIAN TECHNOLOGY (SHENZHEN) COMPANY LIMITED.
Address of Factory:	Building $1 / 3$ NO 43 Jinshi Road,Guangpei Community, Guanlan Street,Longhua New District, Shenzhen,Guangdong Province,China.
General Description of EUT:	
Product Name:	IQ Digital Lock Box
Trade Name:	/
Model No.:	DLB
Adding Model(s):	/
FCC ID:	VEP-RB313
Rated Voltage:	Battery:1.5V*4 "AA"
Serial Number :	MXLA-001-0-000067, MXLA-001-0-000082
Firmware Version:	2.02
Hardware Version:	V1.0
Technical Characteristics of EUT:	
Support Standards:	802.11b, 802.11g, 802.11n
Frequency Range:	$2412-2462 \mathrm{MHz}$ for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}-\mathrm{HT} 20$
	$2422-2452 \mathrm{MHz}$ for 802.11n-HT40
RF Output Power:	14.74 dBm (Conducted)
Type of Modulation:	DBPSK,BPSK,DQPSK,QPSK,16QAM,64QAM
Data Rate:	$1-11 \mathrm{Mbps}, 6-54 \mathrm{Mbps}$, up to 150 Mbps
Quantity of Channels:	11 for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$-HT20
	7 for 802.11n-HT40
Channel Separation:	5 MHz
Type of Antenna:	PCB Antenna
Antenna Gain:	3.0 dBi

1.2 Standard Applicable

According to $\S 1.1307(b)(1)$ and KDB 447498 D01 General RF Exposure Guidance v06, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.
(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or $\mathrm{S}($ minutes $)$
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	$/$	$/$	$\mathrm{F} / 300$	6
$1500-100000$	$/$	$/$	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or $\mathrm{S}($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	$/$	$/$	$\mathrm{F} / 1500$	30
$1500-100000$	$/$	$/$	1	30

Note: $\mathrm{f}=$ frequency in $\mathrm{MHz}:$ * = Plane-wave equivalents power density

1.3 MPE Calculation Method

$\mathrm{S}=(30 * \mathrm{P} * \mathrm{G}) /\left(377 * \mathrm{R}^{2}\right)$
$\mathrm{S}=$ power density (in appropriate units, e.g., mw/ cm^{2})
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mw)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator,
the power gain factor is normally numeric gain.
$\mathrm{R}=$ distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.4 MPE Calculation Result

Maximum Tune-Up output power: $\underline{15(\mathrm{dBm})}$
Maximum peak output power at antenna input terminal: $\underline{31.62(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: 2462 (MHz)
Antenna gain:3.0(dBi)
Directional gain (numeric gain): $\underline{2.00}$
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0126\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Result: Pass

