

# FCC PART 15, SUBPART B FCC 15.247 TEST REPORT TEST METHOD: ANSI C63.4: 2009

For

# STAR 3000 SYSTEM

# Prepared for

# MOJIX, INC. 11075 SANTA MONICA BOUELVARD, SUITE 350 LOS ANGELES, CALIFORNIA 90025

| Prepared by: |               |
|--------------|---------------|
|              | KYLE FUJIMOTO |
| Approved by: |               |
|              | JAMES ROSS    |

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: NOVEMBER 3, 2012

|       | REPORT |   | APPENDICES |   |    | TOTAL |     |
|-------|--------|---|------------|---|----|-------|-----|
|       | BODY   | A | В          | С | D  | E     |     |
| PAGES | 27     | 2 | 2          | 2 | 24 | 111   | 168 |

This report shall not be reproduced, except in full, without the written approval of Compatible Electronics.





# TABLE OF CONTENTS

| Section / Title                                                              |                               | PAGE     |
|------------------------------------------------------------------------------|-------------------------------|----------|
| GENERAL REPORT SUM                                                           | MARY                          | 4        |
| SUMMARY OF TEST RES                                                          | SULTS                         | 5        |
| 1. PURPOSE                                                                   |                               | 6        |
| 2. ADMINISTRATIV                                                             | E DATA                        | 7        |
| <ul><li>2.1 Location of Testing</li><li>2.2 Traceability Statement</li></ul> | nt                            | 7<br>7   |
| 2.3 Cognizant Personne                                                       |                               | 7        |
| 2.4 Date Test Sample w                                                       |                               | 7        |
| 2.5 Disposition of the To                                                    |                               | 7        |
| 2.6 Abbreviations and A                                                      |                               | 7        |
| 3. APPLICABLE DO                                                             | CUMENTS                       | 8        |
| 4. DESCRIPTION OF                                                            | TEST CONFIGURATION            | 9        |
| 4.1 Description of Test                                                      | Configuration – (Emissions)   | 9        |
| 5. LISTS OF EUT, AC                                                          | CCESSORIES AND TEST EQUIPMENT | 15       |
| 5.1 EUT and Accessory                                                        | List                          | 15       |
| 5.2 Emissions Test Equi                                                      | pment                         | 16       |
| 6. TEST SITE DESCI                                                           | RIPTION                       | 17       |
| 6.1 Test Facility Descrip                                                    | otion                         | 17       |
| 6.2 EUT Mounting, Bor                                                        | nding and Grounding           | 17       |
| 7. TEST PROCEDUR                                                             | RES                           | 18       |
| 7.1 RF Emissions                                                             |                               | 18       |
| 7.1.1 Conducted Emission                                                     |                               | 18       |
| 7.1.2 Radiated Emissions                                                     |                               | 19       |
| 7.1.3 RF Emissions Test F                                                    | Results                       | 21       |
| <ul><li>7.2 20 dB Bandwidth</li><li>7.3 Peak Output Power</li></ul>          |                               | 22<br>23 |
| <ul><li>7.3 Peak Output Power</li><li>7.4 RF Antenna Conduct</li></ul>       | oted Tast                     | 23       |
| 7.5 RF Band Edges                                                            | ted Test                      | 24       |
| 7.6 Carrier Frequency S                                                      | eparation                     | 24       |
| 7.7 Number of Hopping                                                        |                               | 24       |
| 7.8 Average Time of Oc                                                       |                               | 25       |
| 7.9 Spectral Density Tes                                                     | st                            | 26       |
| 8. DEVIATIONS FRO                                                            | OM THE TEST PROCEDURES        | 27       |
| 9. CONCLUSIONS                                                               |                               | 27       |



# LIST OF APPENDICES

| APPENDIX | TITLE                                       |  |  |  |
|----------|---------------------------------------------|--|--|--|
|          |                                             |  |  |  |
| A        | Laboratory Accreditations and Recognitions  |  |  |  |
| В        | Modifications to the EUT                    |  |  |  |
| С        | Additional Models Covered Under This Report |  |  |  |
| D        | Diagrams, Charts and Photos                 |  |  |  |
|          | Test Setup Diagrams                         |  |  |  |
|          | Antenna and Amplifier Gain Factors          |  |  |  |
|          | Radiated and Conducted Emissions Photos     |  |  |  |
| Е        | Data Sheets                                 |  |  |  |

# LIST OF TABLES

| TABLE | TITLE                            |
|-------|----------------------------------|
| 1     | Conducted Emissions Test Desults |
| 1     | Conducted Emissions Test Results |
| 2     | Radiated Emissions Test Results  |

# LIST OF FIGURES

| FIGURE | TITLE                            |
|--------|----------------------------------|
|        |                                  |
| 1      | Conducted Emissions Test Setup   |
| 2      | Plot Map And Layout of Test Site |
| 3      | High Frequency Test Volume       |

FCC 15.247 Report Number: B20925D1 Page 4 of 27

# **GENERAL REPORT SUMMARY**

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: Star 3000 System

Product Description: Please see the expository statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Mojix, Inc.

11075 Santa Monica Boulevard, Suite 350

Los Angeles, California 90025

Test Dates: September 17, 18, 19, 20, 21, 24, and 25, 2012

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and

15.247

Test Procedure: ANSI C63.4: 2009.



# **SUMMARY OF TEST RESULTS**

FCC 15.247 Report Number: B20925D1

| TEST | DESCRIPTION                                                                | RESULTS                                                                                                                                           |
|------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Conducted RF Emissions, 150 kHz - 30 MHz.                                  | Complies with the <b>Class B</b> limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207.  |
| 2    | Radiated RF Emissions, 10 kHz – 9300 MHz                                   | Complies with the <b>Class B</b> limits of CFR Title 47, Part 15, Subpart B; the limits of CFR Title 47, Part 15 Subpart C, 15.209 and 15.247 (d) |
| 3    | Radiated RF Emissions for the Digital Portion 30 MHz – 1000 MHz            | Complies with the <b>Class A</b> limits of CFR Title 47, Part 15, Subpart B.                                                                      |
| 4    | 20 dB Bandwidth                                                            | Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)                                             |
| 5    | Peak Power Output                                                          | Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(2)                                                |
| 6    | RF Conducted Antenna Test                                                  | Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)                                                   |
| 7    | Carrier Frequency Separation                                               | Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)                                                |
| 8    | Average Time of Occupancy                                                  | Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)                                             |
| 9    | Peak Power Spectral Density from the International Radiator to the Antenna | This test was not performed because the EUT is a frequency hopper.                                                                                |



#### 1. PURPOSE

This document is a qualification test report based on the Emissions tests performed on the Star 3000 System. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4: 2009. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247

Note #1: for the digital portion of the test on the Star 3000 RFID Reader, the EUT was within the **Class A** specification limits defined by CFR Title 47, Part 15 Subpart B.

Note #2: Please see section 5.1 for the list of model numbers and serial numbers used with the system. Each individual piece of equipment has its own model number.



#### 2. ADMINISTRATIVE DATA

# 2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

# 2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

#### 2.3 Cognizant Personnel

Mojix, Inc.

Shawn Manesh Senior VP Operations Hassan Syed Manger RF Design Group

Gus Mendoza Engineer

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

#### 2.4 Date Test Sample was Received

The test sample was received prior to the initial date of testing.

#### 2.5 Disposition of the Test Sample

The test sample was returned to Mojix Inc. prior to the date of this test report.

#### 2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

# 3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this test report.

| SPEC                                  | TITLE                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| FCC Title 47,<br>Part 15<br>Subpart C | FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators                                              |
| ANSI C63.4<br>2009                    | Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz |
| FCC Title 47,<br>Part 15<br>Subpart B | FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators                                            |

#### 4. DESCRIPTION OF TEST CONFIGURATION

#### **4.1** Description of Test Configuration – (Emissions)

The EUT consists of an RFID Reader, eNode, eMux, GPIO, RF expander, and antenna and was setup as follows:

#### **Configuration #1:**

The RFID Reader was connected to a laptop, eMux, and power supply via its ethernet, transmit and DC in ports, respectively.

The eMux was also connected to the eNode and power supply vita its Out-1 and power ports, respectively. The Out-2, Out-3, and Out-4 ports were connected to 25-foot cables that were terminated to 50 ohms via terminators.

The eNode was also connected to the GPIO and antenna via its GPIO and ANT-1 ports, respectively. The ANT-2, ANT-3, ANT-4, and output ports were connected to 25-foot cables that were terminated to 50 ohms via terminators. The antenna was connected to the ANT-1 port because that was the port that produced the highest emission level. The GPIO was also connected to a sensor via each of its four input ports.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving during the test.

# **Configuration #2:**

The RFID Reader was connected to a laptop, eMux, and power supply via its ethernet, transmit and DC in ports, respectively.

The eMux was also connected to the eNode and power supply vita its Out-1 and power ports, respectively. The Out-2, Out-3, and Out-4 ports were connected to 25-foot cables that were terminated to 50 ohms via terminators.

The eNode was also connected to the GPIO and RF Expander via its GPIO and ANT-1 ports, respectively. The ANT-2, ANT-3, ANT-4, and output ports of the eNode were connected to 25-foot cables that were terminated to 50 ohms via terminators.

The RF Expander was also connected to an antenna via its ANT-1 port. The ANT-2, ANT-3, and ANT-4 ports of the RF Expander were connected to 25-foot cables that were terminated to 50 ohms via the terminators.

The antenna was connected to the ANT-1 port because that was the port that produced the highest emission level. The GPIO was also connected to a sensor via each of its four input ports.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving during the test.



#### **Configuration #3:**

The RFID Reader was connected to a laptop, eNode, and power supply via its ethernet, transmit and DC in ports, respectively.

The eNode was also connected to the GPIO and RF Expander via its GPIO and ANT-1 ports, respectively. The ANT-2, ANT-3, ANT-4, and output ports of the eNode were connected to 25-foot cables that were terminated to 50 ohms via terminators.

The RF Expander was also connected to an antenna via its ANT-1 port. The ANT-2, ANT-3, and ANT-4 ports of the RF Expander were connected to 25-foot cables that were terminated to 50 ohms via the terminators.

The antenna was connected to the ANT-1 port because that was the port that produced the highest emission level. The GPIO was also connected to a sensor via each of its four input ports.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving during the test.

Note: The RFID Reader side was only tested in configurations #1 and #2 because those configurations include the eMux, which is the worst case configuration for the RFID Reader.

The highest emissions were found when the EUT was running in the above configurations. The cables were moved to maximize the emissions. The final conducted and radiated data was taken in both configuration described above. All initial investigations were performed with the measurement receiver in manual mode scanning the frequency range continuously. The cables were bundled and routed as shown in the photographs in Appendix D.



#### 4.1.2 Cable Construction and Termination

#### **Configuration #1:**

- <u>Cable 1</u> This is a 1-meter unshielded cable connecting the eMux to the power supply. The cable has a 5-pin DIN connector on the eMux end and is hard wired into the switching power supply. The cable has a molded ferrite on the eMux side.
- <u>Cable 2</u>
  This is a 50-foot braid shielded cable connecting the eMux to the 4 Port eNode. The cable has an SMA connector at the 4 Port eNode end and a TNC connector at the eMux end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cables 3-5</u>
  These are 25-foot braid shielded cables connecting the Out-2, Out-3, and Out-4 ports of the eMux to 50 ohm terminators. The cables have SMA connectors at each end. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables were grounded to the chassis via the connectors.
- <u>Cable 6</u>
  This is a 50-foot braid shielded cable connecting the eMux to the RFID Reader. The cable has a TNC connector at the eMux end and a reverse polarity TNC connector at the RFID Reader end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 7</u> This is a 25-foot braid shielded cable connecting the RFID reader to the laptop. The cable has an RJ-45 connector at each end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 8</u>
  This is a 5-meter braid shielded cable connecting the RFID reader to the DC power supply. The cable has a Positronics FR11FP822LM5 connector at the RFID reader end and a Positronics P/N: 9942170007 connector at the DC power supply end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 9</u>

  This is a 6.1-meter braid and foil shielded cable connecting the eNode to the antenna. The cable has a reverse SMA connector at the eNode end and a reverse TNC connector at the antenna end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- Cables 10-12 These are 25-foot braid shielded cables connecting the ANT-2, ANT-3, and ANT-4 ports of the eNode to 50 ohm terminators. The cables have reverse polarity SMA connectors at the eNode end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables were grounded to the chassis via the connectors.
- <u>Cables 13-16</u> These are 40-centimeter foil shielded cables connecting the GPIO to the each sensor. Th cables are hard wired to each 10-pin terminal block inside the GPIO and are hard wired into the sensor. The shield of the cables were grounded to the chassis via the connector.
- <u>Cable 17</u>
  This is a 1-meter foil shielded cable connecting the eNode to the GPIO. The cable is hard wired to a 10-pin terminal block inside the GPIO and has a standard TNC connector at the eNode end. The shield of the cable was grounded to the chassis via the connectors.

#### **Configuration #1 (Continued)**

#### **Cable 18**

This is a 25-foot braid shielded cable connecting the output port of the eNode to a 50 ohm terminator. The cable has a reverse polarity SMA connector at the eNode end and a regular SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

#### **Configuration #2:**

Cable 1

This is a 1-meter unshielded cable connecting the eMux to the power supply. The cable has a 5-pin DIN connector on the eMux end and is hard wired into the switching power supply. The cable has a molded ferrite on the eMux side.

Cable 2

This is a 50-foot braid shielded cable connecting the eMux to the 4 Port eNode. The cable has an SMA connector at the 4 Port eNode end and a TNC connector at the eMux end. The shield of the cable was grounded to the chassis via the connectors.

Cables 3-5

These are 25-foot braid shielded cables connecting the Out-2, Out-3, and Out-4 ports of the eMux to 50 ohm terminators. The cables have SMA connectors at each end. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables were grounded to the chassis via the connectors.

Cable 6

This is a 50-foot braid shielded cable connecting the eMux to the RFID Reader. The cable has a TNC connector at the eMux end and a reverse polarity TNC connector at the RFID Reader end. The shield of the cable was grounded to the chassis via the connectors.

Cable 7

This is a 25-foot braid shielded cable connecting the RFID reader to the laptop. The cable has an RJ-45 connector at each end. The shield of the cable was grounded to the chassis via the connectors.

Cable 8

This is a 5-meter braid shielded cable connecting the RFID reader to the DC power supply. The cable has a Positronics FR11FP822LM5 connector at the RFID reader end and a Positronics P/N: 9942170007 connector at the DC power supply end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.

Cable 9

This is a 25-foot braid and foil shielded cable connecting the ANT-1 port of the eNode to the RF Expander. The cable has a reverse SMA connector at the eNode end and a reverse TNC connector at the RF Expander end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

**Cables 10-12** 

These are 25-foot braid shielded cables connecting the ANT-2, ANT-3, and ANT-4 ports of the eNode to 50 ohm terminators. The cables have reverse polarity SMA connectors at the eNode end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables were grounded to the chassis via the connectors.

**Cables 13-16** 

These are 40-centimeter foil shielded cables connecting the GPIO to the each sensor. The cables are hard wired to each 10-pin terminal block inside the GPIO and are hard wired into the sensor. The shield of the cables were grounded to the chassis via the connector.

Cable 17

This is a 1-meter foil shielded cable connecting the eNode to the GPIO. The cable is hard wired to a 10-pin terminal block inside the GPIO and has a standard TNC connector at the eNode end. The shield of the cable was grounded to the chassis via the connectors.

#### Configuration #2 (Continued)

Cable 18

This is a 6.1-meter braid and foil shielded cable connecting the RF Expander to the antenna. The cable has a reverse SMA connector at the RF Expander end and a reverse TNC connector at the antenna end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

**Cables 19-21** 

These are 25-foot braid shielded cables connecting the ANT-2, ANT-3, and ANT-4 ports of the RF Expander to 50 ohm terminators. The cables have reverse polarity SMA connectors at the RF Expander end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables were grounded to the chassis via the connectors.

Cable 22

This is a 25-foot braid shielded cable connecting the output port of the eNode to a 50 ohm terminator. The cables has a reverse polarity SMA connector at the eNode end and a regular SMA connector at the 50 ohm terminator end. The cables was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

#### **Configuration #3**

Cable 1

This is a 50-foot braid shielded cable connecting the RFID Reader to the 4 Port eNode. The cable has an SMA connector at the RFID Reader end and a TNC connector at the eMux end. The shield of the cable was grounded to the chassis via the connectors.

Cable 2

This is a 25-foot unshielded cable connecting the RFID reader to the laptop. The cable has an RJ-45 connector at each end.

Cable 3

This is a 5-meter braid shielded cable connecting the RFID reader to the DC power supply. The cable has a Positronics FR11FP822LM5 connector at the RFID reader end and a Positronics P/N: 9942170007 connector at the DC power supply end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.

Cable 4

This is a 25-foot braid and foil shielded cable connecting the ANT-1 port of the eNode to the RF Expander. The cable has a reverse SMA connector at the eNode end and a reverse TNC connector at the RF Expander end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

Cables 5-7

These are 25-foot braid shielded cables connecting the ANT-2, ANT-3, and ANT-4 ports of the eNode to 50 ohm terminators. The cables have reverse polarity SMA connectors at the eNode end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables was grounded to the chassis via the connectors.





#### Configuration #3 (Continued)

- <u>Cables 8-11</u> These are 40-centimeter foil shielded cables connecting the GPIO to the each sensor. The cables are hard wired to each 10-pin terminal block inside the GPIO and are hard wired into the sensor. The shield of the cables was grounded to the chassis via the connector.
- <u>Cable 12</u>
  This is a 1-meter foil shielded cable connecting the eNode to the GPIO. The cable is hard wired to a 10-pin terminal block inside the GPIO and has a standard TNC connector at the eNode end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 13</u>
  This is a 6.1-meter braid and foil shielded cable connecting the RF Expander to the antenna. The cable has a reverse SMA connector at the RF Expander end and a reverse TNC connector at the antenna end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cables 14-16</u> These are 25-foot braid shielded cables connecting the ANT-2, ANT-3, and ANT-4 ports of the RF Expander to 50 ohm terminators. The cables have reverse polarity SMA connectors at the RF Expander end and regular SMA connectors at the 50 ohm terminator ends. The cables were coiled so that they were 40-centimeters above the ground plane. The shield of the cables were grounded to the chassis via the connectors.
- This is a 25-foot braid shielded cable connecting the output port of the eNode to a 50 ohm terminator. The cables has a reverse polarity SMA connector at the eNode end and a regular SMA connector at the 50 ohm terminator end. The cables was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.



# 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

# **5.1 EUT and Accessory List**

| EQUIPMENT TYPE                                | MANU-<br>FACTURER    | MODEL           | SERIAL NUMBER          | FCC ID        |
|-----------------------------------------------|----------------------|-----------------|------------------------|---------------|
| EMUX 3000<br>(PART OF EUT)                    | MOJIX, INC.          | EMX-3004-WO     | 0829402423-3E7C7E      | N/A           |
| ENODE 3000<br>(PART OF EUT)                   | MOJIX, INC.          | ENM-3004-F      | 09144024F1G-<br>3ED8D2 | VEDCBLENODE3K |
| STAR 3000 RFID READER<br>(PART OF EUT)        | MOJIX, INC.          | STAR-3000-F     | 9164022A1076           | N/A           |
| ANTENNA<br>(ENODE)                            | MTI WIRELESS<br>EDGE | MT-262006/TRH/A | 01471                  | N/A           |
| POWER SUPPLY FOR<br>EMUX (INDOOR<br>VERSION)  | ASTRODYNE            | SPU131-108      | 04274024A1237          | N/A           |
| POWER SUPPLY FOR<br>EMUX (OUTDOOR<br>VERSION) | TRACO<br>POWER       | TEX 120-124     | 04274024A1239          | N/A           |
| SENSOR (4)                                    | BANNER               | Q60BB6AF2000    | N/A                    | N/A           |
| POWER SUPPLY FOR<br>RFID READER               | TRACO<br>POWER       | TEX 120-124     | 09144024F1147          | N/A           |
| LAPTOP                                        | DELL                 | PP19L           | N/A                    | DoC           |
| (9) 50 OHM<br>TERMINATORS                     | MINI-<br>CIRCUITS    | VAT-2W          | N/A                    | N/A           |
| RF EXPANDER<br>(PART OF EUT)                  | MOJIX, INC.          | EXP-3004-W      | 10001                  | VEDCBLENODE3K |
| GPIO (PART OF EUT)                            | MOJIX, INC.          | GPO-3008-W      | 3ECF1F                 | N/A           |



5.2

# **Emissions Test Equipment**

| EQUIPMENT<br>TYPE                                      | MANU-<br>FACTURER                     | MODEL<br>NUMBER | SERIAL<br>NUMBER | CALIBRATION DATE  | CALIBRATION<br>DUE DATE |  |  |
|--------------------------------------------------------|---------------------------------------|-----------------|------------------|-------------------|-------------------------|--|--|
| GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS |                                       |                 |                  |                   |                         |  |  |
| Computer                                               | Hewlett Packard                       | 4530            | US91912319       | N/A               | N/A                     |  |  |
| Spectrum Analyzer –<br>Main Section                    | Hewlett Packard                       | 8568B           | 2517A01563       | May 30, 2012      | May 30, 2013            |  |  |
| Spectrum Analyzer –<br>Display Section                 | Hewlett Packard                       | 85662A          | 2648A15285       | May 30, 2012      | May 30, 2013            |  |  |
| Quasi-Peak Adapter                                     | Hewlett Packard                       | 85650A          | 2430A00424       | May 30, 2012      | May 30, 2013            |  |  |
| EMI Receiver                                           | Rohde &<br>Schwarz                    | ESIB40          | 100194           | November 19, 2010 | November 19, 2012       |  |  |
| Monitor                                                | Hewlett Packard                       | D5258A          | TW74500641       | N/A               | N/A                     |  |  |
|                                                        | RF RA                                 | DIATED EMIS     | SIONS TEST EQ    | QUIPMENT          |                         |  |  |
| Loop Antenna                                           | Com-Power                             | AL-130          | 17089            | January 21, 2011  | January 21, 2013        |  |  |
| Biconical Antenna                                      | Com Power                             | AB-900          | 43028            | May 24, 2012      | May 24, 2013            |  |  |
| Log Periodic Antenna                                   | Com Power                             | AL-100          | 16252            | May 24, 2012      | May 24, 2013            |  |  |
| Horn Antenna                                           | Com-Power                             | AH-118          | 071175           | February 29, 2012 | March 1, 2014           |  |  |
| Preamplifier                                           | Com-Power                             | PA-102          | 1017             | December 28, 2011 | December 28, 2012       |  |  |
| Microwave<br>Preamplifier                              | Com-Power                             | PA-118          | 181656           | December 28, 2011 | December 28, 2012       |  |  |
| Antenna Mast                                           | Com Power                             | AM-100          | N/A              | N/A               | N/A                     |  |  |
| Computer                                               | Hewlett Packard                       | 4530            | US91912319       | N/A               | N/A                     |  |  |
|                                                        | RF CONDUCTED EMISSIONS TEST EQUIPMENT |                 |                  |                   |                         |  |  |
| Emissions Program                                      | Compatible<br>Electronics             | 2.3 (SR19)      | N/A              | N/A               | N/A                     |  |  |
| Transient Limiter                                      | Seaward                               | 252A910         | 1                | November 7, 2011  | November 7, 2012        |  |  |
| LISN                                                   | Com Power                             | LI-215          | 12078            | June 20, 2011     | June 20, 2013           |  |  |
| LISN                                                   | Com Power                             | LI-215          | 12082            | June 20, 2011     | June 20, 2013           |  |  |

FCC 15.247 Report Number: B20925D1



#### 6. TEST SITE DESCRIPTION

# 6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for test location.

# **6.2 EUT Mounting, Bonding and Grounding**

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The eNode was grounded to the chassis of the RFID Reader via its interconnect cable. The RFID Reader was grounded to earth ground via the DC power supply.

The eMux was grounded to the chassis of the eNode via its interconnect cable.

#### 7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

#### 7.1 RF Emissions

#### 7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the spectrum analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 1.6 MHz, 1.6 MHz to 5 MHz, and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The final data was collected under program control by the computer in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The six highest emissions are listed in Table 1.

#### **Test Results:**

The EUT complies with the **Class B** limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions.



#### 7.1.2 Radiated Emissions Test

The spectrum analyzer and EMI Receiver were used as a measuring meter along with the quasipeak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz and the Com Power Microwave Preamplifier Model: PA-118 was used for frequencies above 1 GHz. The spectrum analyzer and EMI Receiver were used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer or EMI Receiver records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

| FREQUENCY RANGE   | EFFECTIVE<br>MEASUREMENT<br>BANDWIDTH | TRANSDUCER           |
|-------------------|---------------------------------------|----------------------|
| 10 kHz to 150 kHz | 200 Hz                                | Active Loop Antenna  |
| 150 kHz to 30 MHz | 9 kHz                                 | Active Loop Antenna  |
| 30 MHz to 300 MHz | 120 kHz                               | Biconical Antenna    |
| 300 MHz to 1 GHz  | 120 kHz                               | Log Periodic Antenna |
| 1 GHz to 9.3 GHz  | 1 MHz                                 | Horn Antenna         |

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2009. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.



#### **Radiated Emissions Test (Continued)**

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 10-meter test distance from 10 kHz to 30 MHz, and at a 3 meter test distance from 30 MHz to 9.3 GHz to obtain the final test data.

Also, for the digital portion of the RFID Reader, the EUT was tested at a 10-meter test distance from 30 MHz to 1 GHz.

#### **Test Results:**

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.247 (d) for radiated emissions. Please see Appendix E for the data sheets

Note: The RFID Reader for the digital portion complies with the **Class A** limits of CFR Title 47, Part 15, Subpart B.





# 7.1.3 RF Emissions Test Results

Table 1.0 CONDUCTED EMISSION RESULTS (120V) STAR 3000 SYSTEM

| Frequency          | Emission Level* | Specification Limit | Delta |
|--------------------|-----------------|---------------------|-------|
| MHz                | dBuV            | dBuV                | dB    |
| 0.516 (Black Lead) | 42.97 (A)       | 46.00               | -3.03 |
| 0.771 (Black Lead) | 42.34 (A)       | 46.00               | -3.66 |
| 2.568 (White Lead) | 41.79           | 46.00               | -4.21 |
| 2.707 (White Lead) | 41.39           | 46.00               | -4.61 |
| 2.963 (Black Lead) | 41.13           | 46.00               | -4.87 |
| 0.516 (White Lead) | 40.52 (A)       | 46.00               | -5.48 |

Table 2.0 RADIATED EMISSION RESULTS STAR 3000 SYSTEM

| Frequency   | Emission Level* | Specification Limit | Delta |
|-------------|-----------------|---------------------|-------|
| MHz         | dBuV            | dBuV                | dB    |
| 312.514 (V) | 44.72 (QP)      | 46.40               | -1.68 |
| 312.522 (V) | 44.62           | 46.40               | -1.78 |
| 375.001 (V) | 44.44 (QP)      | 46.40               | -1.96 |
| 62.516 (V)  | 37.09           | 39.10               | -2.01 |
| 187.522 (V) | 40.88           | 43.50               | -2.62 |
| 697.178 (H) | 43.01           | 46.00               | -2.99 |

# Notes:

# A Average Reading

# **QP** Quasi-Peak Reading

<sup>\*</sup> The complete emissions data is given in Appendix E of this report.

<sup>\*\*</sup> The factors for the antennas and preamplifier gain are attached in Appendix D of this report.

FCC 15.247 Report Number: B20925D1 Page 22 of 27

#### 7.2 20 dB Bandwidth

The 20 dB Bandwidth was measured using the EMI Receiver. The bandwidth was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 30 kHz and the video bandwidth was 100 kHz.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). The 20 dB bandwidth is less than the separation between channels. Please see the data sheets located in Appendix E.



#### 7.3 Peak Output Power

The Peak Output Power was measured using the EMI Receiver. The peak output power was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 3 MHz and the video bandwidth was 10 MHz. The cable loss was also added back into the reading using the reference level offset.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(2). The maximum peak output power is less than 1 Watt. Please see the data sheets located in Appendix E.

#### 7.4 RF Antenna Conducted Test

The RF antenna conducted test was performed using the EMI Receiver. The RF antenna conducted test measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth was 100 kHz, and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Please see the radiated emission data sheets located in Appendix E.

#### 7.5 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (902 MHz when the EUT was on the low channel and 928 MHz when the EUT was on the high channel) using the EMI Receiver. The RBW was set to 100 kHz and the VBW was set to 300 kHz. Plots of the fundamental were taken to ensure the amplitude at the band edges were at least 20 dB down from the peak of the fundamental emission.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power at the band edges at 902 MHz and 928 MHz meet the requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). Please see the data sheets located in Appendix E.

#### 7.6 Carrier Frequency Separation

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth 300 kHz. The frequency span was wide enough to include the peaks of two adjacent channels.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1). The Channel Hopping Separation is greater than the 20 dB bandwidth. Please see the data sheets located in Appendix D.

#### 7.7 Number of Hopping Frequencies

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth was 300 kHz. The frequency span was wide enough to include all of the peaks in the frequency band of operation.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(i). The number of hopping frequencies is 50. Please see the data sheets located in Appendix E.



#### 7.8 Average Time of Occupancy Test

The Average Time of Occupancy Test was measured using the EMI Receiver. The EUT was operating in normal operating mode. The frequency span was taken to 0 Hz with a sweep time of 20 msec to determine the time for each transmission.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 10 seconds.

The sweep time was then changed to 5 seconds and the number of pulses taken. The number of pulses was then multiplied by 2 to determine the number of pulses in a 10 second period. The number of pulses in a 10 second period was then multiplied by the time for each pulse to determine the average time of occupancy.

#### **Test Results:**

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). The EUT does not transmit for more than 400 msec in a 10 second period on any frequency. Please see the data sheets located in Appendix E.



# **7.9** Spectral Density Test

The spectrum density output was measured using the EMI Receiver. The spectral density output was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth 3 kHz, and the video bandwidth was 10 kHz. The highest 1.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

#### **Test Results:**

This test was not performed because the EUT is a frequency hopper.



#### 8. DEVIATIONS FROM THE TEST PROCEDURES

There were no deviations from the test procedures.

#### 9. CONCLUSIONS

The Star 3000 System, as tested, meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.207, 15.209, and 15.247

Note #1: For the unintentional radiator portion of the test except for the RFID Reader, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

Note #2: The RFID Reader for the unintentional radiator portion was within the **Class A** specification limits defined by CFR Title 47, Part 15 Subpart B.



# **APPENDIX A**

# LABORATORY ACCREDITATIONS AND RECOGNITIONS

Page A2



# LABORATORY ACCREDITATIONS AND RECOGNITIONS



For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

#### **NVLAP listing links**

Agoura Division - http://ts.nist.gov/Standards/scopes/2000630.htm

Brea Division - http://ts.nist.gov/Standards/scopes/2005280.htm

Silverado/Lake Forest Division - http://ts.nist.gov/Standards/scopes/2005270.htm



#### **ANSI listing**

CETCB https://www.ansica.org/wwwversion2/outside/ALLdirectoryDetails.asp?menuID=1&prgID=3&orgID=123&status=4



Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).



Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA).

We are also certified/listed for IT products by the following country/agency:



VCCI Listing, from VCCI site

Enter "Compatible" in search form http://www.vcci.or.jp/vcci\_e/activity/registration/setsubi.html



FCC Listing, from FCC OET site

FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm



Compatible Electronics IC listing can be found at:

http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home



# **APPENDIX B**

# **MODIFICATIONS TO THE EUT**



# MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.247 and/or FCC  $Class\ A$  and/or FCC  $Class\ B$  specifications.

No modifications were made to the EUT during the testing.



# **APPENDIX C**

# ADDITIONAL MODELS COVERED UNDER THIS REPORT

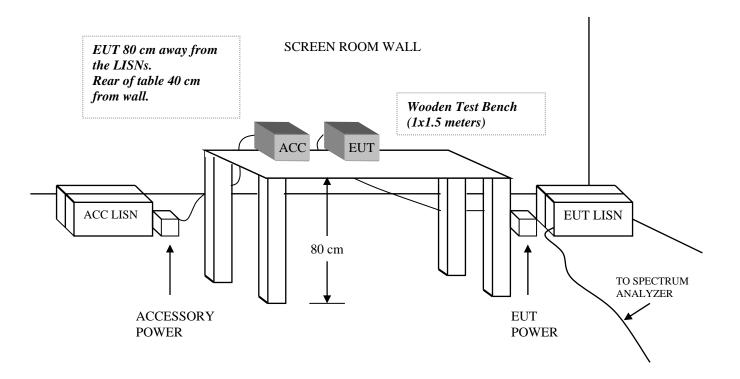


# ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Star 3000 System S/N: NONE

There were no additional models covered under this report.

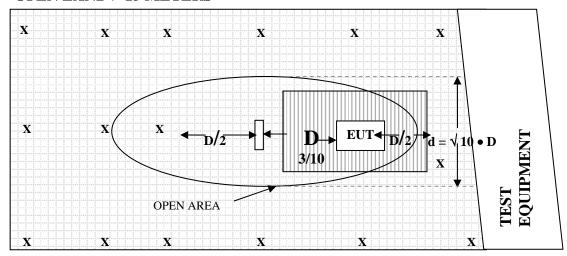



# **APPENDIX D**

# DIAGRAMS, CHARTS AND PHOTOS



# FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

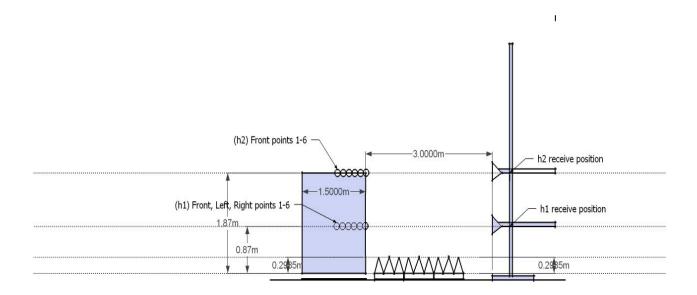





**OPEN LAND > 15 METERS** 

# FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

# **OPEN LAND > 15 METERS**




# **OPEN LAND > 15 METERS**

| X | = GROUND RODS            | = GROUND SCREEN |
|---|--------------------------|-----------------|
| D | = TEST DISTANCE (meters) | = WOOD COVER    |



## FIGURE 3: HIGH FREQUENCY TEST VOLUME





### COM-POWER AL-130

### LOOP ANTENNA

S/N: 17089

## CALIBRATION DATE: JANUARY 21, 2011

| FREQUENCY | MAGNETIC | ELECTRIC |
|-----------|----------|----------|
| (MHz)     | (dB/m)   | (dB/m)   |
| 0.009     | -41.9    | 9.6      |
| 0.01      | -41.79   | 9.71     |
| 0.02      | -41.43   | 10.07    |
| 0.05      | -41.53   | 9.97     |
| 0.07      | -41.47   | 10.03    |
| 0.1       | -41.44   | 10.06    |
| 0.2       | -41.61   | 9.89     |
| 0.3       | -41.62   | 9.88     |
| 0.5       | -41.66   | 9.84     |
| 0.7       | -41.48   | 10.02    |
| 1         | -41.13   | 10.37    |
| 2         | -40.89   | 10.61    |
| 3         | -41.00   | 10.50    |
| 4         | -41.14   | 10.36    |
| 5         | -41.02   | 10.48    |
| 10        | -40.69   | 10.82    |
| 15        | -40.41   | 11.09    |
| 20        | -41.07   | 10.43    |
| 25        | -42.10   | 9.40     |
| 30        | -41.15   | 10.35    |



### **COM-POWER AB-900**

### **BICONICAL ANTENNA**

S/N: 43028

CALIBRATION DATE: MAY 24, 2012

| FREQUENCY<br>(MHz) | FACTOR (dB) | FREQUENCY<br>(MHz) | FACTOR (dB) |
|--------------------|-------------|--------------------|-------------|
| 30                 | 11.80       | 120                | 13.20       |
| 35                 | 11.20       | 125                | 13.30       |
| 40                 | 11.90       | 140                | 11.60       |
| 45                 | 10.70       | 150                | 11.80       |
| 50                 | 11.40       | 160                | 12.70       |
| 60                 | 10.30       | 175                | 14.80       |
| 70                 | 7.60        | 180                | 15.70       |
| 80                 | 5.70        | 200                | 15.80       |
| 90                 | 7.90        | 250                | 14.80       |
| 100                | 10.7        | 300                | 19.80       |



### COM-POWER AL-100

## LOG PERIODIC ANTENNA

S/N: 16252

CALIBRATION DATE: MAY 24, 2012

| FREQUENCY<br>(MHz) | FACTOR (dB) | FREQUENCY<br>(MHz) | FACTOR (dB) |
|--------------------|-------------|--------------------|-------------|
| 300                | 13.00       | 700                | 20.30       |
| 350                | 13.20       | 750                | 20.80       |
| 400                | 14.50       | 800                | 21.00       |
| 450                | 15.40       | 850                | 23.70       |
| 500                | 15.80       | 900                | 21.70       |
| 550                | 16.60       | 950                | 24.20       |
| 600                | 18.90       | 1000               | 24.30       |
| 650                | 19.10       |                    |             |



### **COM POWER AH-118**

### HORN ANTENNA

S/N: 071175

CALIBRATION DATE: FEBRUARY 29, 2012

| FREQUENCY | FACTOR | FREQUENCY | FACTOR |
|-----------|--------|-----------|--------|
| (GHz)     | (dB)   | (GHz)     | (dB)   |
| 1.0       | 23.6   | 10.0      | 37.7   |
| 1.5       | 22.0   | 10.5      | 38.4   |
| 2.0       | 28.7   | 11.0      | 38.0   |
| 2.5       | 29.3   | 11.5      | 38.2   |
| 3.0       | 30.6   | 12.0      | 39.0   |
| 3.5       | 30.4   | 12.5      | 42.4   |
| 4.0       | 31.1   | 13.0      | 40.8   |
| 4.5       | 33.4   | 13.5      | 40.0   |
| 5.0       | 35.3   | 14.0      | 39.7   |
| 5.5       | 35.1   | 14.5      | 43.5   |
| 6.0       | 36.9   | 15.0      | 42.7   |
| 6.5       | 37.4   | 15.5      | 39.7   |
| 7.0       | 37.6   | 16.0      | 39.2   |
| 7.5       | 36.2   | 16.5      | 39.7   |
| 8.0       | 38.4   | 17.0      | 42.2   |
| 8.5       | 39.3   | 17.5      | 47.6   |
| 9.0       | 37.4   | 18.0      | 51.2   |
| 9.5       | 38.0   |           |        |



### **COM-POWER PA-102**

### **PREAMPLIFIER**

S/N: 1017

CALIBRATION DATE: DECEMBER 28, 2011

| FREQUENCY | FACTOR | FREQUENCY | FACTOR |
|-----------|--------|-----------|--------|
| (MHz)     | (dB)   | (MHz)     | (dB)   |
| 30        | 38.54  | 300       | 38.45  |
| 40        | 38.53  | 350       | 38.47  |
| 50        | 38.57  | 400       | 38.36  |
| 60        | 38.54  | 450       | 38.07  |
| 70        | 38.54  | 500       | 38.31  |
| 80        | 38.54  | 550       | 38.37  |
| 90        | 38.54  | 600       | 38.28  |
| 100       | 38.53  | 650       | 38.19  |
| 125       | 38.51  | 700       | 38.24  |
| 150       | 38.43  | 750       | 37.88  |
| 175       | 38.56  | 800       | 37.94  |
| 200       | 38.50  | 850       | 37.65  |
| 225       | 38.46  | 900       | 37.50  |
| 250       | 38.57  | 950       | 37.47  |
| 275       | 38.45  | 1000      | 36.86  |



### **COM-POWER PA-118**

### **PREAMPLIFIER**

S/N: 181656

## CALIBRATION DATE: DECEMBER 28, 2011

| FREQUENCY | FACTOR | FREQUENCY | FACTOR |
|-----------|--------|-----------|--------|
| (GHz)     | (dB)   | (GHz)     | (dB)   |
| 1.0       | 23.22  | 10.0      | 24.66  |
| 1.5       | 26.31  | 10.5      | 25.22  |
| 2.0       | 27.40  | 11.0      | 25.17  |
| 2.5       | 26.52  | 11.5      | 24.47  |
| 3.0       | 27.35  | 12.0      | 25.29  |
| 3.5       | 29.02  | 12.5      | 26.03  |
| 4.0       | 28.51  | 13.0      | 24.11  |
| 4.5       | 26.62  | 13.5      | 24.28  |
| 5.0       | 27.13  | 14.0      | 25.81  |
| 5.5       | 27.29  | 14.5      | 25.45  |
| 6.0       | 26.72  | 15.0      | 25.36  |
| 6.5       | 25.62  | 15.5      | 26.76  |
| 7.0       | 25.25  | 16.0      | 28.09  |
| 7.5       | 24.23  | 16.5      | 23.23  |
| 8.0       | 23.72  | 17.0      | 26.58  |
| 8.5       | 24.91  | 17.5      | 27.45  |
| 9.0       | 25.73  | 18.0      | 27.53  |
| 9.5       | 24.79  |           |        |





#### **FRONT VIEW**

MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATION #1 – eNode, GPIO, and ANTENNA SIDE





#### **REAR VIEW**

MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATION #1 – eNode, GPIO, and ANTENNA SIDE





#### **FRONT VIEW**

MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATION #1 – STAR 3000 and eMux SIDE





#### **REAR VIEW**

MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATION #1 – STAR 3000 and eMux SIDE





#### **FRONT VIEW**

MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATIONS #2 AND #3 – eNode, GPIO, RF EXPANDER AND ANTENNA SIDE





#### **REAR VIEW**

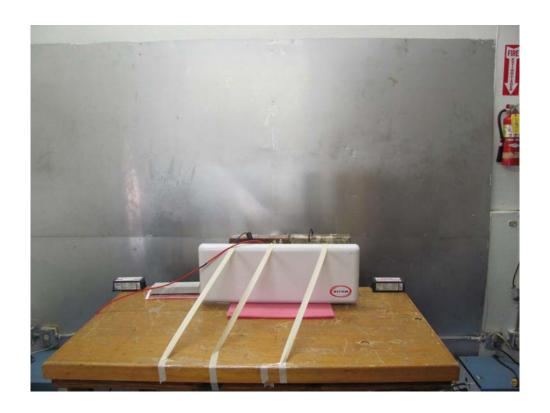
MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATIONS #2 AND #3 – eNode, GPIO, RF EXPANDER AND ANTENNA SIDE





#### **FRONT VIEW**

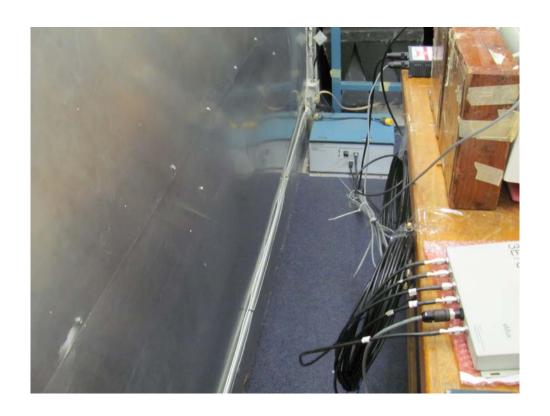
MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATIONS #2 AND #3 – STAR 3000 AND eMux SIDE






#### **REAR VIEW**

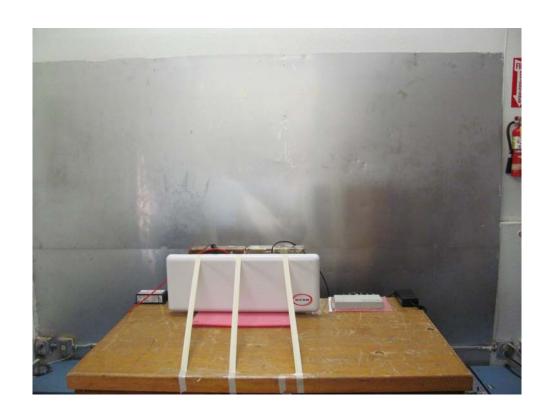
MOJIX, INC. STAR 3000 SYSTEM RADIATED EMISSIONS – CONFIGURATIONS #2 AND #3 – STAR 3000 AND eMux SIDE






#### **FRONT VIEW**

MOJIX, INC. STAR 3000 SYSTEM CONDUCTED EMISSIONS – CONFIGURATION #2 – STAR 3000 POWER SUPPLY






#### **REAR VIEW**

MOJIX, INC. STAR 3000 SYSTEM CONDUCTED EMISSIONS – CONFIGURATION #2 – STAR 3000 POWER SUPPLY





#### **FRONT VIEW**

MOJIX, INC. STAR 3000 SYSTEM CONDUCTED EMISSIONS – CONFIGURATION #1 – INDOOR SUPPLY ON eMux





#### **REAR VIEW**

MOJIX, INC. STAR 3000 SYSTEM CONDUCTED EMISSIONS – CONFIGURATION #1 – INDOOR SUPPLY ON eMux





#### **FRONT VIEW**

MOJIX, INC. STAR 3000 SYSTEM CONDUCTED EMISSIONS – CONFIGURATION #2 – OUTDOOR SUPPLY ON eMux





#### **REAR VIEW**

MOJIX, INC.
STAR 3000 SYSTEM RFID READER
CONDUCTED EMISSIONS – CONFIGURATION #2 – OUTDOOR SUPPLY ON eMux



### **APPENDIX E**

### DATA SHEETS



### **RADIATED EMISSIONS**

**DATA SHEETS** 



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #1 - eNode Side Tested By: Kyle Fujimoto

Low Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W) Transmit Mode

|                    |        | 14.0710() |                  |              | Peak / | Ant.   | Table |                                         |
|--------------------|--------|-----------|------------------|--------------|--------|--------|-------|-----------------------------------------|
| Freq.              | Level  | Pol       | 27854211-6425111 | BUCKEN TO BE | QP/    | Height | Angle | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| (MHz)              | (dBuV) | (v/h)     | Limit            | Margin       | Avg    | (m)    | (deg) | Comments                                |
| 902.73             |        |           |                  |              |        |        |       | N/A - Done via Conducted                |
|                    |        |           |                  |              |        |        |       |                                         |
| 1805.46            | 54.94  | V         |                  |              | Peak   | 1.25   | 155   | Not in Restricted Band                  |
| 1805.46            | 49.92  | V         |                  | # <b>2</b> 2 | Avg    | 1.25   | 155   | Not in Restricted Band                  |
|                    |        |           |                  |              |        |        |       |                                         |
| 2708.19            | 42.51  | V         | 74               | -31.49       | Peak   | 1.35   | 165   |                                         |
| 2708.19            | 29.72  | V         | 54               | -24.28       | Avg    | 1.35   | 165   |                                         |
|                    |        | 2012      |                  |              | 2      |        |       |                                         |
| 3610.92            | 41.71  | V         | 74               | -32.29       | Peak   | 1.25   | 165   |                                         |
| 3610.92            | 27.97  | V         | 54               | -26.03       | Avg    | 1.25   | 165   |                                         |
| 1510.05            |        |           |                  |              |        |        |       |                                         |
| 4513.65            | 47.04  | V         | 74               | -26.96       | Peak   | 1.55   | 175   |                                         |
| 4513.65            | 34.29  | V         | 54               | -19.71       | Avg    | 1.55   | 175   |                                         |
| 5440.00            |        |           |                  |              | 55     |        |       |                                         |
| 5416.38            |        | 2         |                  |              |        |        |       | no emissions found                      |
| 5416.38            | ÷      | 2         |                  |              |        |        | -     |                                         |
| 0040 44            |        | 2         |                  |              |        |        |       |                                         |
| 6319.11<br>6319.11 | 2      |           |                  | 2            | 1      | 7      |       | no emissions found                      |
| 6319.11            | -      |           |                  |              |        |        |       |                                         |
| 7004 04            | - 2    |           |                  | 4            | 5      |        | Ε.    | no emissione found                      |
| 7221.84<br>7221.84 | 3      |           |                  | 3            |        |        |       | no emissions found                      |
| 1221.04            |        |           |                  |              |        |        |       |                                         |
| 8124.57            |        | ,         |                  | £ .          |        |        | -     | no emissions found                      |
| 8124.57            |        |           |                  | 2 3          |        | ,      |       | ilo ciliissiolis louliu                 |
| 0124.07            |        |           |                  |              |        |        |       |                                         |
| 9027.3             |        | 2         |                  |              |        | 2      |       | no emissions found                      |
| 9027.3             | 3      |           |                  | 3            |        |        |       | no cimasiona toutiu                     |
| 3021.0             |        |           |                  |              |        |        |       |                                         |
|                    |        | >         |                  |              |        |        |       |                                         |
|                    |        |           |                  |              |        |        |       |                                         |

Page E4



FCC 15.247

 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #1 - eNode Side Tested By: Kyle Fujimoto

Low Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W) Transmit Mode

|                    |            |       |                 |                                         | Peak / | Ant.                                         | Table          |                          |
|--------------------|------------|-------|-----------------|-----------------------------------------|--------|----------------------------------------------|----------------|--------------------------|
| Freq.              | Level      | Pol   | 20064 202       | 100000000000000000000000000000000000000 | QP/    | Height                                       | Angle          | 444                      |
| (MHz)              | (dBuV)     | (v/h) | Limit           | Margin                                  | Avg    | (m)                                          | (deg)          | Comments                 |
| 902.73             |            |       |                 |                                         |        |                                              |                | N/A - Done via Conducted |
|                    | 3-1        |       |                 |                                         |        |                                              |                |                          |
| 1805.46            | 46.31      | Н     |                 |                                         | Peak   | 1.25                                         | 155            | Not in Restricted Band   |
| 1805.46            | 40.69      | Н     |                 |                                         | Avg    | 1.25                                         | 155            | Not in Restricted Band   |
|                    |            |       |                 |                                         |        |                                              |                |                          |
| 2708.19            | 36.63      | Н     | 74              | -37.37                                  | Peak   | 1.55                                         | 165            |                          |
| 2708.19            | 24.61      | Н     | 54              | -29.39                                  | Avg    | 1.55                                         | 165            |                          |
|                    | 4 11 2 2 2 |       |                 |                                         |        |                                              | 000000000      |                          |
| 3610.92            | 37.37      | Н     | 74              | -36.63                                  | Peak   | 1.25                                         | 155            |                          |
| 3610.92            | 25.08      | Н     | 54              | -28.92                                  | Avg    | 1.25                                         | 155            |                          |
| 1-9-70-0-1-0-0-0   | A          | 2000  | South Secretary |                                         |        | 1. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 440.000 (M. A) |                          |
| 4513.65            | 42.03      | Н     | 74              | -31.97                                  | Peak   | 1.25                                         | 155            |                          |
| 4513.65            | 28.97      | Н     | 54              | -25.03                                  | Avg    | 1.25                                         | 155            |                          |
|                    |            | 2     |                 |                                         |        |                                              |                |                          |
| 5416.38            |            |       |                 |                                         |        |                                              |                | no emissions found       |
| 5416.38            |            |       |                 |                                         |        |                                              |                |                          |
|                    |            |       |                 | 13                                      |        |                                              |                |                          |
| 6319.11            | v          |       |                 |                                         | 2      |                                              |                | no emissions found       |
| 6319.11            |            |       |                 |                                         |        |                                              |                |                          |
| 7004 04            |            | 27    |                 |                                         |        |                                              |                |                          |
| 7221.84            | V 3        |       |                 |                                         | 8      |                                              |                | no emissions found       |
| 7221.84            |            |       |                 |                                         |        |                                              | -              |                          |
| 0404.57            | 8          |       |                 | - 3                                     |        |                                              |                |                          |
| 8124.57<br>8124.57 | 0 3        |       |                 |                                         |        |                                              |                | no emissions found       |
| 0124.57            |            |       |                 |                                         |        |                                              |                |                          |
| 9027.3             |            |       |                 |                                         |        |                                              |                | no emissione found       |
| 9027.3             | V 3        |       |                 | -                                       |        |                                              | 4              | no emissions found       |
| 9021.3             |            |       |                 |                                         |        |                                              |                |                          |
|                    |            | 2     |                 |                                         |        |                                              | X              |                          |
|                    |            |       |                 |                                         |        |                                              |                |                          |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #1 - eNode Side Tested By: Kyle Fujimoto

Middle Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W) Transmit Mode

| 100     | 120    | 123 750 |       |         | Peak / | Ant.   | Table |                          |
|---------|--------|---------|-------|---------|--------|--------|-------|--------------------------|
| Freq.   | Level  | Pol     |       |         | QP/    | Height | Angle |                          |
| (MHz)   | (dBuV) | (v/h)   | Limit | Margin  | Avg    | (m)    | (deg) | Comments                 |
| 915.22  |        |         |       |         |        |        |       | N/A - Done via Conducted |
|         |        |         |       |         |        |        |       |                          |
| 1830.44 | 58.99  | V       |       |         | Peak   | 1.25   | 155   | Not in Restricted Band   |
| 1830.44 | 54.06  | V       |       | <b></b> | Avg    | 1.25   | 155   | Not in Restricted Band   |
|         |        |         |       |         |        |        |       |                          |
| 2745.66 | 46.02  | V       | 74    | -27.98  | Peak   | 1.35   | 165   |                          |
| 2745.66 | 37.01  | V       | 54    | -16.99  | Avg    | 1.35   | 165   |                          |
|         | 72.22  |         |       |         |        |        |       |                          |
| 3660.88 | 40.63  | V       | 74    | -33.37  | Peak   | 1.25   | 175   |                          |
| 3660.88 | 28.35  | V       | 54    | -25.65  | Avg    | 1.25   | 175   |                          |
| -       |        |         |       |         |        |        |       |                          |
| 4576.1  | 46.49  | V       | 74    | -27.51  | Peak   | 1.35   | 185   |                          |
| 4576.1  | 34.18  | V       | 54    | -19.82  | Avg    | 1.35   | 185   |                          |
|         |        |         |       |         |        |        |       |                          |
| 5491.32 |        |         |       |         | -      |        |       | no emissions found       |
| 5491.32 | 3      |         |       |         |        | 8      |       |                          |
|         |        |         |       |         |        |        |       |                          |
| 6406.54 |        |         |       |         |        |        |       | no emissions found       |
| 6406.54 |        |         |       |         |        | (i     |       |                          |
|         |        |         |       |         |        |        |       |                          |
| 7321.76 |        |         |       |         |        |        |       | no emissions found       |
| 7321.76 |        |         | 8     |         |        | 9      |       |                          |
|         |        |         | E     |         |        |        |       |                          |
| 8236.98 |        |         |       |         |        |        |       | no emissions found       |
| 8236.98 |        |         |       | i .     |        | 9 6    |       |                          |
| 0.450.0 |        |         | =     |         |        |        |       |                          |
| 9152.2  |        |         | -     |         | -      |        |       | no emissions found       |
| 9152.2  |        |         |       |         |        | S /2   |       |                          |
| 0       |        |         | =     |         |        | 2      |       |                          |
|         |        |         |       |         |        |        |       |                          |



Mojix, Inc.

Star 3000 System

Configuration #1 - eNode Side

Date: 09/24/2012

Labs: B and D

Tested By: Kyle Fujimoto

Middle Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W) Transmit Mode

|          |        |       |             |              | Peak / | Ant.   | Table                                 |                          |
|----------|--------|-------|-------------|--------------|--------|--------|---------------------------------------|--------------------------|
| Freq.    | Level  | Pol   | PRESENT 100 | 1000000 DEST | QP/    | Height | Angle                                 |                          |
| (MHz)    | (dBuV) | (v/h) | Limit       | Margin       | Avg    | (m)    | (deg)                                 | Comments                 |
| 915.22   |        |       |             |              |        |        |                                       | N/A - Done via Conducted |
|          |        |       |             |              |        |        |                                       |                          |
| 1830.44  | 59.52  | Н     |             |              | Peak   | 1.25   | 155                                   | Not in Restricted Band   |
| 1830.44  | 53.84  | Н     |             |              | Avg    | 1.25   | 155                                   | Not in Restricted Band   |
|          |        |       |             |              |        |        |                                       |                          |
| 2745.66  | 40.59  | Н     | 74          | -33.41       | Peak   | 1.25   | 155                                   |                          |
| 2745.66  | 24.78  | Н     | 54          | -29.22       | Avg    | 1.25   | 155                                   |                          |
|          |        |       |             |              |        |        |                                       |                          |
| 3660.88  | 36.45  | Н     | 74          | -37.55       | Peak   | 1.35   | 165                                   |                          |
| 3660.88  | 23.53  | Н     | 54          | -30.47       | Avg    | 1.35   | 165                                   |                          |
| 4570.4   | 44.40  |       | 7.4         | 00.04        | D 1    | 4.05   | 475                                   |                          |
| 4576.1   | 41.16  | H     | 74          | -32.84       | Peak   | 1.25   | 175                                   |                          |
| 4576.1   | 29.21  | Н     | 54          | -24.79       | Avg    | 1.25   | 175                                   |                          |
| 5491.32  |        |       |             |              |        |        | á á                                   | no emissions found       |
| 5491.32  |        | 3     |             |              |        |        | ·                                     | no emissions found       |
| 3491.32  |        |       |             | 9            |        |        | ý y                                   |                          |
| 6406.54  | 2      |       | 13          |              |        |        |                                       | no emissions found       |
| 6406.54  |        |       | -           |              |        |        | ·                                     | no cinissions round      |
| 0 100.01 |        | 7     | 3           | *            |        |        | *                                     |                          |
| 7321.76  | 2      |       |             |              |        |        |                                       | no emissions found       |
| 7321.76  |        | 1     |             | 3            |        |        | · · · · · · · · · · · · · · · · · · · |                          |
|          |        |       |             |              |        |        |                                       |                          |
| 8236.98  |        |       |             |              |        |        |                                       | no emissions found       |
| 8236.98  |        |       |             |              |        |        |                                       |                          |
|          |        |       |             |              |        |        |                                       |                          |
| 9152.2   |        | _     |             |              |        |        |                                       | no emissions found       |
| 9152.2   |        |       |             |              |        |        |                                       |                          |
|          |        |       |             |              |        |        |                                       |                          |
| ·        |        |       |             |              |        |        |                                       |                          |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #1 - eNode Side Tested By: Kyle Fujimoto

High Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W) Transmit Mode

|         |        |       |       |        | Peak / | Ant.   | Table     |                          |
|---------|--------|-------|-------|--------|--------|--------|-----------|--------------------------|
| Freq.   | Level  | Pol   |       |        | QP/    | Height | Angle     |                          |
| (MHz)   | (dBuV) | (v/h) | Limit | Margin | Avg    | (m)    | (deg)     | Comments                 |
| 927.23  |        |       | Ĵ     |        |        |        |           | N/A - Done via Conducted |
|         |        |       |       |        |        |        |           |                          |
| 1854.46 | 61.39  | V     |       |        | Peak   | 1.25   | 155       | Not in Restricted Band   |
| 1854.46 | 56.77  | V     |       | -      | Avg    | 1.25   | 155       | Not in Restricted Band   |
|         | V=     |       |       |        |        | 10.00  |           |                          |
| 2781.69 | 45.53  | V     | 74    | -28.47 | Peak   | 1.25   | 165       |                          |
| 2781.69 | 29.58  | V     | 54    | -24.42 | Avg    | 1.25   | 165       |                          |
| 0700.00 | 10.00  | 1.4   | -,    | 00.07  | -      |        | 475       |                          |
| 3708.92 | 40.63  | V     | 74    | -33.37 | Peak   | 1.55   | 175       |                          |
| 3708.92 | 28.02  | V     | 54    | -25.98 | Avg    | 1.55   | 175       |                          |
| 4636.15 | 17 11  | V     | 7.4   | -26.59 | Daak   | 1.05   | 185       |                          |
|         | 47.41  | V     | 74    | 7.57   | Peak   | 1.25   | 2000 CCCC |                          |
| 4636.15 | 34.23  | V     | 54    | -19.77 | Avg    | 1.25   | 185       |                          |
| 5563.38 |        |       | 3     |        | 3      |        | 9         | no emissions found       |
| 5563.38 |        |       |       | E:     |        |        |           | no emissions tourid      |
| 3303.30 |        |       | +     | -      |        | -      |           |                          |
| 6490.61 |        | ,     |       |        |        |        |           | no emissions found       |
| 6490.61 |        |       |       |        |        |        |           |                          |
|         |        |       |       |        |        |        |           |                          |
| 7417.84 |        |       |       |        | -      |        |           | no emissions found       |
| 7417.84 |        |       |       |        |        |        |           |                          |
|         |        |       |       |        |        |        |           |                          |
| 8345.07 |        |       |       |        |        |        |           | no emissions found       |
| 8345.07 |        |       |       |        |        |        |           |                          |
|         |        |       |       |        |        |        |           |                          |
| 9272.3  |        |       |       |        |        |        |           | no emissions found       |
| 9272.3  |        |       |       |        |        |        |           |                          |
| 8       |        |       |       |        |        |        |           |                          |
|         |        |       |       |        |        |        |           |                          |





Mojix, Inc.

Star 3000 System

Configuration #1 - eNode Side

Date: 09/24/2012

Labs: B and D

Tested By: Kyle Fujimoto

High Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W)

**Transmit Mode** 

|         |        |                                       |       |        | Peak / | Ant.   | Table |                          |
|---------|--------|---------------------------------------|-------|--------|--------|--------|-------|--------------------------|
| Freq.   | Level  | Pol                                   |       |        | QP/    | Height | Angle |                          |
| (MHz)   | (dBuV) | (v/h)                                 | Limit | Margin | Avg    | (m)    | (deg) | Comments                 |
| 927.36  |        | · · · · · · · · · · · · · · · · · · · |       |        |        |        |       | N/A - Done via Conducted |
|         |        |                                       |       |        | _      |        |       |                          |
| 1854.72 | 57.28  | Н                                     |       |        | Peak   | 1.25   | 255   | Not in Restricted Band   |
| 1854.72 | 51.67  | Н                                     |       |        | Avg    | 1.25   | 255   | Not in Restricted Band   |
| 0700 00 | 10.07  |                                       |       |        |        |        | 4.5.5 |                          |
| 2782.08 | 43.97  | Н                                     | 74    | -30.03 | Peak   | 1.25   | 155   |                          |
| 2782.08 | 30.01  | Н                                     | 54    | -23.99 | Avg    | 1.25   | 155   |                          |
| 2700 44 | 40.42  | Н                                     | 7.4   | 22.57  | Daak   | 1.05   | 105   |                          |
| 3709.44 | 40.43  | Н                                     | 74    | -33.57 | Peak   | 1.35   | 165   |                          |
| 3709.44 | 27.97  | П                                     | 54    | -26.03 | Avg    | 1.35   | 165   |                          |
| 4636.8  | 47.71  | Н                                     | 74    | -26.29 | Peak   | 1.25   | 175   | -                        |
| 4636.8  | 34.16  | Н                                     | 54    | -19.84 | Avg    | 1.25   | 175   |                          |
| 4000.0  | OH. 10 | - 11                                  | 54    | 10.04  | 7.179  | 1.20   | 17.5  |                          |
| 5564.16 |        |                                       |       |        |        | 5      |       | no emissions found       |
| 5564.16 |        |                                       |       |        |        |        |       |                          |
|         |        |                                       |       |        |        |        |       |                          |
| 6491.52 |        |                                       |       |        |        |        |       | no emissions found       |
| 6491.52 |        |                                       |       | ,      |        |        |       |                          |
|         |        |                                       |       |        |        |        |       |                          |
| 7418.88 |        |                                       |       |        |        |        |       | no emissions found       |
| 7418.88 |        |                                       |       |        |        | 3      |       |                          |
|         |        |                                       |       |        |        |        |       |                          |
| 8346.24 | ,      |                                       |       |        |        |        |       | no emissions found       |
| 8346.24 |        |                                       |       |        |        | c .    |       |                          |
| 9273.6  |        |                                       |       |        |        | 5 F    |       | no emission found        |
| 9273.6  |        | 2                                     |       |        | -      |        |       | no emission found        |
| 9213.0  |        | · · · · · · · · · · · · · · · · · · · |       |        |        | 8      |       |                          |
|         | -      |                                       |       |        |        |        |       | -                        |
|         |        |                                       |       |        |        |        |       |                          |

Page E9



FCC 15.247

Mojix, Inc.

Date: 09/24/2012

Star 3000 System

Labs: B and D

Configuration #1 - eNode Side

Tested By: Kyle Fujimoto

1 GHz to 9.3 GHz - Vertical and Horizontal Polarizations eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W)

|        |        |       |       |        | Peak / | Ant.   | Table |                               |
|--------|--------|-------|-------|--------|--------|--------|-------|-------------------------------|
| Freq.  | Level  | Pol   |       |        | QP/    | Height | Angle |                               |
| (MHz)  | (dBuV) | (v/h) | Limit | Margin | Avg    | (m)    | (deg) | Comments                      |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       | No Emissions                  |
|        |        |       |       |        |        |        |       | Detected from the Receive     |
|        | Α      | 3     | 3     |        |        |        | 8     | Mode from 1 GHz to 9.3 GHz    |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       | No Emissions Detected         |
|        | 8      |       | 3     |        |        |        | 3.    | from the Digital Portion from |
| 3:     |        |       |       |        |        |        | ~     | 1 GHz to 9.3 GHz              |
|        |        |       |       |        |        |        |       |                               |
|        | R      |       |       |        |        |        |       | No Emissions Detected for     |
|        |        |       |       |        |        |        |       | the Non-Harmonic Tx           |
|        |        |       |       |        |        |        |       | Emissions from                |
|        | R      |       |       |        |        |        |       | 1 GHz to 9.3 GHz              |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        | 8      |       | 33    |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       | 3     |        |        |        | 2.    |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       | 30    |        |        |        | 8.    |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
| 5<br>2 |        |       |       |        |        |        | 8     |                               |
|        | 2      |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        | 7     | 3     |        | 1      |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |
|        |        |       |       |        |        |        |       |                               |



Mojix, Inc. Date: 09/24/2012 Star 3000 System Labs: B and D

Configuration #2 - eNode Side Tested By: Kyle Fujimoto

Low Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

|         |        |       |       |        | Peak / | Ant.   | Table |                          |
|---------|--------|-------|-------|--------|--------|--------|-------|--------------------------|
| Freq.   | Level  | Pol   |       |        | QP/    | Height | Angle |                          |
| (MHz)   | (dBuV) | (v/h) | Limit | Margin | Avg    | (m)    | (deg) | Comments                 |
| 902.73  |        |       |       |        |        |        |       | N/A - Done via Conducted |
|         |        |       |       |        |        |        |       |                          |
| 1805.46 | 49.59  | V     |       |        | Peak   | 1.25   | 155   | Not in Restricted Band   |
| 1805.46 | 43.47  | V     |       |        | Avg    | 1.25   | 155   | Not in Restricted Band   |
| 0700.40 | 45.04  |       | 74    | 00.00  |        | 4.45   | 405   |                          |
| 2708.19 | 45.31  | V     | 74    | -28.69 | Peak   | 1.15   | 165   |                          |
| 2708.19 | 30.26  | V     | 54    | -23.74 | Avg    | 1.15   | 165   |                          |
| 3610.92 | 40.12  | V     | 74    | -33.88 | Peak   | 1.25   | 155   |                          |
| 3610.92 | 30.28  | V     | 54    | -23.72 | Avg    | 1.25   | 155   |                          |
| 3010.32 | 30.20  | V     | 34    | -23.12 | Avg    | 1.20   | 133   |                          |
| 4513.65 | 45.16  | V     | 74    | -28.84 | Peak   | 1.35   | 165   |                          |
| 4513.65 | 35.25  | V     | 54    | -18.75 | Avg    | 1.35   | 165   |                          |
|         |        |       |       |        |        |        |       |                          |
| 5416.38 |        |       |       |        |        |        |       | no emissions found       |
| 5416.38 |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |
| 6319.11 |        |       |       |        |        |        |       | no emissions found       |
| 6319.11 |        |       |       |        |        |        |       |                          |
| 7004.04 |        |       |       |        |        |        |       |                          |
| 7221.84 |        |       |       |        |        |        |       | no emissions found       |
| 7221.84 |        |       |       |        |        |        |       |                          |
| 8124.57 |        |       |       |        |        |        |       | no emissions found       |
| 8124.57 |        |       |       |        |        |        |       | no emissions found       |
| 0124.01 |        |       |       |        |        |        |       |                          |
| 9027.3  |        |       |       |        |        |        |       | no emissions found       |
| 9027.3  |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |



Mojix, Inc.Date: 09/24/2012Star 3000 SystemLabs: B and DConfiguration #2 - eNode SideTested By: Kyle Fujimoto

Low Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

|         |        |       |       |        | Peak / | Ant.   | Table |                          |
|---------|--------|-------|-------|--------|--------|--------|-------|--------------------------|
| Freq.   | Level  | Pol   |       |        | QP /   | Height | Angle |                          |
|         |        |       | 1:    | Manain | -,-    | _      | _     | Commonto                 |
| (MHz)   | (dBuV) | (v/h) | Limit | Margin | Avg    | (m)    | (deg) | Comments                 |
| 902.73  |        |       |       |        |        |        |       | N/A - Done via Conducted |
|         |        |       |       |        |        |        |       |                          |
| 1805.46 | 44.68  | Н     |       |        | Peak   | 1.25   | 155   | Not in Restricted Band   |
| 1805.46 | 36.31  | Н     |       |        | Avg    | 1.25   | 155   | Not in Restricted Band   |
|         |        |       |       |        |        |        |       |                          |
| 2708.19 | 42.91  | Н     | 74    | -31.09 | Peak   | 1.35   | 165   |                          |
| 2708.19 | 29.97  | Н     | 54    | -24.03 | Avg    | 1.35   | 165   |                          |
|         |        |       |       |        |        |        |       |                          |
| 3610.92 | 41.36  | Н     | 74    | -32.64 | Peak   | 1.25   | 175   |                          |
| 3610.92 | 27.96  | Н     | 54    | -26.04 | Avg    | 1.25   | 175   |                          |
|         |        |       |       |        |        |        |       |                          |
| 4513.65 | 47.21  | Н     | 74    | -26.79 | Peak   | 1.25   | 165   |                          |
| 4513.65 | 34.31  | Н     | 54    | -19.69 | Avg    | 1.25   | 165   |                          |
|         |        |       |       |        |        |        |       |                          |
| 5416.38 |        |       |       |        |        |        |       | no emissions found       |
| 5416.38 |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |
| 6319.11 |        |       |       |        |        |        |       | no emissions found       |
| 6319.11 |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |
| 7221.84 |        |       |       |        |        |        |       | no emissions found       |
| 7221.84 |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |
| 8124.57 |        |       |       |        |        |        |       | no emissions found       |
| 8124.57 |        |       |       |        |        |        |       | omoono round             |
| 5.21.01 |        |       |       |        |        |        |       |                          |
| 9027.3  |        |       |       |        |        |        |       | no emissions found       |
| 9027.3  |        |       |       |        |        |        |       | no cimaciona round       |
| 0021.0  |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |
|         |        |       |       |        |        |        |       |                          |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #2 - eNode Side Tested By: Kyle Fujimoto

Middle Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.            | Level  | Pol   |          |        | Peak /<br>QP / | Ant.<br>Height | Table<br>Angle |                          |
|------------------|--------|-------|----------|--------|----------------|----------------|----------------|--------------------------|
| (MHz)            | (dBuV) | (v/h) | Limit    | Margin | Avg            | (m)            | (deg)          | Comments                 |
| 915.22           |        |       |          |        |                |                |                | N/A - Done via Conducted |
|                  |        |       |          |        |                |                |                |                          |
| 1830.44          | 48.08  | V     |          |        | Peak           | 1.25           | 155            | Not in Restricted Band   |
| 1830.44          | 40.71  | V     |          |        | Avg            | 1.25           | 155            | Not in Restricted Band   |
|                  |        |       |          |        |                |                |                |                          |
| 2745.66          | 50.05  | V     | 74       | -23.95 | Peak           | 1.25           | 155            |                          |
| 2745.66          | 42.01  | V     | 54       | -11.99 | Avg            | 1.25           | 155            |                          |
|                  |        |       |          |        |                |                |                |                          |
| 3660.88          | 42.55  | V     | 74       | -31.45 | Peak           | 1.15           | 165            |                          |
| 3660.88          | 28.31  | V     | 54       | -25.69 | Avg            | 1.15           | 165            |                          |
| 4570.4           | 47.00  |       | 74       | 00.70  | DI-            | 4.05           | 405            |                          |
| 4576.1<br>4576.1 | 47.22  | V     | 74<br>54 | -26.78 | Peak           | 1.25           | 165<br>165     |                          |
| 45/6.1           | 34.23  | V     | 54       | -19.77 | Avg            | 1.25           | 165            |                          |
| 5491.32          |        |       |          |        |                |                |                | no emissions found       |
| 5491.32          |        |       |          |        |                |                |                | no emissions found       |
| 3481.32          |        |       |          |        |                |                |                |                          |
| 6406.54          |        |       |          |        |                |                |                | no emissions found       |
| 6406.54          |        |       |          |        |                |                |                | no emissions round       |
| 0100.01          |        |       |          |        |                |                |                |                          |
| 7321.76          |        |       |          |        |                |                |                | no emissions found       |
| 7321.76          |        |       |          |        |                |                |                |                          |
|                  |        |       |          |        |                |                |                |                          |
| 8236.98          |        |       |          |        |                |                |                | no emissions found       |
| 8236.98          |        |       |          |        |                |                |                |                          |
|                  |        |       |          |        |                |                |                |                          |
| 9152.2           |        |       |          |        |                |                |                | no emissions found       |
| 9152.2           |        |       |          |        |                |                |                |                          |
|                  |        |       |          |        |                |                |                |                          |
|                  |        |       |          |        |                |                |                |                          |

Page E13



FCC 15.247

Mojix, Inc.

Star 3000 System

Configuration #2 - eNode Side

Date: 09/24/2012

Labs: B and D

Tested By: Kyle Fujimoto

Middle Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.<br>(MHz)     | Level<br>(dBuV) | Pol<br>(v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                 |
|--------------------|-----------------|--------------|-------|--------|-----------------------|-----------------------|-------------------------|--------------------------|
| 915.22             |                 |              |       |        | -1                    |                       |                         | N/A - Done via Conducted |
| 1830.44            | 43.21           | Н            | -     |        | Peak                  | 1.25                  | 155                     | Not in Restricted Band   |
| 1830.44            | 27.81           | Н            |       |        | Avg                   | 1.25                  | 155                     | Not in Restricted Band   |
| 2745.66            | 45.15           | Н            | 74    | -28.85 | Peak                  | 1.35                  | 165                     |                          |
| 2745.66            | 34.22           | Н            | 54    | -19.78 | Avg                   | 1.35                  | 165                     |                          |
| 3660.88            | 40.48           | Н            | 74    | -33.52 | Peak                  | 1.25                  | 175                     |                          |
| 3660.88            | 28.39           | Н            | 54    | -25.61 | Avg                   | 1.25                  | 175                     |                          |
| 4576.1             | 45.97           | Н            | 74    | -28.03 | Peak                  | 1.35                  | 225                     |                          |
| 4576.1             | 34.24           | Н            | 54    | -19.76 | Avg                   | 1.35                  | 225                     |                          |
| 5491.32            |                 |              |       |        | 2                     |                       |                         | no emissions found       |
| 5491.32            |                 | 0            |       |        |                       |                       |                         |                          |
| 6406.54<br>6406.54 |                 | 3            |       | ·      |                       |                       |                         | no emissions found       |
| 7321.76            |                 | 8            |       |        | 2<br>2                |                       |                         | no emissions found       |
| 7321.76            |                 |              |       | ć .    | 2 6                   |                       |                         | no chiasions found       |
| 8236.98<br>8236.98 |                 |              |       |        |                       |                       |                         | no emissions found       |
| 0230.30            |                 |              |       |        |                       | 5                     |                         |                          |
| 9152.2<br>9152.2   |                 |              |       |        |                       |                       |                         | no emissions found       |
| 9132.2             |                 |              |       |        |                       |                       |                         |                          |
|                    |                 |              |       |        |                       |                       |                         |                          |





 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #2 - eNode Side Tested By: Kyle Fujimoto

High Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

|                    |        |       |       |        | Peak / | Ant.   | Table |                          |
|--------------------|--------|-------|-------|--------|--------|--------|-------|--------------------------|
| Freq.              | Level  | Pol   |       |        | QP /   | Height | Angle |                          |
| (MHz)              | (dBuV) | (v/h) | Limit | Margin | Avg    | (m)    | (deg) | Comments                 |
| 927.23             |        |       |       |        |        |        |       | N/A - Done via Conducted |
|                    |        |       |       |        |        |        |       |                          |
| 1854.46            | 49.81  | V     |       |        | Peak   | 1.25   | 155   | Not in Restricted Band   |
| 1854.46            | 42.05  | V     |       |        | Avg    | 1.25   | 155   | Not in Restricted Band   |
|                    |        |       |       |        |        |        |       |                          |
| 2781.69            | 49.32  | V     | 74    | -24.68 | Peak   | 1.15   | 165   |                          |
| 2781.69            | 40.66  | V     | 54    | -13.34 | Avg    | 1.15   | 165   |                          |
| 070000             | 44.07  |       | 7.    | 00.70  |        | 4.05   | 455   |                          |
| 3708.92            | 41.27  | V     | 74    | -32.73 | Peak   | 1.25   | 155   |                          |
| 3708.92            | 28.02  | V     | 54    | -25.98 | Avg    | 1.25   | 155   |                          |
| 4000 45            | 40.00  |       | 7.4   | 07.07  |        | 4.05   | 405   |                          |
| 4636.15            | 46.93  | V     | 74    | -27.07 | Peak   | 1.35   | 165   |                          |
| 4636.15            | 34.38  | V     | 54    | -19.62 | Avg    | 1.35   | 165   |                          |
| FF00 00            |        |       |       |        |        |        |       |                          |
| 5563.38<br>5563.38 |        |       |       |        |        |        |       | no emissions found       |
| 5503.38            |        |       |       |        |        |        |       |                          |
| 6490.61            |        |       |       |        |        |        |       | no emissions found       |
| 6490.61            |        |       |       |        |        |        |       | no emissions found       |
| 0430.01            |        |       |       |        |        |        |       |                          |
| 7417.84            |        |       |       |        |        |        |       | no emissions found       |
| 7417.84            |        |       |       |        |        |        |       | no cinissions touriu     |
| 7 1117.01          |        |       |       |        |        |        |       |                          |
| 8345.07            |        |       |       |        |        |        |       | no emissions found       |
| 8345.07            |        |       |       |        |        |        |       | omiociono round          |
|                    |        |       |       |        |        |        |       |                          |
| 9272.3             |        |       |       |        |        |        |       | no emissions found       |
| 9272.3             |        |       |       |        |        |        |       |                          |
|                    |        |       |       |        |        |        |       |                          |
|                    |        |       |       |        |        |        |       |                          |

Page E15



FCC 15.247

 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #2 - eNode Side Tested By: Kyle Fujimoto

High Channel

eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

|                    |        |       |       |          | Peak / | Ant.   | Table |                          |
|--------------------|--------|-------|-------|----------|--------|--------|-------|--------------------------|
| Freq.              | Level  | Pol   |       |          | QP /   | Height | Angle |                          |
| (MHz)              | (dBuV) | (v/h) | Limit | Margin   | Avg    | (m)    | (deg) | Comments                 |
| 927.36             |        |       |       |          |        |        |       | N/A - Done via Conducted |
|                    |        |       |       |          |        |        |       |                          |
| 1854.72            | 45.31  | Н     |       |          | Peak   | 1.25   | 165   | Not in Restricted Band   |
| 1854.72            | 39.73  | Н     |       |          | Avg    | 1.25   | 165   | Not in Restricted Band   |
|                    |        |       |       |          |        |        |       |                          |
| 2782.08            | 47.61  | Н     | 74    | -26.39   | Peak   | 1.25   | 155   |                          |
| 2782.08            | 37.18  | Н     | 54    | -16.82   | Avg    | 1.25   | 155   |                          |
|                    |        |       |       |          |        |        |       |                          |
| 3709.44            | 39.78  | Н     | 74    | -34.22   | Peak   | 1.35   | 165   |                          |
| 3709.44            | 28.03  | Н     | 54    | -25.97   | Avg    | 1.35   | 165   |                          |
|                    |        |       |       |          |        |        |       |                          |
| 4636.8             | 46.26  | Н     | 74    | -27.74   | Peak   | 1.25   | 175   |                          |
| 4636.8             | 34.25  | Н     | 54    | -19.75   | Avg    | 1.25   | 175   |                          |
|                    |        |       |       |          |        |        |       |                          |
| 5564.16            |        |       |       |          |        |        |       | no emissions found       |
| 5564.16            |        |       |       |          |        |        |       |                          |
|                    |        |       |       |          |        |        |       |                          |
| 6491.52            |        |       |       |          |        |        |       | no emissions found       |
| 6491.52            |        |       |       |          |        |        |       |                          |
| 7440.00            |        |       |       |          |        |        |       |                          |
| 7418.88            |        |       |       |          |        |        |       | no emissions found       |
| 7418.88            |        |       |       |          |        |        |       |                          |
| 0246.24            |        |       |       |          |        |        |       | and and allowed found    |
| 8346.24<br>8346.24 |        |       |       |          |        |        |       | no emissions found       |
| 0340.24            |        |       |       |          |        |        |       |                          |
| 9273.6             |        |       |       | $\vdash$ |        |        |       | no emission found        |
| 9273.6             |        |       |       |          |        |        |       | no emission found        |
| 3213.0             |        |       |       |          |        |        |       |                          |
|                    |        |       |       |          |        |        |       |                          |
|                    |        |       |       |          |        |        |       |                          |

Page E16



FCC 15.247

 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #2 - eNode Side Tested By: Kyle Fujimoto

1 GHz to 9.3 GHz - Vertical and Horizontal Polarizations eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W)

| F     | Laval  | Del   |       |              | Peak /<br>QP / | Ant.   | Table        |                               |
|-------|--------|-------|-------|--------------|----------------|--------|--------------|-------------------------------|
| Freq. | Level  | Pol   |       |              |                | Height | Angle        | <b>2</b> 00202000000          |
| (MHz) | (dBuV) | (v/h) | Limit | Margin       | Avg            | (m)    | (deg)        | Comments                      |
|       |        |       |       |              |                |        |              |                               |
|       | S      |       |       |              |                |        |              | No Emissions                  |
|       |        |       |       |              |                |        |              | Detected from the Receive     |
|       |        |       |       |              |                |        |              | Mode from 1 GHz to 9.3 GHz    |
|       |        |       |       |              |                |        |              |                               |
|       | 3      |       |       |              | 2              |        |              | No Emissions Detected         |
|       |        |       |       |              |                |        |              | from the Digital Portion from |
|       |        |       |       |              |                |        |              | 1 GHz to 9.3 GHz              |
|       |        |       |       |              |                |        |              |                               |
|       |        |       |       |              |                |        |              | No Emissions Detected for     |
|       |        |       |       |              |                |        |              | the Non-Harmonic Tx           |
|       |        |       |       |              |                |        |              | Emissions from                |
|       |        |       |       |              |                |        |              | 1 GHz to 9.3 GHz              |
|       |        |       |       | 3            |                |        |              |                               |
|       |        |       |       |              |                |        |              |                               |
| -     |        |       |       |              |                |        |              |                               |
| - 2   |        |       |       | 9            | >              |        |              |                               |
|       |        |       |       | ÷            |                |        |              |                               |
|       |        |       |       |              |                |        |              |                               |
| - 8   |        |       |       |              |                |        |              |                               |
|       | 7.     |       |       | i i          |                |        | <del>-</del> |                               |
|       |        |       |       |              |                |        | 3 /0         |                               |
|       |        |       |       |              |                |        |              |                               |
| -     | -      |       |       | <del>)</del> |                |        | <del>-</del> |                               |
|       |        |       |       |              |                |        |              |                               |
|       |        |       |       | - 3          |                |        |              |                               |
| -     |        |       |       |              |                |        |              |                               |
|       |        |       |       | 8            | ř              |        | S //         |                               |
|       |        |       |       | 3            |                | 3      |              |                               |
|       | -      |       |       | <del>)</del> |                |        | <del>.</del> |                               |
|       |        |       |       | 8 %          | ř              |        | S 10         |                               |
|       |        |       |       |              |                |        |              |                               |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #3 - eNode Side Tested By: Kyle Fujimoto

Low Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.<br>(MHz) | Level<br>(dBuV) | Pol<br>(v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                 |
|----------------|-----------------|--------------|-------|--------|-----------------------|-----------------------|-------------------------|--------------------------|
| 902.73         |                 |              |       | 3 1    |                       |                       | 5 5                     | N/A - Done via Conducted |
| 1805.46        | 44.5            | ٧            |       |        | Peak                  | 1.15                  | 180                     | Not in Restricted Band   |
| 1805.46        | 32.58           | ٧            |       | 1770   | Avg                   | 1.15                  | 180                     | Not in Restricted Band   |
| 2708.19        | 48.54           | ٧            | 74    | -25.46 | Peak                  | 1.65                  | 155                     |                          |
| 2708.19        | 40.69           | V            | 54    | -13.31 | Avg                   | 1.65                  | 155                     | 5                        |
| 3610.92        | 41.69           | V            | 74    | -32.31 | Peak                  | 1.75                  | 145                     |                          |
| 3610.92        | 29.58           | ٧            | 54    | -24.42 | Avg                   | 1.75                  | 145                     | g .                      |
| 4513.65        | 47.59           | V            | 74    | -26.41 | Peak                  | 1.25                  | 155                     |                          |
| 4513.65        | 35.69           | ٧            | 54    | -18.31 | Avg                   | 1.25                  | 155                     |                          |
| 5416.38        | 7               | - 8          |       |        |                       |                       | 20                      | no emissions found       |
| 5416.38        | 1               |              |       | 23     |                       |                       |                         |                          |
| 6319.11        |                 |              |       | - X    |                       |                       |                         | no emissions found       |
| 6319.11        |                 |              |       |        |                       |                       |                         |                          |
| 7221.84        |                 |              |       |        |                       |                       | 2                       | no emissions found       |
| 7221.84        |                 |              |       |        |                       |                       |                         |                          |
| 8124.57        |                 |              |       |        |                       |                       |                         | no emissions found       |
| 8124.57        |                 |              |       |        |                       |                       |                         |                          |
| 9027.3         |                 |              |       |        |                       |                       |                         | no emissions found       |
| 9027.3         |                 |              | C :   | FE2 4  |                       |                       | 5                       | 7                        |
|                |                 |              |       |        |                       |                       |                         | 7                        |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #3 - eNode Side Tested By: Kyle Fujimoto

Low Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.<br>(MHz)     | Level<br>(dBuV) | Pol<br>(v/h) | Limit | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                           |
|--------------------|-----------------|--------------|-------|--------|-----------------------|-----------------------|-------------------------|------------------------------------|
| 902.73             |                 |              | 2 2   |        |                       |                       |                         | N/A - Done via Conducted           |
| 1805.46            | 44.91           | Н            |       | -      | Peak                  | 1.25                  | 155                     | Not in Restricted Band             |
| 1805.46            | 37.26           | Н            |       | _      | Avg                   | 1.25                  | 155                     | Not in Restricted Band             |
| 2708.19            | 47.12           | Н            | 74    | -26.88 | Peak                  | 1.35                  | 165                     |                                    |
| 2708.19            | 33.09           | Н            | 54    | -20.91 | Avg                   | 1.35                  | 165                     | <u> </u>                           |
| 3610.92            | 40.37           | Н            | 74    | -33.63 | Peak                  | 1.25                  | 155                     |                                    |
| 3610.92            | 28.17           | Н            | 54    | -25.83 | Avg                   | 1.25                  | 155                     |                                    |
| 4513.65            | 46.69           | Н            | 74    | -27.31 | Peak                  | 1.35                  | 165                     |                                    |
| 4513.65            | 34.29           | Н            | 54    | -19.71 | Avg                   | 1.35                  | 165                     |                                    |
| 5416.38            |                 |              |       |        |                       |                       |                         | no emissions found                 |
| 5416.38            |                 |              |       |        | 8                     |                       |                         |                                    |
| 6319.11            |                 |              |       |        |                       |                       | 9                       | no emissions found                 |
| 6319.11            |                 |              |       | 2 2    |                       |                       |                         | E - Marie E - E 1102 E - Marie - M |
| 7221.84<br>7221.84 |                 |              |       |        | 3                     |                       |                         | no emissions found                 |
| 1221.04            |                 |              | 3     |        |                       |                       | - 6                     |                                    |
| 8124.57<br>8124.57 |                 |              |       |        |                       |                       | - 3                     | no emissions found                 |
|                    |                 |              | 2 2   |        |                       |                       | 2.                      |                                    |
| 9027.3             |                 |              |       |        |                       |                       |                         | no emissions found                 |
| 5021.0             |                 |              |       |        |                       |                       | - S                     |                                    |
|                    |                 |              |       |        |                       |                       |                         |                                    |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #3 - eNode Side Tested By: Kyle Fujimoto

Middle Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.<br>(MHz)     | Level<br>(dBuV) | Pol<br>(v/h)          | Limit    | Margin           | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                                         |
|--------------------|-----------------|-----------------------|----------|------------------|-----------------------|-----------------------|-------------------------|--------------------------------------------------|
| 915.22             | 5               |                       |          | g 5              |                       | 2                     |                         | N/A - Done via Conducted                         |
| 1830.44<br>1830.44 | 42.87<br>34.82  | V                     | -        | -                | Peak<br>Avg           | 1.25<br>1.25          | 155<br>155              | Not in Restricted Band<br>Not in Restricted Band |
| 2745.66<br>2745.66 | 50.81<br>44.76  | <b>&gt; &gt; &gt;</b> | 74<br>54 | -23.19<br>-9.24  | Peak<br>Avg           | 1.35<br>1.35          | 135<br>135              |                                                  |
| 3660.88<br>3660.88 | 41.33<br>28.58  | V                     | 74<br>54 | -32.67<br>-25.42 | Peak<br>Avg           | 1.25<br>1.25          | 165<br>165              |                                                  |
| 4576.1<br>4576.1   | 48.11<br>35.52  | V                     | 74<br>54 | -25.89<br>-18.48 | Peak<br>Avg           | 1.15<br>1.15          | 155<br>155              |                                                  |
| 5491.32<br>5491.32 | = 4             |                       |          |                  |                       | \$<br>\$              |                         | no emissions found                               |
| 6406.54<br>6406.54 |                 |                       |          |                  |                       | 2                     |                         | no emissions found                               |
| 7321.76<br>7321.76 |                 |                       |          |                  |                       |                       |                         | no emissions found                               |
| 8236.98<br>8236.98 |                 |                       |          |                  |                       |                       |                         | no emissions found                               |
| 9152.2<br>9152.2   |                 |                       |          |                  |                       |                       |                         | no emissions found                               |
| ) E.               | .= S            |                       |          |                  |                       |                       |                         | ÷.                                               |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #3 - eNode Side Tested By: Kyle Fujimoto

Middle Channel

eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.<br>(MHz)     | Level<br>(dBuV) | Pol<br>(v/h) | Limit    | Margin           | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg)                 | Comments                 |
|--------------------|-----------------|--------------|----------|------------------|-----------------------|-----------------------|-----------------------------------------|--------------------------|
| 915.22             |                 |              |          |                  |                       |                       |                                         | N/A - Done via Conducted |
| 1830.44            | 45.26           | Н            |          | -                | Peak                  | 1.25                  | 155                                     | Not in Restricted Band   |
| 1830.44            | 33.98           | Н            |          | -                | Avg                   | 1.25                  | 155                                     | Not in Restricted Band   |
| 2745.66<br>2745.66 | 49.44<br>41.77  | H            | 74<br>54 | -24.56<br>-12.23 | Peak<br>Avg           | 1.35                  | 145<br>145                              |                          |
| 3660.88<br>3660.88 | 40.62<br>28.46  | H            | 74<br>54 | -33.38<br>-25.54 | Peak                  | 1.25<br>1.25          | 155<br>155                              |                          |
|                    |                 |              |          |                  | Avg                   | 1                     | 100000                                  |                          |
| 4576.1             | 46.61           | Н            | 74       | -27.39           | Peak                  | 1.35                  | 145                                     |                          |
| 4576.1             | 34.28           | Н            | 54       | -19.72           | Avg                   | 1.35                  | 145                                     | 2                        |
| 5491.32<br>5491.32 | *               |              |          |                  |                       |                       | ) = ==================================  | no emissions found       |
| 6406.54            |                 |              |          |                  |                       |                       | 5 E                                     | no emissions found       |
| 6406.54            |                 |              |          |                  |                       |                       |                                         | no emissions found       |
| 7321.76<br>7321.76 |                 |              |          |                  |                       |                       |                                         | no emissions found       |
| 8236.98<br>8236.98 |                 |              |          |                  |                       |                       | ) = = = = = = = = = = = = = = = = = = = | no emissions found       |
| 9152.2             |                 |              |          |                  |                       |                       |                                         | no emissions found       |
| 9152.2             |                 |              |          |                  |                       |                       |                                         |                          |
|                    |                 |              |          |                  |                       |                       |                                         |                          |

Page E21



FCC 15.247

 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #3 - eNode Side Tested By: Kyle Fujimoto

High Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| Freq.<br>(MHz)     | Level<br>(dBuV) | Pol<br>(v/h) | Limit    | Margin           | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                                         |
|--------------------|-----------------|--------------|----------|------------------|-----------------------|-----------------------|-------------------------|--------------------------------------------------|
| 927.23             |                 |              |          |                  |                       |                       |                         | N/A - Done via Conducted                         |
| 1854.46<br>1854.46 | 44.04<br>32.64  | V            |          | -                | Peak<br>Avg           | 1.25<br>1.25          | 155<br>155              | Not in Restricted Band<br>Not in Restricted Band |
| 2781.69<br>2781.69 | 50.35<br>40.98  | V            | 74<br>54 | -23.65<br>-13.02 | Peak<br>Avg           | 1.35<br>1.35          | 145<br>145              | 111111 11111                                     |
| 3708.92<br>3708.92 | 41.31<br>29.01  | V            | 74<br>54 | -32.69<br>-24.99 | Peak<br>Avg           | 1.25<br>1.25          | 155<br>155              |                                                  |
| 4636.15<br>4636.15 | 49.66<br>36.54  | V            | 74<br>54 | -24.34<br>-17.46 | Peak<br>Avg           | 1.35<br>1.35          | 145<br>145              |                                                  |
| 5563.38<br>5563.38 |                 |              |          |                  |                       |                       |                         | no emissions found                               |
| 6490.61<br>6490.61 |                 |              |          |                  |                       |                       |                         | no emissions found                               |
| 7417.84<br>7417.84 |                 |              |          |                  |                       |                       |                         | no emissions found                               |
| 8345.07<br>8345.07 |                 |              | 2        |                  |                       |                       | -                       | no emissions found                               |
| 9272.3<br>9272.3   |                 |              |          |                  |                       |                       |                         | no emissions found                               |
|                    |                 |              |          |                  |                       |                       |                         |                                                  |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #3 - eNode Side Tested By: Kyle Fujimoto

High Channel eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W) Transmit Mode

| _              |                 | <u>.</u> .   |       |        | Peak /      | Ant.          | Table          |                          |
|----------------|-----------------|--------------|-------|--------|-------------|---------------|----------------|--------------------------|
| Freq.<br>(MHz) | Level<br>(dBuV) | Pol<br>(v/h) | Limit | Margin | QP /<br>Avg | Height<br>(m) | Angle<br>(deg) | Comments                 |
| 927.36         | (/              | (1117)       |       |        |             | (223)         | (==0)          | N/A - Done via Conducted |
|                |                 |              |       |        |             |               |                |                          |
| 1854.72        | 58.23           | Н            |       |        | Peak        | 1.25          | 155            | Not in Restricted Band   |
| 1854.72        | 54.93           | Н            |       |        | Avg         | 1.25          | 155            | Not in Restricted Band   |
|                |                 |              |       |        |             |               |                |                          |
| 2782.08        | 56.35           | Н            | 74    | -17.65 | Peak        | 1.35          | 155            |                          |
| 2782.08        | 53.69           | Н            | 54    | -0.31  | Avg         | 1.35          | 155            |                          |
|                |                 |              |       |        |             |               |                |                          |
| 3709.44        | 50.71           | Н            | 74    | -23.29 | Peak        | 1.25          | 165            |                          |
| 3709.44        | 43.91           | Н            | 54    | -10.09 | Avg         | 1.25          | 165            |                          |
| 4636.8         | 50.86           | Н            | 74    | -23.14 | Peak        | 1.35          | 175            |                          |
| 4636.8         | 37.12           | H            | 54    | -23.14 | Avg         | 1.35          | 175            |                          |
| 4030.0         | 31.12           | П            | 34    | -10.00 | Avg         | 1.33          | 175            |                          |
| 5564.16        |                 |              |       |        |             |               |                | no emissions found       |
| 5564.16        |                 |              |       |        |             |               |                | no cinissions round      |
|                |                 |              |       |        |             |               |                |                          |
| 6491.52        |                 |              |       |        |             |               |                | no emissions found       |
| 6491.52        |                 |              |       |        |             |               |                |                          |
|                |                 |              |       |        |             |               |                |                          |
| 7418.88        |                 |              |       |        |             |               |                | no emissions found       |
| 7418.88        |                 |              |       |        |             |               |                |                          |
|                |                 |              |       |        |             |               |                |                          |
| 8346.24        |                 |              |       |        |             |               |                | no emissions found       |
| 8346.24        |                 |              |       |        |             |               |                |                          |
| 0070.0         |                 |              |       |        |             |               |                |                          |
| 9273.6         |                 |              |       |        |             |               |                | no emission found        |
| 9273.6         |                 |              |       |        |             |               |                |                          |
|                |                 |              |       |        |             |               |                |                          |
|                |                 |              |       |        |             |               |                |                          |

Page E23



FCC 15.249 and FCC Class B

Mojix, Inc.

Star 3000 System

Configuration #3 - eNode Side

Date: 09/24/2012

Labs: B and D

Tested By: Kyle Fujimoto

1 GHz to 9.3 GHz - Vertical and Horizontal Polarizations eNode 3000 (ENM-3004-F), GPIO 3000 (GPO-3008-W), RF eXpander (EXP-3004-W)

|       |        | 100 400 100 800 |                |        | Peak /                                | Ant.   | Table |                               |
|-------|--------|-----------------|----------------|--------|---------------------------------------|--------|-------|-------------------------------|
| Freq. | Level  | Pol             | Autorea garris | 5000   | QP/                                   | Height | Angle |                               |
| (MHz) | (dBuV) | (v/h)           | Limit          | Margin | Avg                                   | (m)    | (deg) | Comments                      |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        | S 50                                  | 2      |       | No Emissions                  |
|       |        |                 |                |        |                                       |        |       | Detected from the Receive     |
|       |        |                 |                |        |                                       |        |       | Mode from 1 GHz to 9.3 GHz    |
|       |        |                 |                |        | <u> </u>                              |        |       | No Emissions Detected         |
|       |        |                 |                |        | , ,                                   |        |       | from the Digital Portion from |
|       |        |                 |                |        |                                       |        |       | 1 GHz to 9.3 GHz              |
|       |        |                 |                |        | ·                                     |        |       | No Emissions Detected for     |
|       |        |                 |                |        |                                       |        |       | the Non-Harmonic Tx           |
|       |        | 5               |                |        | S 5                                   | -      |       | Emissions from                |
|       |        |                 |                |        | 8                                     |        | 2     | 1 GHz to 9.3 GHz              |
|       | -      |                 |                |        | · · · · · · · · · · · · · · · · · · · | i.     |       | 1 GHZ 10 9.3 GHZ              |
|       |        |                 |                |        |                                       |        | 3     |                               |
|       |        |                 |                |        | 3                                     |        |       |                               |
|       |        |                 |                |        |                                       | 2      |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       | 2      |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       | 2      |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                | -      |                                       | 2      |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |
|       |        |                 |                |        |                                       |        |       |                               |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #1 - Star 3000 Side Tested By: Kyle Fujimoto

Configuration #1 -- Star 3000 Side - Frequency Hopping Mode - 1 GHz to 9.3 GHz Star 3000 (STAR-3000-F), eMux 3000 with Indoor Power Supply (EMX-3004-WO)

| Freq.   | Level<br>(dBuV) | Pol<br>(v/h) | Limit    | Margin | Peak /<br>QP /<br>Avg | Ant.<br>Height<br>(m) | Table<br>Angle<br>(deg) | Comments                      |
|---------|-----------------|--------------|----------|--------|-----------------------|-----------------------|-------------------------|-------------------------------|
| 1805.55 | 63.3            | V            | 74       | -10.7  | Peak                  | 1.25                  | 155                     |                               |
| 1805.6  | 43.3            | v            | 54       | -10.7  | Avg                   | 1.25                  | 155                     |                               |
| 1000.0  | 10.0            |              | 01       | 10.1   | 7119                  | 1.20                  | 100                     |                               |
| 1823.58 | 68.57           | ٧            | 74       | -5.43  | Peak                  | 1.25                  | 155                     |                               |
| 1823.57 | 48.57           | V            | 54       | -5.43  | Avg                   | 1.25                  | 155                     |                               |
|         | 7               |              |          |        | -                     | 3000000               | 1000                    |                               |
| 1850.44 | 59.04           | V            | 74       | -14.96 | Peak                  | 1.25                  | 155                     |                               |
| 1850.44 | 39.04           | ٧            | 54       | -14.96 | Avg                   | 1.25                  | 155                     |                               |
|         |                 | 1111         |          |        |                       |                       |                         |                               |
| 1852.31 | 56.68           | V            | 74       | -17.32 | Peak                  | 1.25                  | 155                     |                               |
| 1852.31 | 36.68           | ٧            | 54       | -17.32 | Avg                   | 1.25                  | 155                     |                               |
|         |                 |              |          |        |                       |                       |                         |                               |
| 1805.55 | 64.29           | Н            | 74       | -9.71  | Peak                  | 1                     | 225                     |                               |
| 1805.6  | 44.29           | Н            | 54       | -9.71  | Avg                   | 1                     | 225                     |                               |
| 1000 50 |                 |              |          |        |                       |                       | 4==                     |                               |
| 1823.58 | 68.02           | Н            | 74       | -5.98  | Peak                  | 1.25                  | 155                     |                               |
| 1823.57 | 48.02           | Н            | 54       | -5.98  | Avg                   | 1.25                  | 155                     |                               |
| 1850.44 | 63.31           | TT.          | 74       | -10.69 | Deel                  | 4.45                  | 445                     | `                             |
| 1850.44 | 43.31           | H            | 74<br>54 | -10.69 | Peak                  | 1.15<br>1.15          | 145<br>145              | >                             |
| 1000.44 | 43.31           | П            | 34       | -10.09 | Avg                   | 1.10                  | 140                     | ,                             |
| 1852.31 | 56.82           | Н            | 74       | -17.18 | Peak                  | 1.25                  | 155                     |                               |
| 1852.31 | 36.82           | H            | 54       | -17.18 | Avg                   | 1.25                  | 155                     |                               |
| 1002.01 | 00.02           | 1.1          | 01       | -17.10 | Avg                   | 1.20                  | 100                     | -                             |
|         |                 |              |          |        |                       |                       |                         | Note: No Additional Emissions |
|         |                 |              |          |        |                       |                       |                         | Detected from 1 GHz to        |
|         | 9               |              |          |        |                       |                       |                         | 9.3 GHz from the EUT          |
|         |                 |              |          |        |                       |                       |                         |                               |
|         |                 |              |          |        |                       |                       |                         |                               |
|         |                 |              |          |        | 0.00                  |                       |                         |                               |



 Mojix, Inc.
 Date: 09/24/2012

 Star 3000 System
 Labs: B and D

Configuration #2 - Star 3000 Side Tested By: Kyle Fujimoto

Configuration #2 - Star 3000 Side - Frequency Hopping Mode - 1 GHz to 9.3 GHz Star 3000 (STAR-3000-F), eMux 3000 with Outdoor P/S (EMX-3004-WO)

| _       |        |        |       | r -    |        |        |       |                               |
|---------|--------|--------|-------|--------|--------|--------|-------|-------------------------------|
| 25785   | B B    | 350 33 |       |        | Peak / | Ant.   | Table |                               |
| Freq.   | Level  | Pol    | 910   |        | QP/    | Height | Angle | 100                           |
| (MHz)   | (dBuV) | (v/h)  | Limit | Margin | Avg    | (m)    | (deg) | Comments                      |
| 1805.55 | 66.5   | V      | 74    | -7.5   | Peak   | 1.25   | 155   |                               |
| 1805.6  | 46.5   | V      | 54    | -7.5   | Avg    | 1.25   | 155   |                               |
|         |        |        |       |        |        |        |       |                               |
| 1823.58 | 64.73  | V      | 74    | -9.27  | Peak   | 1.25   | 155   |                               |
| 1823.57 | 44.73  | V      | 54    | -9.27  | Avg    | 1.25   | 155   |                               |
|         |        |        |       |        |        |        | 3     |                               |
| 1850.44 | 64.13  | V      | 74    | -9.87  | Peak   | 1.25   | 155   |                               |
| 1850.44 | 44.13  | V      | 54    | -9.87  | Avg    | 1.25   | 155   |                               |
|         |        |        |       |        |        |        |       |                               |
| 1852.31 | 57.97  | V      | 74    | -16.03 | Peak   | 1.25   | 155   |                               |
| 1852.31 | 37.97  | V      | 54    | -16.03 | Avg    | 1.25   | 155   |                               |
|         |        |        |       |        |        |        |       |                               |
| 1805.55 | 67.21  | Н      | 74    | -6.79  | Peak   | 1      | 225   |                               |
| 1805.6  | 47.21  | Н      | 54    | -6.79  | Avg    | 1      | 225   |                               |
|         |        |        |       |        |        |        |       |                               |
| 1823.58 | 63.84  | Н      | 74    | -10.16 | Peak   | 1.25   | 155   |                               |
| 1823.57 | 43.84  | Н      | 54    | -10.16 | Avg    | 1.25   | 155   |                               |
|         |        |        |       |        |        |        |       |                               |
| 1850.44 | 60.79  | Н      | 74    | -13.21 | Peak   | 1.15   | 145   |                               |
| 1850.44 | 40.79  | Н      | 54    | -13.21 | Avg    | 1.15   | 145   |                               |
|         |        |        |       |        |        |        |       |                               |
| 1852.31 | 60.79  | Н      | 74    | -13.21 | Peak   | 1.25   | 155   |                               |
| 1852.31 | 40.79  | Н      | 54    | -13.21 | Avg    | 1.25   | 155   |                               |
|         |        |        |       |        |        |        |       |                               |
|         | ·      |        |       | · ·    |        |        |       | Note: No Additional Emissions |
|         |        |        |       |        |        |        |       | Detected from 1 GHz to        |
| 3       |        |        |       |        |        |        |       | 9.3 GHz from the EUT          |
|         |        |        |       |        |        |        |       |                               |
|         |        |        |       |        |        |        |       |                               |
|         |        |        |       |        |        |        |       |                               |

Test Location : Compatible Electronics Page : 1/2

 Customer
 : Mojix Inc.
 Date : 9/17/2012

 Manufacturer
 : Mojix Inc.
 Time : 14:32:15

Eut name : Star 3000 System Lab : D

Model : See Section 5.1 of Test Report Test Distance : 10 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class A

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class A

eMux 3000 with Indoor P/S and Star 3000 on Turntable

Configuration #1 - 30 MHz to 1 GHz

| Pol        | Freq                 | Rdng           | Cable<br>loss | Ant<br>factor  | Amp            | Cor'd<br>rdg = R | Limit<br>= L   | Delta<br>R-L             |
|------------|----------------------|----------------|---------------|----------------|----------------|------------------|----------------|--------------------------|
|            | MHz                  | dBuV           | dB            | dB             | dB             | dBuV             | dBuV/m         | dB                       |
| 1V         | 36.845               | 57.70          | 1.31          | 11.47          | 38.53          | 31.95            | 39.10          | -7.15                    |
| 2V         | 39.040               | 49.10          | 1.37          | 11.77          | 38.53          | 23.72            | 39.10          | -15.38                   |
| 3V         | 58.616               | 60.00          | 1.40          | 10.44          | 38.54          | 33.30            | 39.10          | -5.80                    |
| 4V<br>5V   | 62.516<br>62.516     | 64.60<br>62.10 | 1.45          | 9.58           | 38.54<br>38.54 | 37.09<br>34.59   | 39.10<br>39.10 | -2.01<br>-4.51           |
| 5 V        | 02.510               | 02.10          | 1.45          | 9.50           | 30.34          | 34.33            | 39.10          | -4.51                    |
| 6V         | 78.108               | 60.20          | 1.68          | 6.04           | 38.54          | 29.38            | 39.10          | -9.72                    |
| 7H         | 78.123               | 45.70          | 1.68          | 6.04           | 38.54          | 14.88            | 39.10          | -24.22                   |
| 8V<br>9V   | 117.206<br>125.012   | 59.30<br>64.30 | 1.87          | 12.88          | 38.52<br>38.51 | 35.53<br>40.99   | 43.50          | -7.97<br>-2.51           |
| 10V        | 125.012<br>125.012Qp | 63.64          | 1.90          | 13.30          | 38.51          | 40.33            | 43.50          | -3.17                    |
| 100        | 123.01202            | 05.01          | 1.50          | 13.50          | 30.31          |                  |                | 3.17                     |
| 11H        | 125.017              | 59.30          | 1.90          | 13.30          | 38.51          | 35.99            |                | -7.51                    |
| 12V        | 132.826              | 54.60          | 2.00          | 12.39          | 38.48          | 30.51            | 43.50          | -12.99                   |
| 13V        | 136.724              | 61.70          | 2.05          | 11.96          | 38.47          | 37.23            | 43.50          | -6.27                    |
| 14V<br>15H | 156.242<br>156.269   | 61.70<br>56.00 | 2.23          | 12.37<br>12.37 | 38.46<br>38.46 | 37.83<br>32.13   | 43.50          | -5.67<br>-11.37          |
| ISH        | 150.209              | 56.00          | 4.43          | 12.37          | 30.40          | 32.13            | 43.50          | -11.37                   |
| 16V        | 187.520              | 64.30          | 2.40          | 15.74          | 38.53          | 43.91            | 43.50          | 0.41                     |
| 17V        | 187.522Qp            | 61.27          | 2.40          | 15.74          | 38.53          | 40.88            | 43.50          | -2.62                    |
| 18H        | 195.289              | 38.30          | 2.46          | 15.78          | 38.51          | 18.03            | 43.50          | -25.47                   |
| 19V<br>20V | 195.347<br>249.991   | 54.00<br>55.90 | 2.46          | 15.78<br>14.80 | 38.51<br>38.57 | 33.73<br>34.93   | 43.50          | -9.77<br>- <b>11.4</b> 7 |
| 200        | 249.991              | 55.90          | 2.80          | 14.80          | 30.57          | 34.93            | 46.40          | -11.4/                   |
| 21H        | 249.995              | 50.70          | 2.80          | 14.80          | 38.57          | 29.73            | 46.40          | -16.67                   |
| 22V        | 250.032              | 53.20          | 2.80          | 14.80          | 38.57          | 32.23            | 46.40          | -14.17                   |
| 23V        | 258.286              | 62.00          | 2.83          | 15.69          | 38.53          | 42.00            | 46.40          | -4.40                    |
| 24V        | 275.438              | 44.30<br>67.00 | 2.90          | 17.46          | 38.45          | 26.21            | 46.40          | -20.19                   |
| 25V        | 312.514              | 67.00          | 3.13          | 13.05          | 38.46          | 44.72            | 46.40          | -1.68                    |
| 26H        | 312.516              | 65.90          | 3.13          | 13.05          | 38.46          | 43.62            | 46.40          | -2.78                    |
| 27H        | 312.516Qp            | 63.18          | 3.13          | 13.05          | 38.46          | 40.90            | 46.40          | -5.50                    |
| 28V        | 312.522Qp            | 66.90          | 3.13          | 13.05          | 38.46          | 44.62            | 46.40          | -1.78                    |
| 29V        | 336.018              | 52.40          | 3.17          | 13.15          | 38.46          | 30.26            | 46.40          | -16.14                   |
| 30H        | 336.038              | 50.80          | 3.17          | 13.15          | 38.46          | 28.66            | 46.40          | -17.74                   |
| 31H        | 350.000              | 41.20          | 3.20          | 13.20          | 38.47          | 19.13            | 46.40          | -27.27                   |
| 32H        | 366.663              | 47.70          | 3.37          | 13.65          | 38.43          | 26.30            | 46.40          | -20.10                   |
| 33V        | 374.998              | 67.20          | 3.46          | 13.87          | 38.41          | 46.12            | 46.40          | -0.28                    |
| 34V<br>35H | 375.001Qp<br>375.003 | 65.52<br>63.90 | 3.46          | 13.87<br>13.87 | 38.41<br>38.41 | 44.44            | 46.40          | -1.96                    |
| SOH        | 3/5.003              | 63.90          | 3.46          | 13.87          | 30.41          | 42.82            | 46.40          | -3.58                    |



**Test Location :** Compatible Electronics **Page:** 2/2

Customer : Mojix Inc.
Manufacturer : Mojix Inc. **Date:** 9/17/2012 Time : 14:32:15

Eut name Lab: D : Star 3000 System

Mode1 

Serial # : See Section 5.1 of Test Report

Specification : FCC Class A

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class A

eMux 3000 with Indoor P/S and Star 3000 on Turntable

Configuration #1 - 30 MHz to 1 GHz

| Pol | Freq<br>MHz | Rdng<br>dBuV | Cable<br>loss<br>dB | Ant<br>factor<br>dB | Amp<br>gain<br>dB | Cor'd<br>rdg = R<br>dBuV | Limit<br>= L<br>dBuV/m | Delta<br>R-L<br>dB |
|-----|-------------|--------------|---------------------|---------------------|-------------------|--------------------------|------------------------|--------------------|
| 36H | 462.768     | 40.30        | 3.81                | 15.51               | 38.13             | 21.48                    | 46.40                  | -24.92             |
| 37V | 462.806     | 47.30        | 3.81                | 15.51               | 38.13             | 28.48                    | 46.40                  | -17.92             |
| 38V | 500.110     | 40.70        | 4.10                | 15.80               | 38.31             | 22.29                    | 46.40                  | -24.11             |



Test Location : Compatible Electronics Page : 1/1

**Date:** 9/18/2012 Customer : Mojix, Inc. Manufacturer : Mojix, Inc. Time : 8:42:25 Lab : D

Eut name : Star 3000 System

Mode1 : See Section 5.1 of Test Report **Test Distance** : 10 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class A

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class A

eMux 3000 with Outdoor P/S and Star 3000 on Turntable

Configuration #2 - 30 MHz to 1 GHz

| Pol        | Freq               | Rdng           | Cable<br>loss | Ant<br>factor  | Amp            | Cor'd rdg = R  |                | Delta<br>R-L     |
|------------|--------------------|----------------|---------------|----------------|----------------|----------------|----------------|------------------|
|            | MHz                | dBuV           | dB            | dB             | dB             | dBuV           | dBuV/m         | dB               |
| 1V         | 36.845             | 57.40          | 1.31          | 11.47          | 38.53          | 31.65          | 39.10          | -7.45            |
| 2V         | 39.062             | 51.10          | 1.38          | 11.78          | 38.53          | 25.72          | 39.10          | -13.38           |
| 3 V<br>4 V | 58.584<br>62.493   | 57.70<br>63.90 | 1.40          | 10.44<br>9.59  | 38.54<br>38.54 | 31.00<br>36.40 | 39.10<br>39.10 | -8.10<br>-2.70   |
| 5V         | 62.494Qp           | 62.96          | 1.45          | 9.59           | 38.54          | 35.46          | 39.10          | -3.64            |
| 6H         | 78.113             | 45.60          | 1.68          | 6.04           | 38.54          | 14.78          | 39.10          | -24.32           |
| 7V         | 78.146             | 62.10          | 1.68          | 6.03           | 38.54          | 31.28          | 39.10          | -7.82            |
| 8V<br>9H   | 117.174<br>124.973 | 55.00<br>51.00 | 1.87          | 12.87<br>13.30 | 38.52<br>38.51 | 31.23<br>27.69 | 43.50          | -12.27<br>-15.81 |
| 10V        | 125.029            | 48.40          | 1.90          | 13.30          | 38.51          | 25.09          | 43.50          | -18.41           |
| 11V        | 132.806            | 49.80          | 2.00          | 12.39          | 38.48          | 25.71          | 43.50          | -17.79           |
| 12V        | 136.726            | 67.70          | 2.05          | 11.95          | 38.47          |                | 43.50          |                  |
| 13V        | 136.731Qp          | 63.42          | 2.05          | 11.95          | 38.47          | 38.95          | 43.50          | -4.55            |
| 14H<br>15V | 156.225<br>156.240 | 60.40          | 2.23          | 12.37<br>12.37 | 38.46<br>38.46 | 36.53<br>39.13 | 43.50          | -6.97<br>-4.37   |
| 134        | 150.240            | 63.00          | 2.23          | 12.57          | 30.40          | 39.13          | 43.50          |                  |
| 16V        | 187.514            | 58.90          | 2.40          | 15.74          | 38.53          | 38.51          | 43.50          | -4.99            |
| 17H        | 195.329            | 47.90          | 2.46          | 15.78          | 38.51          | 27.63          | 43.50          | -15.87           |
| 18V<br>19V | 195.341<br>249.998 | 56.30<br>55.20 | 2.46          | 15.78<br>14.80 | 38.51<br>38.57 | 36.03<br>34.23 | 43.50          | -7.47<br>-12.17  |
| 20H        | 250.018            | 51.60          | 2.80          | 14.80          | 38.57          | 30.63          | 46.40          | -15.77           |
|            |                    |                |               |                |                |                |                |                  |
| 21V        | 258.332            | 37.40          | 2.83          | 15.70          | 38.53          | 17.40          |                | -29.00           |
| 22H<br>23V | 273.456<br>275.412 | 46.20          | 2.89          | 17.26<br>17.46 | 38.46<br>38.45 | 27.90<br>25.91 | 46.40          | -18.50<br>-20.49 |
| 24V        | 312.508            | 60.30          | 3.13          | 13.05          | 38.46          | 38.02          | 46.40          | -8.38            |
| 25H        | 312.516            | 62.20          | 3.13          | 13.05          | 38.46          | 39.92          | 46.40          | -6.48            |
| 26H        | 336.027            | 46.20          | 3.17          | 13.15          | 38.46          | 24.06          | 46.40          | -22.34           |
| 27V        | 336.027            | 46.40          | 3.17          | 13.15          | 38.46          | 24.26          | 46.40          | -22.14           |
| 28H        | 349.995            | 51.20          | 3.20          | 13.20          | 38.47          | 29.13          | 46.40          | -17.27           |
| 29H        | 366.658            | 48.30          | 3.37          | 13.65          | 38.43          | 26.90          | 46.40          | -19.50           |
| 30H        | 375.012            | 62.30          | 3.46          | 13.87          | 38.41          | 41.22          | 46.40          | -5.18            |
| 31V        | 375.016            | 64.70          | 3.46          | 13.87          | 38.41          | 43.62          |                | -2.78            |
| 32V        | 375.016Qp          | 62.76          | 3.46          | 13.87          | 38.41          | 41.68          | 46.40          | -4.72            |
| 33H        | 462.780            | 43.90          | 3.81          | 15.51          | 38.13          | 25.08          | 46.40          | -21.32           |
| 34H        | 500.008            | 47.20          | 4.10          | 15.80          | 38.31          | 28.79          | 46.40          | -17.61           |

Test Location : Compatible Electronics Page : 1/2

Customer: Mojix Inc.Date: 9/19/2012Manufacturer: Mojix Inc.Time: 8:31:59

Eut name : Star 3000 System Lab : D

Model : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eNode 3000 and GPIO 3000 on Turntable Configuration #1 - 10 kHz to 1 GHz

| Pol                             | Freq                                                  | Rdng                                      | Cable<br>loss                        | Ant<br>factor                             | Amp<br>gain                               | Cor'd<br>rdg = R                          | = L                                       | Delta<br>R-L                                   |
|---------------------------------|-------------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|
|                                 | MHz                                                   | dBuV                                      | dB                                   | dB                                        | đВ                                        | dBuV                                      | dBuV/m                                    | dB                                             |
| 1V<br>2H<br>3H<br>4V<br>5V      | 36.872<br>36.878<br>58.611<br>58.687<br>62.515        | 57.10<br>43.20<br>47.30<br>46.80<br>58.00 | 0.84<br>0.84<br>0.89<br>0.89<br>0.95 | 11.47<br>11.47<br>10.44<br>10.43<br>9.58  | 38.53<br>38.53<br>38.54<br>38.54<br>38.54 | 30.88<br>16.98<br>20.08<br>19.58<br>29.99 | 40.00<br>40.00<br>40.00<br>40.00<br>40.00 | -9.12<br>-23.02<br>-19.92<br>-20.42<br>-10.01  |
| 6V<br>7V<br>8H<br>9V<br>10V     | 72.343<br>82.422<br>118.706<br>125.007<br>132.846     | 59.80<br>48.60<br>52.30<br>57.10<br>51.50 | 1.12<br>1.23<br>1.28<br>1.30<br>1.40 | 7.13<br>6.26<br>13.05<br>13.30<br>12.39   | 38.54<br>38.54<br>38.51<br>38.51<br>38.48 | 29.52<br>17.54<br>28.11<br>33.19<br>26.80 | 40.00<br>40.00<br>43.50<br>43.50<br>43.50 | -10.48<br>-22.46<br>-15.39<br>-10.31<br>-16.70 |
| 11V<br>12V<br>13H<br>14V<br>15V | 156.269<br>162.509<br>166.955<br>224.950<br>312.481   | 57.90<br>55.40<br>45.10<br>42.30<br>54.00 | 1.63<br>1.65<br>1.67<br>1.90<br>2.25 | 12.37<br>13.06<br>13.70<br>15.27<br>13.05 | 38.46<br>38.50<br>38.52<br>38.46<br>38.46 | 33.43<br>31.62<br>21.95<br>21.01<br>30.85 | 43.50<br>43.50<br>43.50<br>46.00<br>46.00 | -10.07<br>-11.88<br>-21.55<br>-24.99<br>-15.15 |
| 16V<br>17H<br>18H<br>19H<br>20H | 336.023<br>336.029<br>360.024<br>375.009<br>390.646   | 55.30<br>54.50                            | 2.35<br>2.35<br>2.44<br>2.50<br>2.56 | 13.15<br>13.15<br>13.47<br>13.87<br>14.27 | 38.46<br>38.46<br>38.45<br>38.41<br>38.38 | 34.03<br>32.33<br>31.97<br>38.76<br>32.35 | 46.00<br>46.00                            | -11.97<br>-13.67<br>-14.03<br>-7.24<br>-13.65  |
| 21H<br>22V<br>23H<br>24H<br>25H | 423.330<br>432.008<br>462.831<br>480.431<br>512.886   | 45.60<br>52.20<br>45.10<br>46.80<br>45.00 | 2.60<br>2.60<br>2.65<br>2.72<br>2.83 | 14.93<br>15.09<br>15.51<br>15.65<br>16.01 | 38.22<br>38.17<br>38.13<br>38.22<br>38.33 | 24.91<br>31.72<br>25.13<br>26.95<br>25.51 | 46.00<br>46.00<br>46.00<br>46.00<br>46.00 | -21.09<br>-14.28<br>-20.87<br>-19.05<br>-20.49 |
| 26V<br>27H<br>28H<br>29H<br>30H | 515.855<br>519.238<br>545.109<br>597.114<br>597.114Qp | 46.50<br>45.40<br>44.80<br>60.50<br>52.30 | 2.83<br>2.84<br>2.89<br>3.09<br>3.09 | 16.06<br>16.12<br>16.53<br>18.77          | 38.33<br>38.33<br>38.36<br>38.28<br>38.28 | 27.07<br>26.02<br>25.85<br>44.08<br>35.88 | 46.00<br>46.00<br>46.00<br>46.00<br>46.00 | -18.93<br>-19.98<br>-20.15<br>-1.92<br>-10.12  |
| 31H<br>32H<br>33V<br>34V<br>35V | 609.731<br>629.139<br>649.435<br>655.884<br>655.884Qp | 55.30<br>57.40<br>52.40<br>60.00<br>56.85 | 3.12<br>3.16<br>3.20<br>3.22<br>3.22 | 18.94<br>19.02<br>19.10<br>19.25<br>19.25 | 38.26<br>38.23<br>38.19<br>38.20<br>38.20 | 39.10<br>41.35<br>36.51<br>44.27<br>41.12 | 46.00<br>46.00<br>46.00<br>46.00          | -6.90<br>-4.65<br>-9.49<br>-1.73               |



Page : 2/2 Test Location : Compatible Electronics

Customer : Mojix Inc.
Manufacturer : Mojix Inc. **Date:** 9/19/2012 Time : 8:31:59 Eut name : Star 3000 System

Lab : D

Model : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eNode 3000 and GPIO 3000 on Turntable Configuration #1 - 10 kHz to 1 GHz

| Pol | Freq<br>MHz | Rdng<br>dBuV | Cable<br>loss<br>dB | Ant<br>factor<br>dB | Amp<br>gain<br>dB | Cor'd<br>rdg = R<br>dBuV | Limit<br>= L<br>dBuV/m | Delta<br>R-L<br>dB |
|-----|-------------|--------------|---------------------|---------------------|-------------------|--------------------------|------------------------|--------------------|
| 36V | 662.012     | 53.80        | 3.25                | 19.40               | 38.20             | 38.24                    | 46.00                  | -7.76              |
| 37V | 674.652     | 57.70        | 3.30                | 19.70               | 38.22             | 42.49                    | 46.00                  | -3.51              |
| 38H | 680.101     | 60.20        | 3.32                | 19.83               | 38.22             | 45.13                    | 46.00                  | -0.87              |
| 39H | 680.101Qp   | 50.97        | 3.32                | 19.83               | 38.22             | 35.90                    | 46.00                  | -10.10             |
| 40V | 693.801     | 54.80        | 3.38                | 20.16               | 38.23             | 40.10                    | 46.00                  | -5.90              |
| 41H | 712.704     | 55.50        | 3.48                | 20.43               | 38.15             | 41.26                    | 46.00                  | -4.74              |
| 42H | 719.112     | 51.00        | 3.52                | 20.50               | 38.10             | 36.91                    | 46.00                  | -9.09              |
| 43H | 771.429     | 47.40        | 3.70                | 20.89               | 37.91             | 34.08                    | 46.00                  | -11.92             |
| 44H | 785.946     | 50.70        | 3.70                | 20.95               | 37.92             | 37.42                    | 46.00                  | -8.58              |
| 45H | 805.474     | 51.60        | 3.77                | 21.26               | 37.91             | 38.72                    | 46.00                  | -7.28              |
| 46H | 825.260     | 40.10        | 4.01                | 22.18               | 37.79             | 28.50                    | 46.00                  | -17.50             |

Test Location : Compatible Electronics Page : 1/1

 Customer
 : Mojix Inc.
 Date : 9/17/2012

 Manufacturer
 : Mojix Inc.
 Time : 12:04:23

Eut name : Star 3000 System Lab : D

Model : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eMux 3000 with Indoor P/S and Star 3000 on Turntable

Configuration #1 - 10 kHz to 1 GHz

| Pol                        | Freq<br>MHz                                         | Rdng<br>dBuV                              | Cable<br>loss<br>dB          | Ant<br>factor<br>dB                       | Amp<br>gain<br>dB                         | Cor'd<br>rdg = R<br>dBuV                  | Limit<br>= L<br>dBuV/m                    | Delta<br>R-L<br>dB                           |
|----------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|
| 1V<br>2H<br>3V<br>4V<br>5H | 127.943<br>127.945<br>128.887<br>149.673<br>149.782 | 59.80<br>56.50<br>61.30<br>57.20<br>57.00 | 1.34<br>1.34<br>1.35<br>1.60 | 12.95<br>12.95<br>12.84<br>11.79<br>11.80 | 38.50<br>38.50<br>38.50<br>38.43<br>38.43 | 35.59<br>32.29<br>36.99<br>32.16<br>31.96 | 43.50<br>43.50<br>43.50<br>43.50<br>43.50 | -7.91<br>-11.21<br>-6.51<br>-11.34<br>-11.54 |
| 6V                         | 158.249                                             | 65.00                                     | 1.63                         | 12.55                                     | 38.48                                     | 40.71                                     | 43.50                                     | -2.79                                        |
| 7V                         | 162.118                                             | 58.40                                     | 1.65                         | 13.01                                     | 38.50                                     | 34.56                                     | 43.50                                     | -8.94                                        |
| 8V                         | 167.990                                             | 60.90                                     | 1.67                         | 13.84                                     | 38.53                                     | 37.89                                     | 43.50                                     | -5.61                                        |
| 9V                         | 171.901                                             | 59.10                                     | 1.69                         | 14.38                                     | 38.54                                     | 36.62                                     | 43.50                                     | -6.88                                        |
| 10H                        | 250.005                                             | 56.60                                     | 2.10                         | 14.80                                     | 38.57                                     | 34.93                                     | 46.00                                     | -11.07                                       |
| 11V                        | 250.006                                             | 57.10                                     | 2.10                         | 14.80                                     | 38.57                                     | 35.43                                     | 46.00                                     | -10.57                                       |
| 12H                        | 437.498                                             | 55.30                                     |                              | 15.18                                     | 38.14                                     | 34.95                                     | 46.00                                     | -11.05                                       |

Test Location : Compatible Electronics Page : 1/1

 Customer
 : Mojix Inc.
 Date : 9/20/2012

 Manufacturer
 : Mojix Inc.
 Time : 8:33:41

Eut name : Star 3000 System Lab : D

Model : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eNode 3000, RF eXpander, and GPIO 3000 on Turntable

Configuration #2 - 10 kHz to 1 GHz

| Pol                             | Freq<br>MHz                                          | Rdng<br>dBuV                              | Cable<br>loss<br>dB                  | Ant<br>factor<br>dB                       | Amp<br>gain<br>dB                         | Cor'd<br>rdg = R<br>dBuV                  | Limit<br>= L<br>dBuV/m                    | Delta<br>R-L<br>dB                            |
|---------------------------------|------------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|
| 1V<br>2V<br>3V<br>4V<br>5V      | 62.512<br>117.186<br>134.759<br>140.628<br>140.628Qp | 53.90<br>50.60<br>53.50<br>66.10<br>65.07 | 0.95<br>1.27<br>1.42<br>1.49         | 9.58<br>12.87<br>12.17<br>11.61<br>11.61  | 38.54<br>38.52<br>38.48<br>38.46<br>38.46 | 25.89<br>26.23<br>28.62<br>40.75<br>39.72 | 40.00<br>43.50<br>43.50<br>43.50<br>43.50 | -14.11<br>-17.27<br>-14.88<br>-2.75<br>-3.78  |
| 6H<br>7H<br>8V<br>9V<br>10V     | 147.263<br>312.504<br>312.511<br>336.019<br>336.031  | 54.90<br>64.30<br>55.00<br>54.60<br>54.70 | 1.57<br>2.25<br>2.25<br>2.35<br>2.35 | 11.75<br>13.05<br>13.05<br>13.15<br>13.15 | 38.44<br>38.46<br>38.46<br>38.46<br>38.46 | 29.78<br>41.15<br>31.85<br>31.63<br>31.73 | 43.50<br>46.00<br>46.00<br>46.00<br>46.00 | -13.72<br>-4.85<br>-14.15<br>-14.37<br>-14.27 |
| 11H<br>12V<br>13V<br>14H<br>15H | 400.354<br>413.418<br>473.019<br>690.774<br>697.178  | 50.10<br>36.20<br>45.80<br>57.30<br>59.30 | 2.60<br>2.60<br>2.69<br>3.36<br>3.39 | 14.51<br>14.75<br>15.59<br>20.09<br>20.23 | 38.36<br>38.28<br>38.18<br>38.23<br>38.24 | 28.85<br>15.27<br>25.90<br>42.52<br>44.69 | 46.00<br>46.00<br>46.00<br>46.00          | -17.15<br>-30.73<br>-20.10<br>-3.48<br>-1.31  |
| 16H<br>17V<br>18H               | 697.178Qp<br>710.916<br>775.509                      | 57.62<br>43.00<br>48.40                   | 3.39<br>3.47<br>3.70                 | 20.23<br>20.41<br>20.90                   | 38.24<br>38.16<br>37.91                   | 43.01<br>28.72<br>35.09                   | 46.00<br>46.00<br>46.00                   | -2.99<br>-17.28<br>-10.91                     |



Test Location : Compatible Electronics Page : 1/1

 Customer
 : Mojix Inc.
 Date : 9/18/2012

 Manufacturer
 : Mojix Inc.
 Time : 10:48:06

Eut name : Star 3000 System Lab : D

Model : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eMux 3000 with Outdoor P/S and Star 3000 on Turntable

Configuration #2 - 10 kHz to 1 GHz

| Pol                         | Freq<br>MHz                                         | Rdng<br>dBuV                              | Cable<br>loss<br>dB                  | Ant<br>factor<br>dB                       | Amp<br>gain<br>dB                         | Cor'd<br>rdg = R<br>dBuV                  | Limit<br>= L<br>dBuV/m           | Delta<br>R-L<br>dB                             |
|-----------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|------------------------------------------------|
| 1H<br>2V<br>3V<br>4H<br>5V  | 126.510<br>127.970<br>149.710<br>150.240<br>158.450 | 47.60<br>52.90<br>60.00<br>54.30<br>48.50 | 1.32<br>1.34<br>1.60<br>1.60         | 13.12<br>12.95<br>11.79<br>11.82<br>12.56 | 38.50<br>38.50<br>38.43<br>38.43<br>38.48 | 23.53<br>28.69<br>34.96<br>29.29<br>24.22 | 43.50<br>43.50<br>43.50<br>43.50 | -19.97<br>-14.81<br>-8.54<br>-14.21<br>-19.28  |
| 6V<br>7V<br>8V<br>9V<br>10V | 162.102<br>167.977<br>171.850<br>171.920<br>209.010 | 54.90<br>52.80<br>53.50<br>53.00<br>50.90 | 1.65<br>1.67<br>1.69<br>1.69<br>1.77 | 13.01<br>13.84<br>14.37<br>14.38<br>15.60 | 38.50<br>38.53<br>38.54<br>38.55<br>38.49 | 31.06<br>29.79<br>31.02<br>30.53<br>29.79 | 43.50<br>43.50<br>43.50<br>43.50 | -12.44<br>-13.71<br>-12.48<br>-12.97<br>-13.71 |
| 11V<br>12H                  | 437.492<br>437.520                                  | 52.60<br>42.50                            | 2.60                                 | 15.18<br>15.19                            | 38.14<br>38.14                            | 32.25<br>22.15                            | 46.00<br>46.00                   | -13.75<br>-23.85                               |

 Customer
 : Mojix Inc.
 Date : 9/20/2012

 Manufacturer
 : Mojix Inc.
 Time : 14:20:20

Eut name : Star 3000 System Lab : D

Model : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eNode 3000, GPIO 3000, and RF eXpander on Turntable

Configuration #3 - 10 kHz to 1 GHz

| Pol | Freq    | Rdng  | Cable<br>loss | Ant<br>factor | Amp<br>gain | Cor'd<br>rdg = R | Limit<br>= L | Delta<br>R-L |
|-----|---------|-------|---------------|---------------|-------------|------------------|--------------|--------------|
|     | MHz     | dBuV  | dB            | dB            | dB          | dBuV             | dBuV/m       | dB           |
| 1V  | 36.876  | 57.40 | 0.84          | 11.47         | 38.53       | 31.18            | 40.00        | -8.82        |
| 2V  | 62.507  | 58.70 | 0.95          | 9.58          | 38.54       | 30.70            | 40.00        | -9.30        |
| 3H  | 78.136  | 61.60 | 1.18          | 6.04          | 38.54       | 30.28            | 40.00        | -9.72        |
| 4V  | 83.233  | 61.70 | 1.23          | 6.44          | 38.54       | 30.83            | 40.00        | -9.17        |
| 5H  | 110.810 | 55.00 | 1.25          | 12.11         | 38.52       | 29.83            | 43.50        | -13.67       |
| 6H  | 118.675 | 55.80 | 1.28          | 13.05         | 38.51       | 31.61            | 43.50        | -11.89       |
| 7V  | 124.997 | 54.00 | 1.30          | 13.30         | 38.51       | 30.09            | 43.50        | -13.41       |
| 8H  | 125.024 | 53.30 | 1.30          | 13.30         | 38.51       | 29.39            | 43.50        | -14.11       |
| 9H  | 136.729 | 60.20 | 1.45          | 11.95         | 38.47       | 35.13            | 43.50        | -8.37        |
| 10V | 138.691 | 56.80 | 1.47          | 11.74         | 38.46       | 31.55            | 43.50        | -11.95       |
| 11V | 140.623 | 65.00 | 1.49          | 11.61         | 38.46       | 39.65            | 43.50        | -3.85        |
| 12V | 143.980 | 59.10 | 1.53          | 11.68         | 38.45       | 33.87            | 43.50        | -9.63        |
| 13H | 144.012 | 53.90 | 1.53          | 11.68         | 38.45       | 28.67            | 43.50        | -14.83       |
| 14V | 153.247 | 46.80 | 1.61          | 12.10         | 38.45       | 22.06            | 43.50        | -21.44       |
| 15H | 154.477 | 54.50 | 1.62          | 12.21         | 38.45       | 29.87            | 43.50        | -13.63       |
| 16V | 156.234 | 56.00 | 1.63          | 12.37         | 38.46       | 31.53            | 43.50        | -11.97       |
| 17H | 156.262 | 62.60 | 1.63          | 12.37         | 38.46       | 38.13            | 43.50        | -5.37        |
| 18H | 156.268 | 63.60 | 1.63          | 12.37         | 38.46       | 39.13            | 43.50        | -4.37        |
| 19V | 156.271 | 59.20 | 1.63          | 12.37         | 38.46       | 34.73            | 43.50        | -8.77        |
| 20H | 234.355 | 48.30 | 1.98          | 15.09         | 38.50       | 26.86            | 46.00        | -19.14       |
| 21H | 234.385 | 48.10 | 1.98          | 15.09         | 38.50       | 26.66            | 46.00        | -19.34       |
| 22V | 244.230 | 43.70 | 2.06          | 14.90         | 38.55       | 22.11            | 46.00        | -23.89       |
| 23H | 249.996 | 56.90 | 2.10          | 14.80         | 38.57       | 35.23            | 46.00        | -10.77       |
| 24H | 253.951 | 48.30 | 2.12          | 15.23         | 38.55       | 27.10            | 46.00        | -18.90       |
| 25V | 256.139 | 47.50 | 2.13          | 15.47         | 38.54       | 26.55            | 46.00        | -19.45       |
| 26V | 267.468 | 41.80 | 2.17          | 16.65         | 38.48       | 22.14            | 46.00        | -23.86       |
| 27H | 281.272 | 47.80 | 2.20          | 18.03         | 38.45       | 29.58            | 46.00        | -16.42       |
| 28V | 287.998 | 53.70 | 2.20          | 18.68         | 38.45       | 36.13            | 46.00        | -9.87        |
| 29V | 288.003 | 53.30 | 2.20          | 18.68         | 38.45       | 35.73            | 46.00        | -10.27       |
| 30H | 288.016 | 53.40 | 2.20          | 18.68         | 38.45       | 35.83            | 46.00        | -10.17       |
| 31V | 312.522 | 57.90 | 2.25          | 13.05         | 38.46       | 34.75            | 46.00        | -11.25       |
| 32H | 312.526 | 52.30 | 2.25          | 13.05         | 38.46       | 29.15            | 46.00        | -16.85       |
| 33V | 336.015 | 52.10 | 2.35          | 13.15         | 38.46       | 29.13            | 46.00        | -16.87       |
| 34H | 336.024 | 57.40 | 2.35          | 13.15         | 38.46       | 34.43            | 46.00        | -11.57       |
| 35V | 359.997 | 47.40 | 2.44          | 13.47         | 38.45       | 24.87            | 46.00        | -21.13       |

**Test Location :** Compatible Electronics **Page :** 2/2

Customer : Mojix Inc. **Date:** 9/20/2012 Manufacturer : Mojix Inc. Time : 14:20:20

Lab : D Eut name : Star 3000 System

Mode1 : See Section 5.1 of Test Report Test Distance : 3 Meters

Serial # : See Section 5.1 of Test Report

Specification : FCC Class B

Distance correction factor (20 \* log(test/spec) : 0.00

Test Mode : Radiated Emissions - FCC Class B - Tx Portion

eNode 3000, GPIO 3000, and RF eXpander on Turntable Configuration #3 - 10 kHz to 1 GHz

| Pol                             | Freq<br>MHz                                         | Rdng<br>dBuV                              | Cable<br>loss<br>dB                  | Ant<br>factor<br>dB                       | Amp<br>gain<br>dB                         | Cor'd<br>rdg = R<br>dBuV                  | Limit<br>= L<br>dBuV/m           | Delta<br>R-L<br>dB                             |
|---------------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|------------------------------------------------|
| 36H<br>37V<br>38H<br>39H<br>40V | 360.019<br>385.104<br>385.766<br>390.613<br>404.373 | 53.20<br>41.70<br>50.80<br>56.20<br>41.40 | 2.44<br>2.54<br>2.55<br>2.56<br>2.60 | 13.47<br>14.13<br>14.15<br>14.27<br>14.58 | 38.45<br>38.39<br>38.39<br>38.38<br>38.33 | 30.67<br>19.98<br>29.10<br>34.65<br>20.25 | 46.00<br>46.00<br>46.00<br>46.00 | -15.33<br>-26.02<br>-16.90<br>-11.35<br>-25.75 |
| 41H<br>42V<br>43V<br>44H<br>45H | 431.970<br>432.006<br>437.487<br>528.093<br>568.207 | 56.70<br>51.20<br>46.00<br>48.00<br>44.80 | 2.60<br>2.60<br>2.60<br>2.86<br>2.97 | 15.09<br>15.09<br>15.18<br>16.26<br>17.46 | 38.17<br>38.17<br>38.14<br>38.34<br>38.34 | 36.22<br>30.72<br>25.65<br>28.77<br>26.90 | 46.00<br>46.00<br>46.00<br>46.00 | -9.78<br>-15.28<br>-20.35<br>-17.23<br>-19.10  |
| 46V<br>47H<br>48V<br>49V<br>50H | 612.124<br>626.479<br>631.361<br>637.725<br>639.564 | 48.20<br>51.10<br>50.50<br>52.20<br>50.70 | 3.12<br>3.15<br>3.16<br>3.18<br>3.18 | 18.95<br>19.01<br>19.03<br>19.05<br>19.06 | 38.26<br>38.23<br>38.22<br>38.21<br>38.21 | 32.02<br>35.03<br>34.47<br>36.22<br>34.73 | 46.00<br>46.00<br>46.00<br>46.00 | -13.98<br>-10.97<br>-11.53<br>-9.78<br>-11.27  |
| 51V<br>52V<br>53H<br>54V        | 650.472<br>663.129<br>665.477<br>701.577            | 49.00<br>50.10<br>51.70<br>47.60          | 3.20<br>3.25<br>3.26<br>3.41         | 19.11<br>19.42<br>19.48<br>20.32          | 38.19<br>38.20<br>38.21<br>38.23          | 33.12<br>34.57<br>36.24<br>33.10          | 46.00<br>46.00<br>46.00<br>46.00 | -12.88<br>-11.43<br>-9.76<br>-12.90            |