

TEST REPORT

Test report no.: 1-4502/17-01-02-A

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: +49681598-0 + 49 681 5 98 - 9075 Fax:

Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Valeo Comfort and Driving Assistance

76 rue Auguste Perret - ZI Europarc 94046 CRETEIL CEDEX / FRANCE +33 1 48 84 54 00 Phone:

/ Fax.

Contact: Jerome Hugot

jerome.hugot@valeo.com e-mail: Phone:

+33 1 48 84 57 14

Manufacturer

Valeo Comfort and Driving Assistance

76 rue Auguste Perret - ZI Europarc 94046 CRETEIL CEDEX / FRANCE

Test standard/s

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency 47 CFR Part 15

devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

Spectrum Management and Telecommunications Radio Standards Specifications -RSS - Gen Issue 4

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: **Smart Connectivity ECU** Model name: Parkman ECU 12PM15

FCC ID: VE2-12PM15 IC: 7173A-12PM15

Frequency: DTS band 2400 MHz to 2483.5 MHz

Bluetooth® Low Energy Technologytested: Antenna: 4 different external antennas 12.0 V DC by car battery Power supply:

-40°C to +85°C Temperature range:

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Andreas Luckenhill	Mihail Darangayakii
Andreas Luckenbill	Mihail Dorongovskii

Lab Manager Radio Communications & EMC Lab Manager Radio Communications & EMC

Table of contents

1	Table	Table of contents2						
2		al information						
	2.1	Notes and disclaimer						
	2.1	Application details						
	2.3	Test laboratories sub-contracted						
3	Test s	tandard/s and references	4					
		nvironment						
5	Test it	em						
	5.1 5.2	General description						
6	Descri	ption of the test setup	. 6					
	6.1	Shielded semi anechoic chamber						
	6.2	Shielded fully anechoic chamber						
	6.3 6.4	Radiated measurements > 18 GHz Conducted measurements C.BER system	_					
		•						
7	Seque	nce of testing						
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz						
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz						
	7.3 7.4	Sequence of testing radiated spurious 1 GHz to 18 GHz						
		rement uncertainty						
		•						
9	Summ	ary of measurement results	16					
10	A	dditional comments	17					
11	M	easurement results	18					
	11.1	System gain						
	11.2	Power spectral density						
	11.3	DTS bandwidth – 6 dB bandwidth						
	11.4 11.5	Occupied bandwidth – 99% emission bandwidth						
	11.5	Maximum output power Detailed spurious emissions @ the band edge - conducted						
	11.7	Band edge compliance radiated						
	11.8	TX spurious emissions conducted						
	11.9	Spurious emissions radiated below 30 MHz						
	11.10	Spurious emissions radiated 30 MHz to 1 GHz						
	11.11	Spurious emissions radiated above 1 GHz						
12	0	bservations						
Ann	ex A	Glossary	90					
Ann	ex B	Document history	91					
Δnn	ων C	Accreditation Cartificate	Q 1					

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4502/17-01-02 and dated 2017-09-27.

2.2 Application details

Date of receipt of order: 2017-08-28
Date of receipt of test item: 2017-08-28
Start of test: 2017-08-29
End of test: 2017-09-13

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 91

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	V04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 91

4 Test environment

		Tnom	+22 °C during room temperature tests
Temperature		T _{max}	No tests under extreme conditions required.
		Tmin	No tests under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
V _{nom} 12.0 V DC by external power supply		12.0 V DC by external power supply	
Power supply		V_{max}	No tests under extreme conditions required.
		V_{min}	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Smart Connectivity ECU
Type identification :	Parkman ECU 12PM15
HMN :	-/-
PMN :	12PM15
HVIN :	12PM15
FVIN :	-/-
S/N serial number :	Rad. C31392081718600134 Cond. C31392081718600223
HW hardware status :	A 000 901 19 07 17/14.00
SW software status :	A 000 902 02 41 17/21.00
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission : Use of frequency spectrum :	DSSS
Type of modulation :	GFSK
Number of channels :	40
Antenna :	4 different external antennas
Power supply :	12.0 V DC by car battery
Temperature range :	-40°C to +85°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-4502/17-01-01_AnnexA

1-4502/17-01-01_AnnexB 1-4502/17-01-01_AnnexD

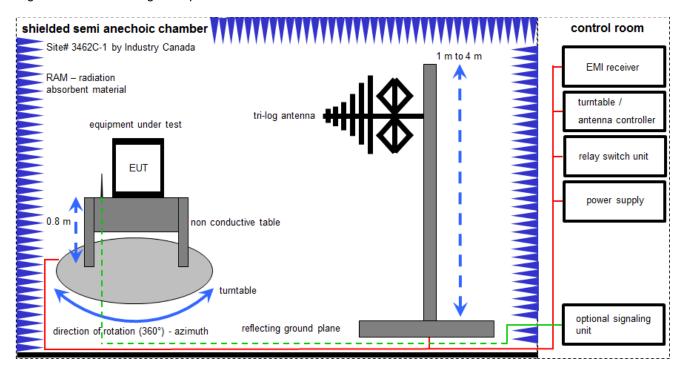
© CTC advanced GmbH Page 5 of 91

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	•	·
NK!	Attention: not calibrated	*)	next calibration ordered/currently in progress

© CTC advanced GmbH Page 6 of 91

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

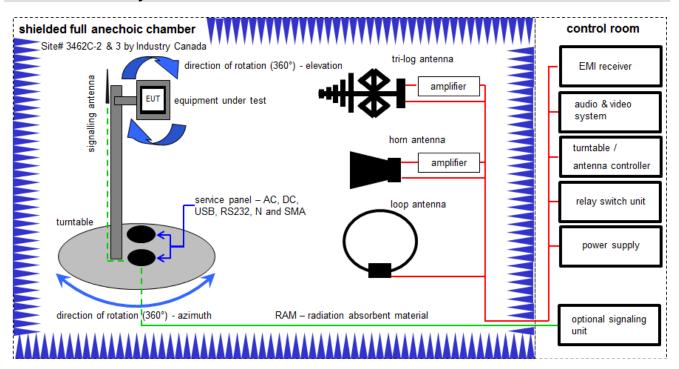
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	101042	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	А	Analy zer-Ref erence- Sy stem (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

© CTC advanced GmbH Page 7 of 91

6.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO	2210	300001015	k	20.05.2017	20.05.2019
2	А	Double-Ridged Wav eguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	v IKI!	14.02.2017	13.02.2019
3	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	Α	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
6	А, В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	29.10.2014	29.10.2017
7	Α	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
8	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000032	300004510	ne	-/-	-/-
9	A, B, C	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	Huber & Suhner	2V2403033A54 21	300004591	ne	-/-	-/-
10	A, B, C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	Batch no. 14844	300004682	ne	-/-	-/-
11	A, B, C	Anechoic chamber	ESH3-Z5	TDK	893045/004	300003726	ne	-/-	-/-
12	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018
13	A, B, C	Bluetooth Tester	CBT35	R&S	100635	300003907	k	01.02.2016	01.02.2018

© CTC advanced GmbH Page 8 of 91

6.3 Radiated measurements > 18 GHz

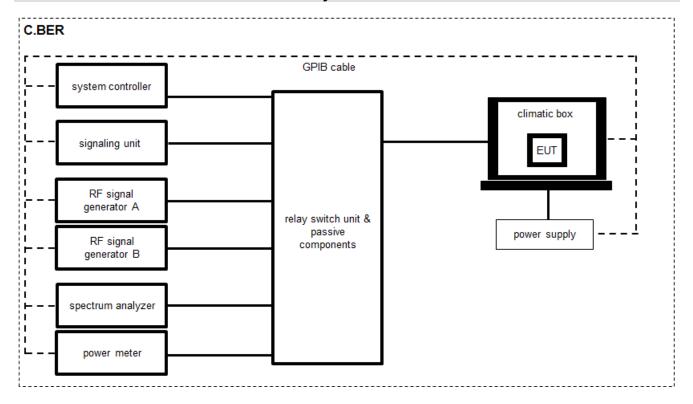
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw. Dev el	39180-103-022	300001748	k	22.05.2015	22.05.2018
2	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	27.01.2017	26.01.2018
3	А	Microwav e System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
4	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	Α	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
6	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 91

6.4 Conducted measurements C.BER system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP	-/-	300001691	ne	-/-	-/-
2	Α	Directional Coupler	101020010	Kry tar	70215	300002840	ev	-/-	-/-
3	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
4	Α	Powersplitter	6005-3	Inmet Corp.	-/-	300002841	ev	-/-	-/-
5	Α	USB/GPIB interface	82357B	Agilent Technologies	MY 52103346	300004390	ne	-/-	-/-
6	Α	Messplatzrechner	Tecline	F+W	-/-	300003580	ne	-/-	-/-
7	Α	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
8	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-
9	А	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	30.01.2017	29.01.2019

© CTC advanced GmbH Page 10 of 91

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 0.8 m height is used.*
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Note: According to ANSI C63.4 a test site with no reference ground plane shall take precedence to show the compliance with the standard. In contrast to a semi-anechoic chamber with conductive ground, the EUT distance to the ground in a fully anechoic chamber is irrelevant because it is a reflection-reduced environment at any distance to the ground structure, so in this case a height of 1.5 m was used.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 11 of 91

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 91

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 91

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

 The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 14 of 91

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

© CTC advanced GmbH Page 15 of 91

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report.
	The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2018-05-29	-/-

Test specification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (4)	System gain	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(e) RSS - 247 / 5.2 (b)	Pow er spectral density	KDB 558074 DTS clause: 10.6	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandw idth – 6 dB bandw idth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	GFSK	\boxtimes				-/-
RSS Gen clause 4.6.1	Occupied bandw idth	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(b)(3) RSS - 247 / 5.4 (4)	Maximum output pow er	KDB 558074 DTS clause: 9.1.1	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	-/-	Nominal	Nominal	GFSK					-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	KDB 558074 DTS clause: 13.3.2	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	GFSK					-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	-/-	Nominal	Nominal	GFSK	\boxtimes				-/-
15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	-/-	Nominal	Nominal	-/-	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	-/-	Nominal	Nominal	GFSK					-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	-/-	Nominal	Nominal	GFSK			\boxtimes		-/-

 $\underline{\text{Note:}}\ C = \text{Compliant};\ NC = \text{Not compliant};\ NA = \text{Not applicable};\ NP = \text{Not performed}$

© CTC advanced GmbH Page 16 of 91

10 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

Reference documents: 12PM15_RfQ (RE) v1.4_W167-1701-01_rev.pdf Special test descriptions: The radiated tests have been performed with 4 different external antennas: Dipole evaluation antenna (W1010) Black print antenna (W213) Roof antenna (R222-ECE) Spoiler antenna (S213) Configuration descriptions: TX tests: were performed with LE packets (37 byte payload) and static PRBS pattern. RX/Standby tests: BT enabled, TX Idle Tested frequencies: lowest: 2402 MHz middle: 2440 MHz highest: 2480 MHz Bluetooth LE Test mode enabled Test mode: (EUT is controlled over CBT) XSpecial software is used. EUT is transmitting pseudo random data by itself XAntennas and transmit Operating mode 1 (single antenna) operating modes: Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 17 of 91

11 Measurement results

11.1 System gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth $^{\circledR}$ devices, the GFSK modulation is used.

Measurement parameters					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	3 MHz				
Video bandwidth	3 MHz				
Span	5 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.4 A (conducted)				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

Results: dipole evaluation antenna

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
Conducted peak power [dBm] Measured with GFSK modulation		-4.0	-4.1	-5.0
Radiated peak power [dBm] Measured with GFSK modulation		-2.3	-1.7	-3.5
Gain [dBi] Calculated		1.7	2.4	1.5

© CTC advanced GmbH Page 18 of 91

Results: black print antenna

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
Conducted peak power [dBm] Measured with GFSK modulation		-4.0	-4.1	-5.0
Radiated peak power [dBm] Measured with GFSK modulation		-0.8	-0.8	-1.7
Gain [dBi] Calculated		3.2	3.3	3.3

Results: roof antenna

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
Conducted peak power [dBm] Measured with GFSK modulation		-4.0	-4.1	-5.0
Radiated peak power [dBm] Measured with GFSK modulation		-1.8	-1.2	-1.5
Gain [dBi] Calculated		2.2	2.9	3.5

Results: spoiler antenna

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel
Conducted peak power [dBm] Measured with GFSK modulation		-4.0	-4.1	-5.0
Radiated peak power [dBm] Measured with GFSK modulation		-2.6	-3.8	-4.1
Gain [dBi] Calculated		1.4	0.3	0.9

© CTC advanced GmbH Page 19 of 91

11.2 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system.

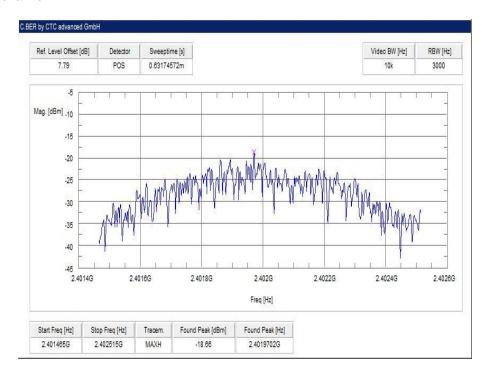
Measurement parameters					
Detector	Peak				
Sweep time	Auto				
Resolution bandwidth	3 kHz				
Video bandwidth	10 kHz				
Span	≥ EBW				
Trace mode	Max hold				
Test setup	See sub clause 6.4 A				
Measurement uncertainty	See sub clause 8				

Limits:

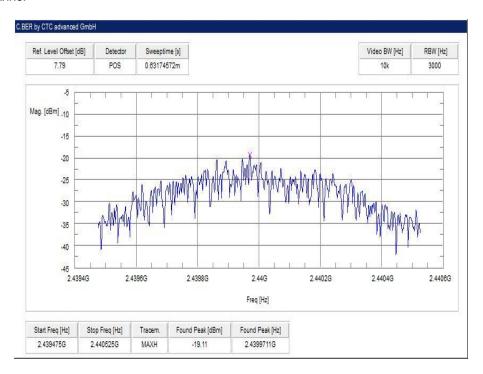
FCC	IC				
Power spectral density					
For digitally modulated systems the transmitter power spectr					

not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

Results:

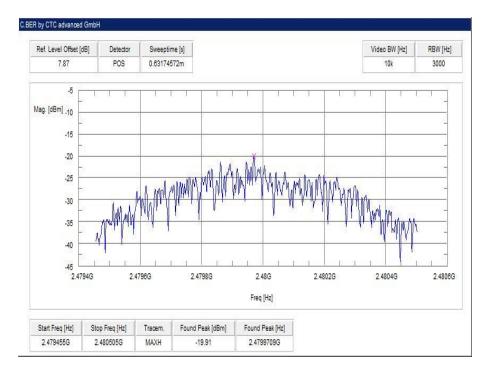

	Frequency				
	2402 MHz 2440 MHz 2480 MHz				
Power spectral density [dBm / 3kHz]	-18.7	-19.1	-19.9		

© CTC advanced GmbH Page 20 of 91



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 21 of 91

Plot 3: highest channel

© CTC advanced GmbH Page 22 of 91

11.3 DTS bandwidth - 6 dB bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement parameters		
According to DTS clause: 8.1		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	5 MHz	
Measurement procedure	Using 3 marker (max + 2x-6dB)	
Trace mode	Max hold (allow trace to stabilize)	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
DTS bandwidth – 6 dB bandwidth		
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.		

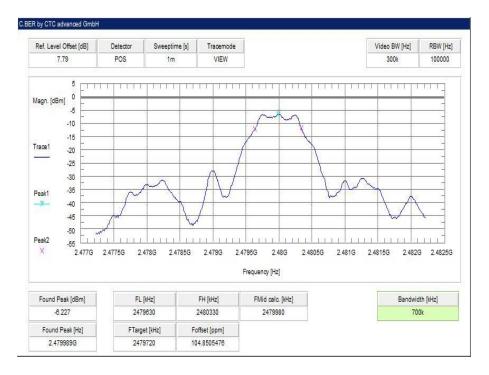
Results:

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
6 dB bandwidth [kHz]	700	700	700

© CTC advanced GmbH Page 23 of 91

Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 24 of 91

Plot 3: highest channel

© CTC advanced GmbH Page 25 of 91

11.4 Occupied bandwidth - 99% emission bandwidth

Description:

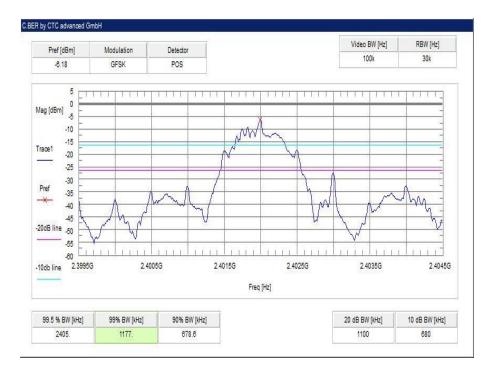
Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	30 kHz	
Video bandwidth	100 kHz	
Span	5 MHz	
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer	
Trace mode	Max hold (allow trace to stabilize)	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

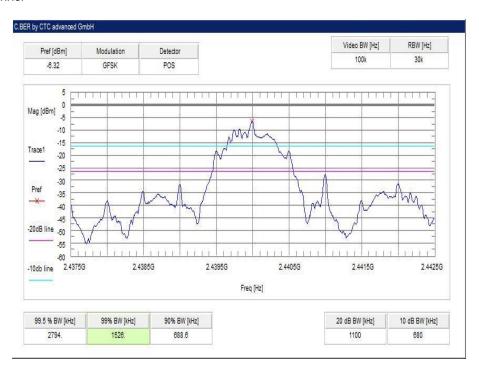
Usage:

-/-	IC	
Occupied bandwidth – 99% emission bandwidth		
OBW is necessary for emission designator		

Results:

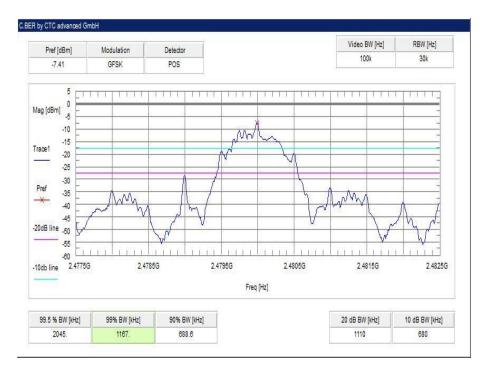

		Frequency	
	2402 MHz	2440 MHz	2480 MHz
99% bandwidth [kHz]	1177	1526	1167

© CTC advanced GmbH Page 26 of 91



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 27 of 91

Plot 3: highest channel

© CTC advanced GmbH Page 28 of 91

11.5 Maximum output power

Description:

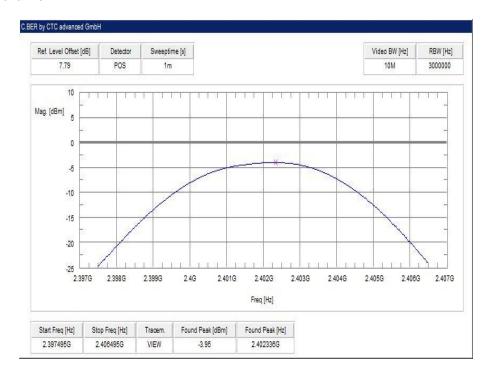
Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	10 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

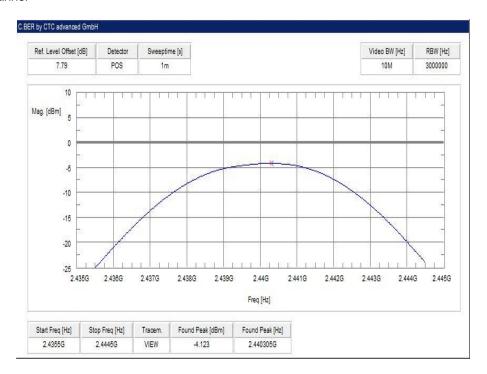
Limits:

FCC	IC
Maximum output power	
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi	

Results:


		Frequency	
	2402 MHz	2440 MHz	2480 MHz
Maximum output power conducted [dBm]	-4.0	-4.1	-5.0

© CTC advanced GmbH Page 29 of 91



Plots:

Plot 1: lowest channel

Plot 2: mid channel

© CTC advanced GmbH Page 30 of 91

Plot 3: highest channel

© CTC advanced GmbH Page 31 of 91

11.6 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel.

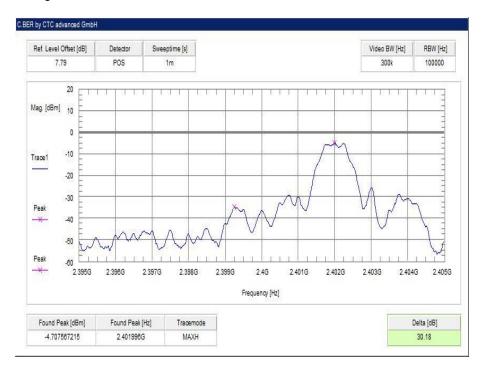
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 2395 - 2405 MHz higher Band Edge: 2478 - 2489 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.4 A	
Measurement uncertainty	See sub clause 8	

Limits:

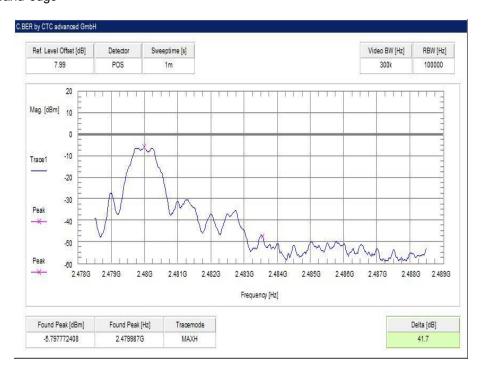
FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Result:


Scenario	Spurious band edge conducted [dB]
Modulation	GFSK
Lower band edge – hopping off	> 20 dB
Upper band edge – hopping off	> 20 dB

© CTC advanced GmbH Page 32 of 91



Plots:

Plot 1: Lower band edge

Plot 2: Upper band edge

© CTC advanced GmbH Page 33 of 91

11.7 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2402 MHz for the lower restricted band and 2480 MHz for the upper restricted band. Measurement distance is 3m.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2300 – 2400 MHz higher Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.2 B	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC	
Band edge compliance radiated		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).		
54 dBμV/m AVG		
74 dBμV/m Peak		

© CTC advanced GmbH Page 34 of 91

Result: dipole evaluation antenna

Scenario	Band edge compliance radiated [dBµV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP

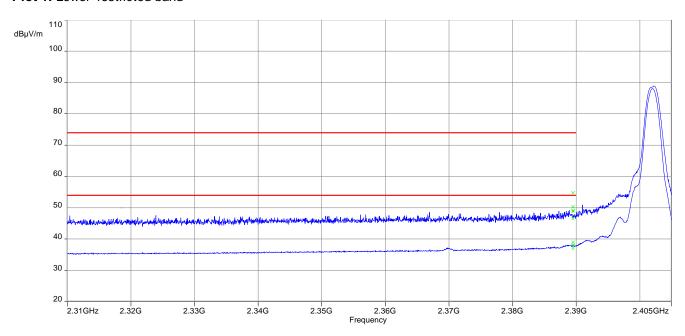
Result: black print antenna

Scenario	Band edge compliance radiated [dBµV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP

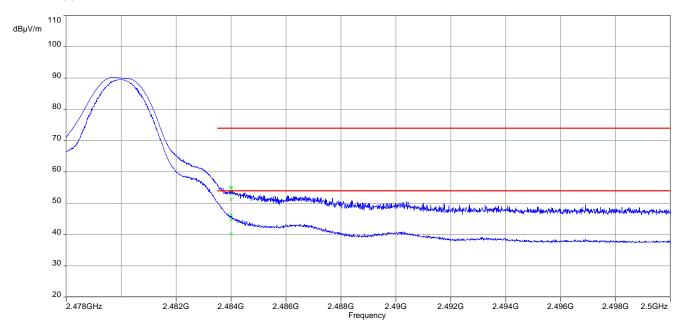
Result: roof antenna

Scenario	Band edge compliance radiated [dBµV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP

Result: spoiler antenna


Scenario	Band edge compliance radiated [dBµV/m]
Modulation	GFSK
Lower restricted band	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP

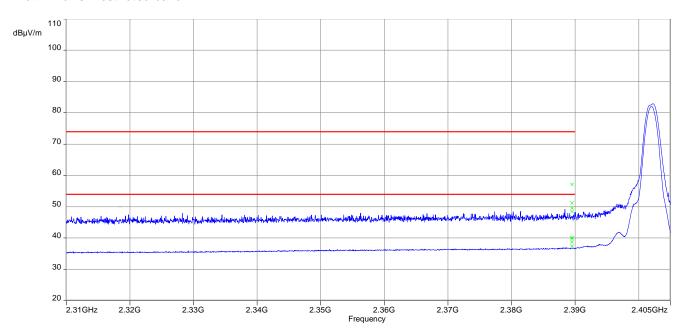
© CTC advanced GmbH Page 35 of 91



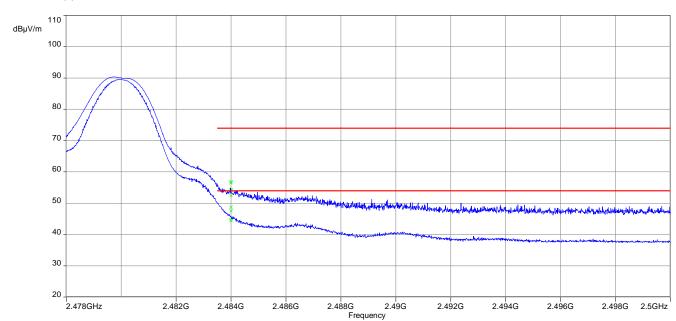
Plots: dipole evaluation antenna

Plot 1: Lower restricted band

Plot 2: Upper restricted band



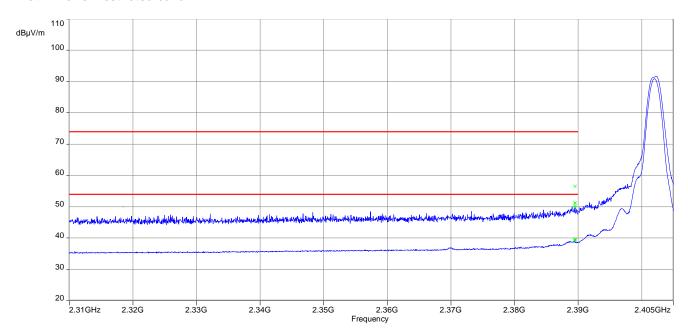
© CTC advanced GmbH Page 36 of 91



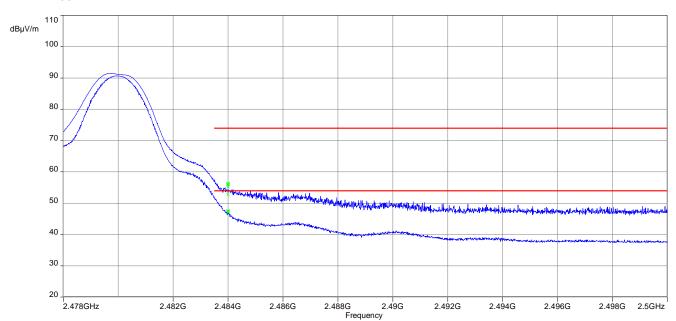
Plots: black print antenna

Plot 1: Lower restricted band

Plot 2: Upper restricted band



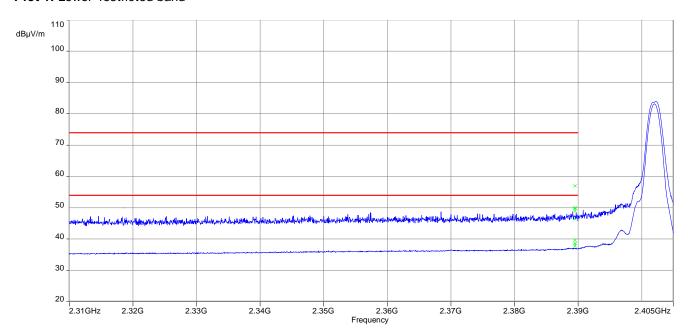
© CTC advanced GmbH Page 37 of 91



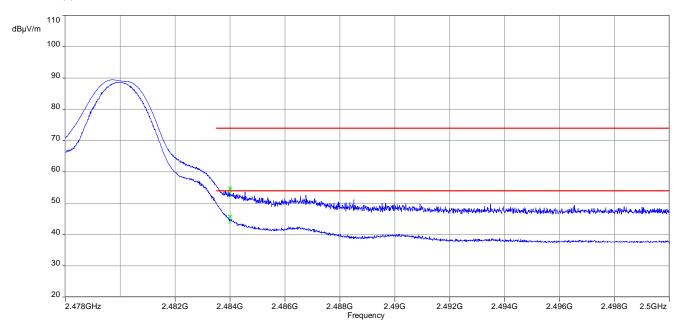
Plots: roof antenna

Plot 1: Lower restricted band

Plot 2: Upper restricted band



© CTC advanced GmbH Page 38 of 91



Plots: spoiler antenna

Plot 1: Lower restricted band

Plot 2: Upper restricted band

© CTC advanced GmbH Page 39 of 91

11.8 TX spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz.

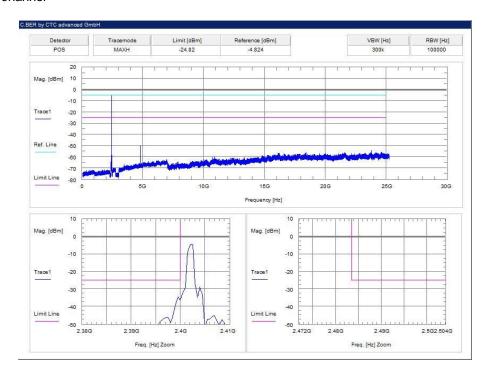
Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	300 kHz or 500 kHz			
Span	9 kHz to 25 GHz			
Trace mode	Max hold			
Test setup	See sub clause 6.4 A			
Measurement uncertainty	See sub clause 8			

Limits:

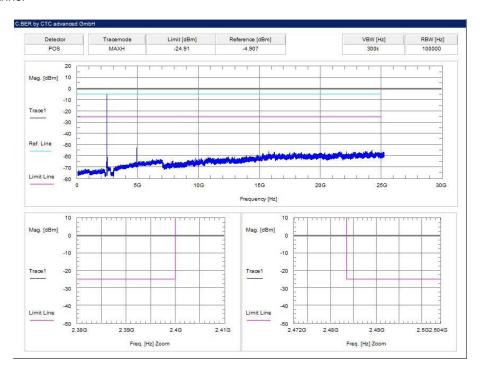
FCC	IC
TX spurious emis	ssions conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB b elow that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

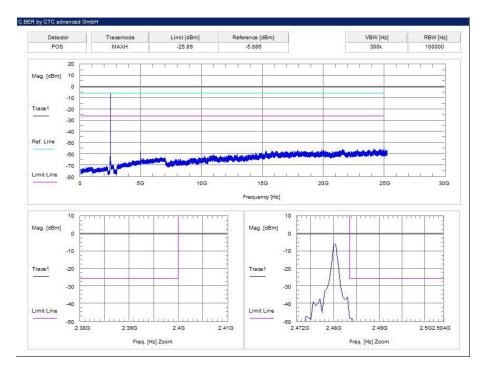

TX spurious emissions conducted							
f [MHz] amplitude of emission [dBm]		limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results			
	-4.8	30 dBm		Operating frequency			
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant			
	-4.9	30 dBm		Operating frequency			
All detected emissions are compliant with the -20 dBc limit!		-20 dBc		compliant			
		20 dD		On a various fra que a que			
All detected emissions are compliant with the -20 dBc limit!		30 aBm		Operating frequency			
		-20 dBc		compliant			
	dBc limit! emissions are com dBc limit!	amplitude of emission [dBm] -4.8 emissions are compliant with the -20 dBc limit! -4.9 emissions are compliant with the -20 dBc limit! -5.9 emissions are compliant with the -20	amplitude of emission [dBm]	amplitude of emission [dBm] actual attenuation below frequency of operation [dB] -4.8 30 dBm emissions are compliant with the -20 dBc limit! -4.9 30 dBm emissions are compliant with the -20 dBc limit! -5.9 30 dBm emissions are compliant with the -20 dBc limit! -5.9 30 dBm			

© CTC advanced GmbH Page 40 of 91



Plots:

Plot 1: lowest channel


Plot 2: mid channel

© CTC advanced GmbH Page 41 of 91

Plot 3: highest channel

© CTC advanced GmbH Page 42 of 91

11.9 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement parameters					
Detector	Peak / Quasi peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 30 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 C				
Measurement uncertainty	See sub clause 8				

Limits:

FCC			IC		
TX spurious emissions radiated below 30 MHz					
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance		
0.009 – 0.490	2400/F(kHz)		300		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30
1.705 – 30.0	3	0	30		

Results: dipole evaluation antenna

TX spurious emissions radiated below 30 MHz [dBμV/m]									
F [MHz] Detector Level [dBµV/m]									
All detecte	All detected emissions are more than 20 dB below the limit.								

© CTC advanced GmbH Page 43 of 91

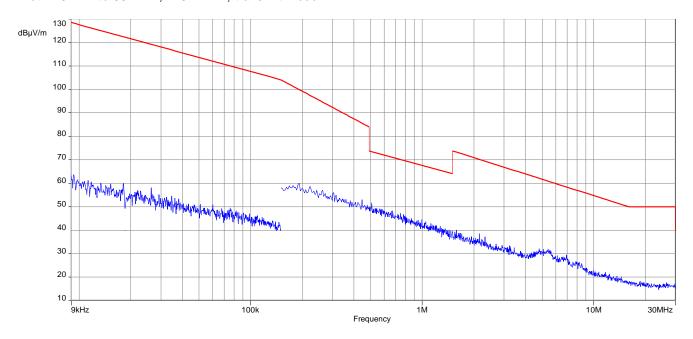
Results: black print antenna

TX spurious emissions radiated below 30 MHz[dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detecte	All detected emissions are more than 20 dB below the limit.							

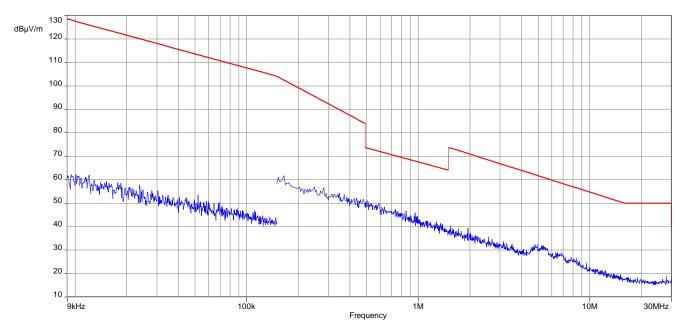
Results: roof antenna

TX spurious emissions radiated below 30 MHz [dBμV/m]								
F [MHz] Detector Level [dBµV/m]								
All detecte	All detected emissions are more than 20 dB below the limit.							

Results: spoiler antenna

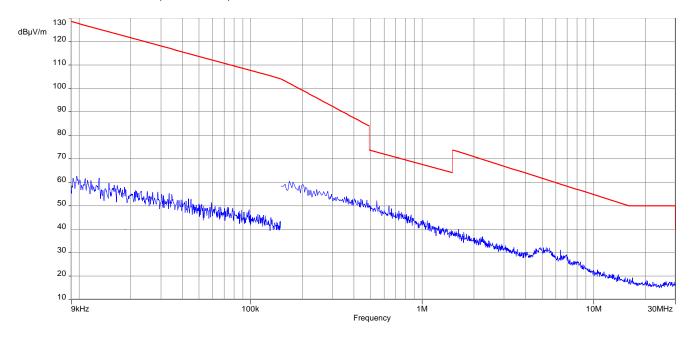

TX spurious emissions radiated below 30 MHz [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
All detected emissions are more than 20 dB below the limit.						

© CTC advanced GmbH Page 44 of 91



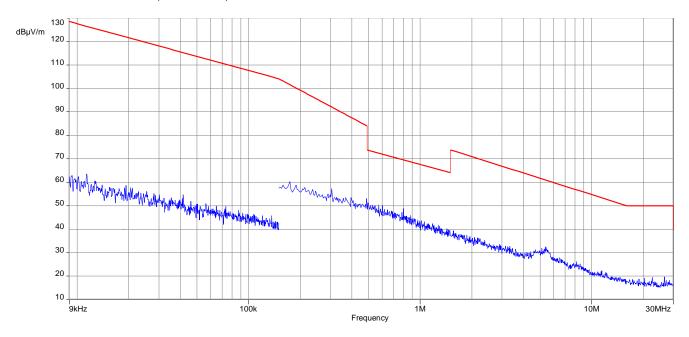
Plots: dipole evaluation antenna

Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode

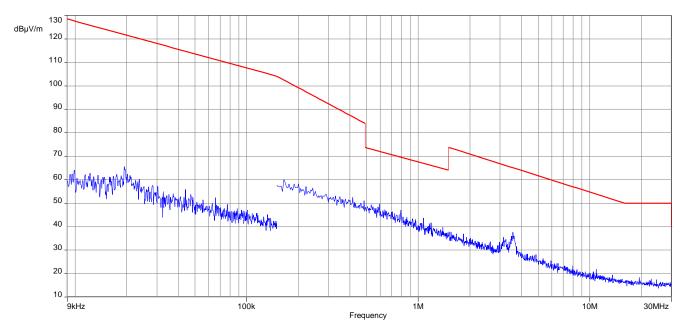

Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

© CTC advanced GmbH Page 45 of 91

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

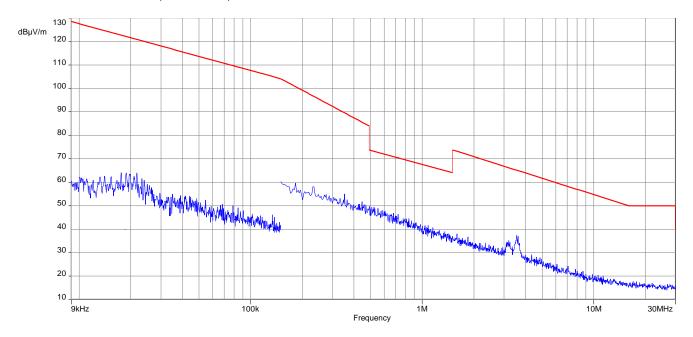


© CTC advanced GmbH Page 46 of 91



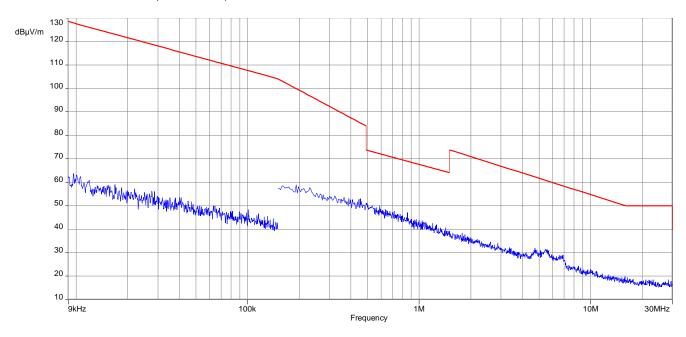
Plots: black print antenna

Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode

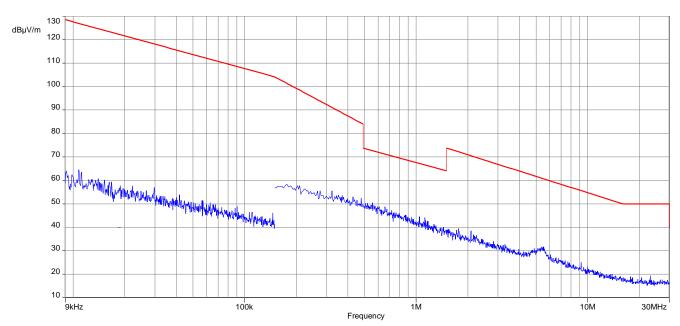

Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

© CTC advanced GmbH Page 47 of 91

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

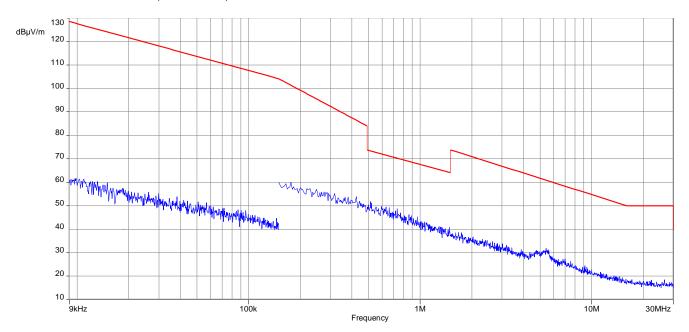


© CTC advanced GmbH Page 48 of 91



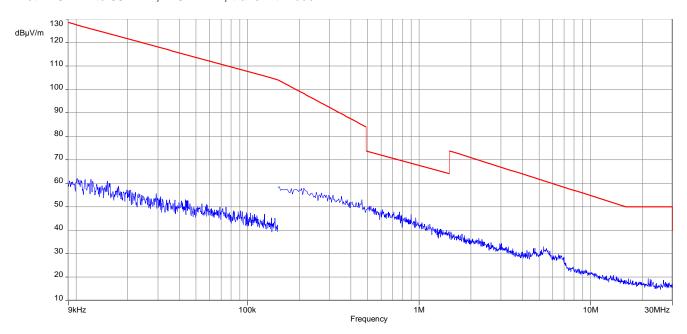
Plots: roof antenna

Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode

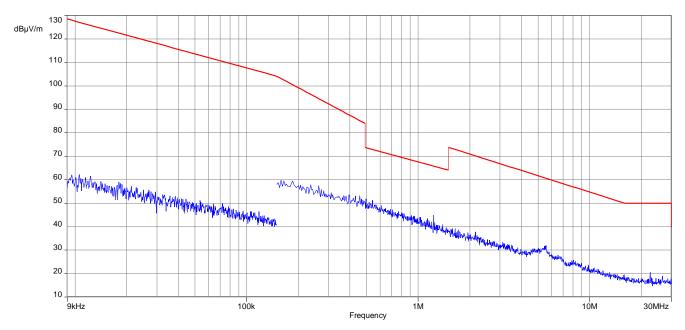

Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

© CTC advanced GmbH Page 49 of 91

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

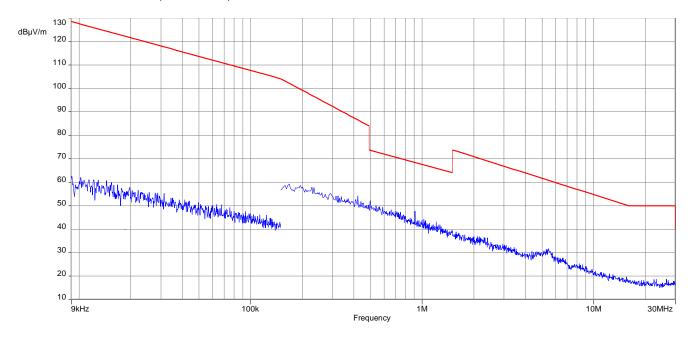


© CTC advanced GmbH Page 50 of 91



Plots: spoiler antenna

Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode


Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode

© CTC advanced GmbH Page 51 of 91

Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode

© CTC advanced GmbH Page 52 of 91

11.10 Spurious emissions radiated 30 MHz to 1 GHz

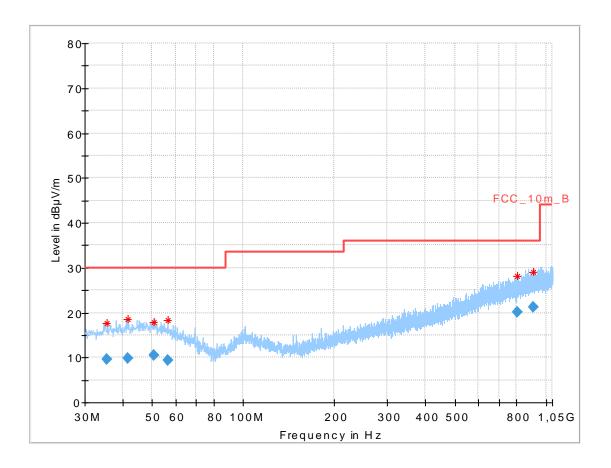
Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	120 kHz			
Video bandwidth	3 x RBW			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Measured modulation	GFSK			
Test setup	See sub clause 6.1 A			
Measurement uncertainty	See sub clause 8			

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

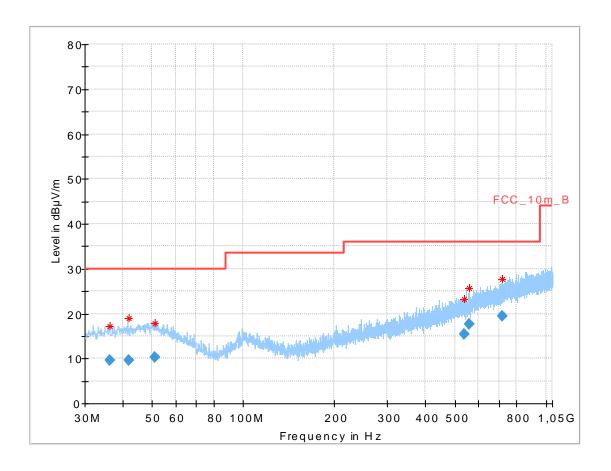
Limits:


FCC			IC			
	TX spurious em	issions radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	§15.	.209				
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance			
30 - 88	30	0.0	10			
88 – 216 33.5 10						
216 – 960 36.0 10						
Above 960	54	1.0	3			

© CTC advanced GmbH Page 53 of 91

Plots: Transmit mode, dipole evaluation antenna

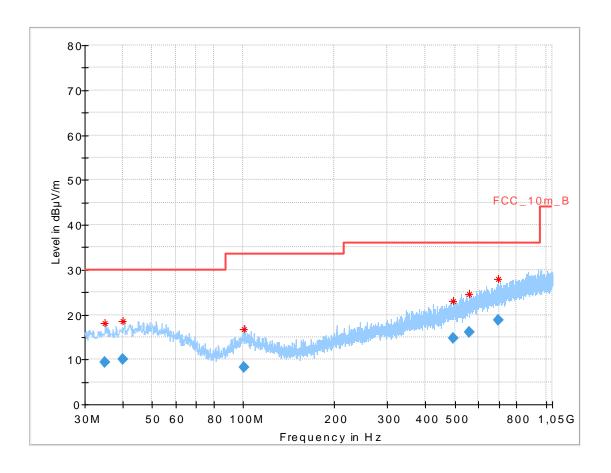
Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.440	9.67	30.0	20.33	1000	120	101.0	V	261.0	12.7
41.464	9.74	30.0	20.26	1000	120	101.0	٧	10.0	13.3
50.625	10.41	30.0	19.59	1000	120	170.0	Н	280.0	13.7
56.600	9.31	30.0	20.69	1000	120	170.0	Н	261.0	12.7
802.070	20.04	36.0	15.96	1000	120	98.0	Н	-9.0	22.8
910.839	21.33	36.0	14.67	1000	120	170.0	Н	80.0	24.2

© CTC advanced GmbH Page 54 of 91

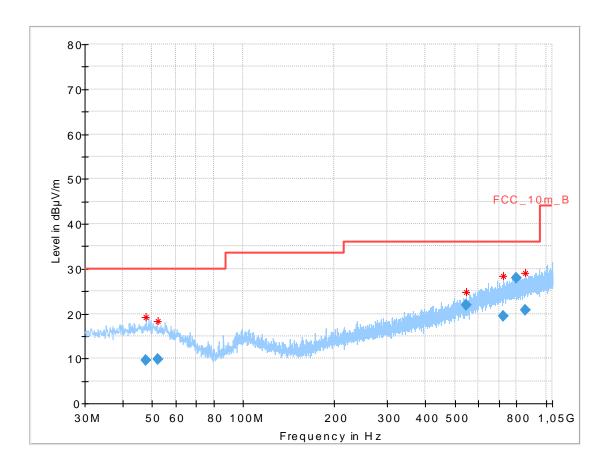
Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.394	9.54	30.0	20.46	1000	120	101.0	V	261.0	12.8
41.869	9.56	30.0	20.44	1000	120	101.0	V	10.0	13.4
51.234	10.32	30.0	19.68	1000	120	101.0	V	261.0	13.6
537.789	15.48	36.0	20.52	1000	120	98.0	Н	-10.0	19.2
560.043	17.70	36.0	18.30	1000	120	170.0	V	280.0	19.6
719.685	19.36	36.0	16.64	1000	120	101.0	Н	190.0	22.0

© CTC advanced GmbH Page 55 of 91

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

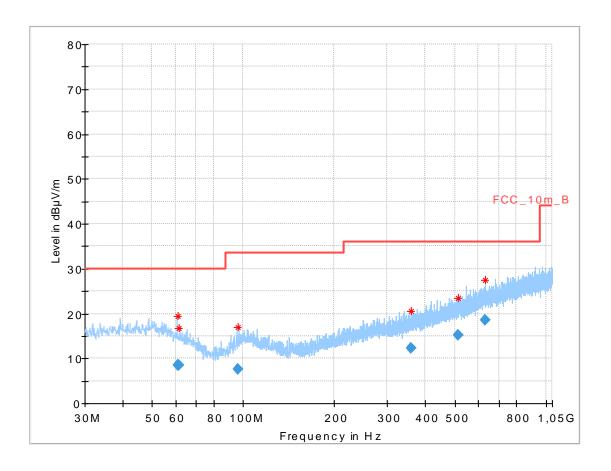

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.941	9.42	30.0	20.58	1000	120	101.0	Н	-9.0	12.6
40.179	10.04	30.0	19.96	1000	120	101.0	٧	100.0	13.2
100.562	8.31	33.5	25.19	1000	120	170.0	٧	80.0	12.1
494.100	14.72	36.0	21.28	1000	120	170.0	٧	-10.0	18.6
556.286	16.09	36.0	19.91	1000	120	170.0	V	271.0	19.5
695.368	18.87	36.0	17.13	1000	120	101.0	Н	190.0	21.5

© CTC advanced GmbH Page 56 of 91

Plots: Receiver mode, dipole evaluation antenna

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

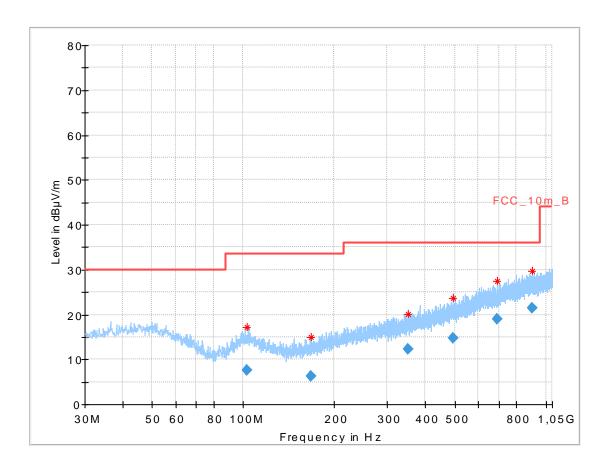
Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
47.561	9.59	30.0	20.41	1000	120	98.0	V	171.0	13.7
52.128	9.74	30.0	20.26	1000	120	170.0	٧	280.0	13.5
543.998	21.87	36.0	14.13	1000	120	101.0	Н	81.0	19.3
725.072	19.45	36.0	16.55	1000	120	170.0	٧	280.0	22.1
797.644	27.95	36.0	8.05	1000	120	170.0	٧	171.0	22.7
853.632	20.87	36.0	15.13	1000	120	170.0	Н	-9.0	23.6

© CTC advanced GmbH Page 57 of 91

Plots: Transmit mode, black print antenna

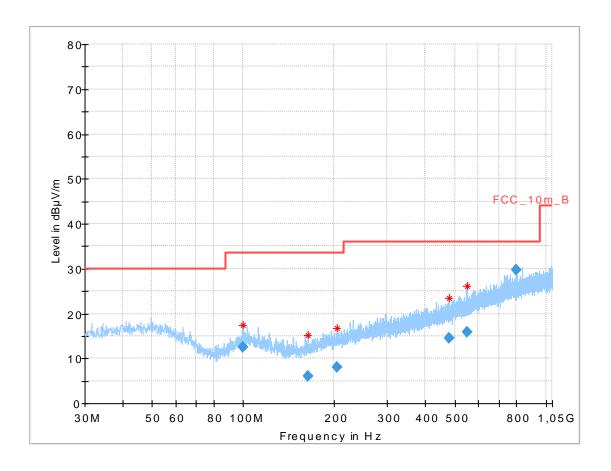
Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
60.697	8.57	30.0	21.43	1000	120	105.0	٧	100.0	11.7
61.409	8.45	30.0	21.55	1000	120	101.0	Н	280.0	11.5
96.457	7.51	33.5	25.99	1000	120	101.0	Н	280.0	11.2
359.392	12.19	36.0	23.81	1000	120	170.0	٧	280.0	16.2
513.575	15.17	36.0	20.83	1000	120	98.0	Н	260.0	18.9
631.329	18.49	36.0	17.51	1000	120	170.0	٧	190.0	21.0

© CTC advanced GmbH Page 58 of 91

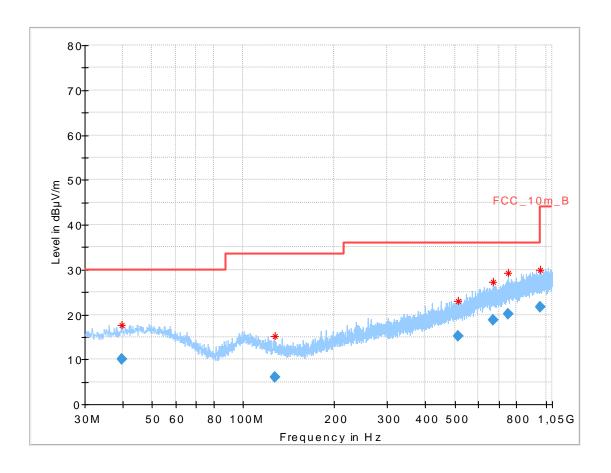
Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
103.210	7.61	33.5	25.89	1000	120	98.0	V	280.0	11.8
167.136	6.24	33.5	27.26	1000	120	170.0	V	280.0	10.1
351.972	12.22	36.0	23.78	1000	120	101.0	Н	280.0	16.0
492.577	14.78	36.0	21.22	1000	120	98.0	V	100.0	18.6
691.169	18.94	36.0	17.06	1000	120	170.0	V	100.0	21.5
901.916	21.48	36.0	14.52	1000	120	98.0	٧	280.0	24.2

© CTC advanced GmbH Page 59 of 91

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

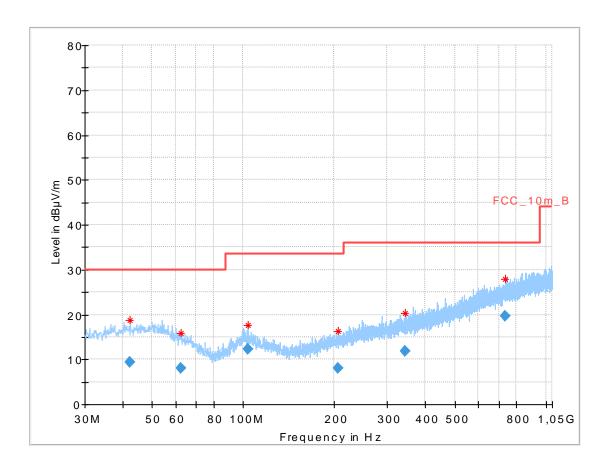

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
99.539	12.54	33.5	20.96	1000	120	101.0	٧	274.0	12.0
164.089	6.08	33.5	27.42	1000	120	101.0	Н	261.0	9.9
204.053	8.01	33.5	25.49	1000	120	170.0	٧	190.0	12.0
477.835	14.47	36.0	21.53	1000	120	170.0	٧	280.0	18.3
548.414	15.89	36.0	20.11	1000	120	101.0	V	271.0	19.3
797.868	29.71	36.0	6.29	1000	120	170.0	٧	190.0	22.7

© CTC advanced GmbH Page 60 of 91

Plots: Receiver mode, black print antenna

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

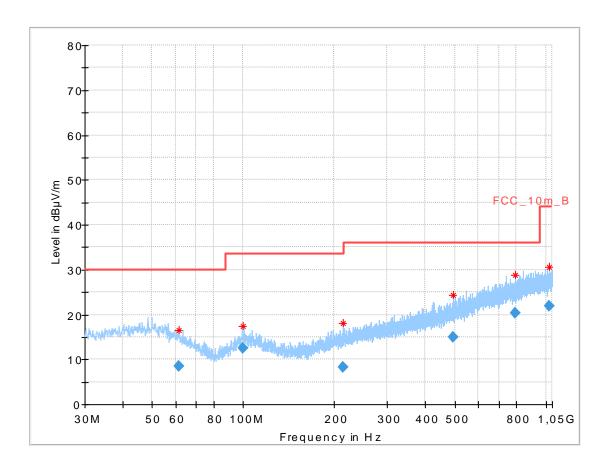
Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.727	10.01	30.0	19.99	1000	120	101.0	V	184.0	13.2
127.467	6.00	33.5	27.50	1000	120	101.0	٧	100.0	9.7
514.005	15.20	36.0	20.80	1000	120	170.0	٧	190.0	18.9
671.917	18.73	36.0	17.27	1000	120	170.0	Н	80.0	21.3
750.298	20.15	36.0	15.85	1000	120	170.0	Н	80.0	22.7
956.517	21.69	36.0	14.31	1000	120	170.0	Н	100.0	24.4

© CTC advanced GmbH Page 61 of 91

Plots: Transmit mode, roof antenna

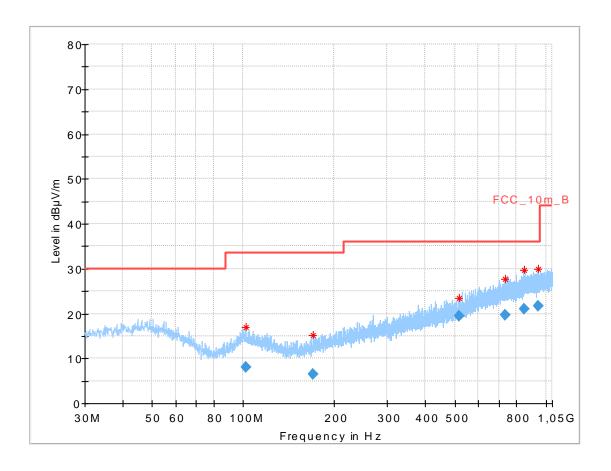
Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.202	9.44	30.0	20.56	1000	120	170.0	Н	260.0	13.4
62.170	8.10	30.0	21.90	1000	120	101.0	Н	271.0	11.4
103.731	12.37	33.5	21.13	1000	120	101.0	٧	171.0	11.8
205.638	7.98	33.5	25.52	1000	120	98.0	٧	181.0	12.1
343.865	11.86	36.0	24.14	1000	120	170.0	Н	280.0	15.8
733.215	19.66	36.0	16.34	1000	120	170.0	٧	261.0	22.3

© CTC advanced GmbH Page 62 of 91

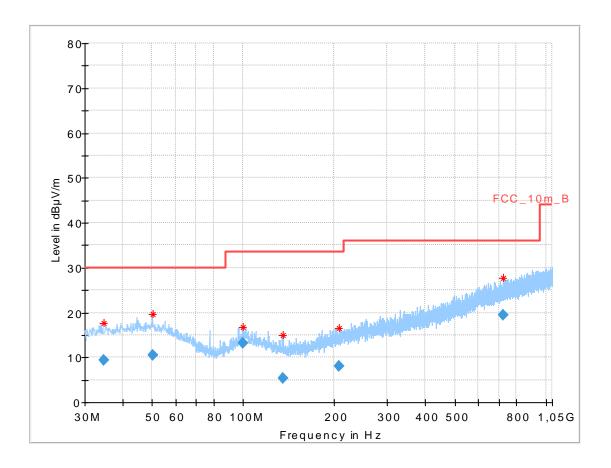
Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
61.563	8.42	30.0	21.58	1000	120	101.0	Н	190.0	11.5
99.539	12.57	33.5	20.93	1000	120	101.0	٧	271.0	12.0
213.913	8.28	33.5	25.22	1000	120	170.0	Н	181.0	12.4
494.726	14.88	36.0	21.12	1000	120	101.0	Н	261.0	18.6
791.058	20.43	36.0	15.57	1000	120	170.0	٧	170.0	22.7
1027.623	21.87	44.0	22.13	1000	120	170.0	٧	100.0	25.4

© CTC advanced GmbH Page 63 of 91

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

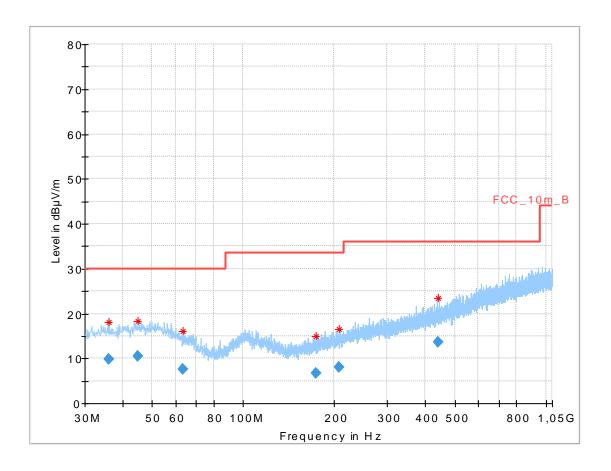

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
102.297	8.05	33.5	25.45	1000	120	170.0	Н	170.0	11.9
170.097	6.53	33.5	26.97	1000	120	170.0	Н	280.0	10.3
515.418	19.55	36.0	16.45	1000	120	170.0	٧	260.0	18.9
732.590	19.69	36.0	16.31	1000	120	101.0	Н	261.0	22.3
845.682	21.05	36.0	14.95	1000	120	170.0	٧	181.0	23.5
942.303	21.61	36.0	14.39	1000	120	101.0	Н	261.0	24.3

© CTC advanced GmbH Page 64 of 91

Plots: Receiver mode, roof antenna

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

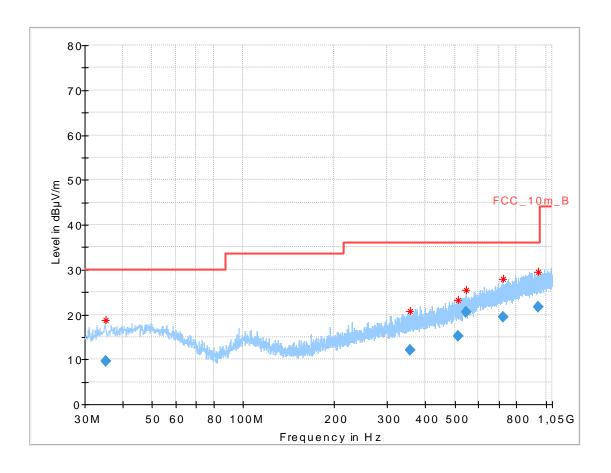
Final results:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.551	9.41	30.0	20.59	1000	120	101.0	V	280.0	12.6
50.429	10.51	30.0	19.49	1000	120	170.0	٧	92.0	13.7
99.530	13.28	33.5	20.22	1000	120	170.0	٧	81.0	12.0
135.032	5.45	33.5	28.05	1000	120	101.0	٧	184.0	9.2
207.856	7.96	33.5	25.54	1000	120	98.0	٧	271.0	12.2
722.425	19.48	36.0	16.52	1000	120	170.0	Н	280.0	22.1

© CTC advanced GmbH Page 65 of 91

Plots: Transmit mode, spoiler antenna

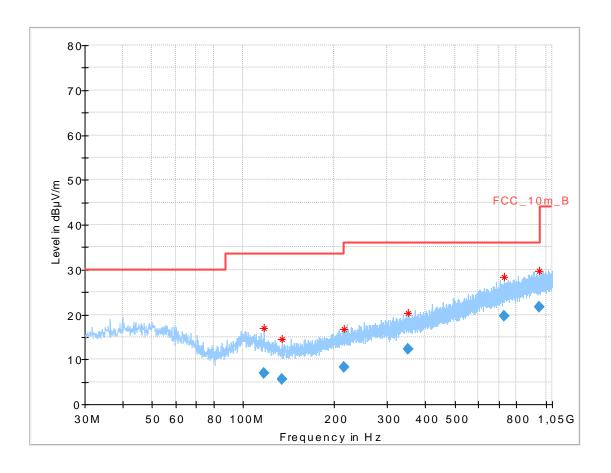
Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.151	9.78	30.0	20.22	1000	120	101.0	Н	190.0	12.8
44.926	10.60	30.0	19.40	1000	120	170.0	٧	100.0	13.6
63.456	7.55	30.0	22.45	1000	120	170.0	٧	81.0	11.1
174.428	6.71	33.5	26.79	1000	120	170.0	٧	170.0	10.6
207.860	7.96	33.5	25.54	1000	120	98.0	٧	94.0	12.2
442.370	13.71	36.0	22.29	1000	120	170.0	Н	171.0	17.5

© CTC advanced GmbH Page 66 of 91

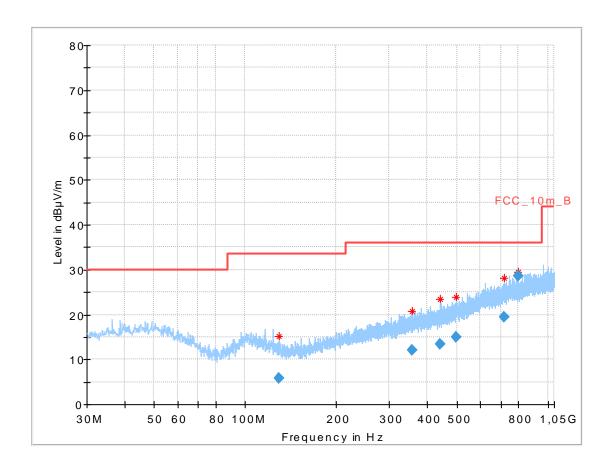
Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.256	9.69	30.0	20.31	1000	120	101.0	Н	190.0	12.7
355.298	12.11	36.0	23.89	1000	120	170.0	Н	190.0	16.1
513.414	15.22	36.0	20.78	1000	120	101.0	٧	190.0	18.9
543.981	20.58	36.0	15.42	1000	120	101.0	٧	91.0	19.3
720.475	19.51	36.0	16.49	1000	120	98.0	V	260.0	22.0
944.713	21.58	36.0	14.42	1000	120	170.0	٧	271.0	24.3

© CTC advanced GmbH Page 67 of 91

Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
117.427	6.87	33.5	26.63	1000	120	101.0	V	261.0	10.5
134.750	5.48	33.5	28.02	1000	120	170.0	٧	260.0	9.2
215.303	8.18	33.5	25.32	1000	120	170.0	٧	170.0	12.4
351.992	12.21	36.0	23.79	1000	120	170.0	Н	271.0	16.0
730.505	19.77	36.0	16.23	1000	120	170.0	Н	190.0	22.3
950.107	21.69	36.0	14.31	1000	120	98.0	٧	280.0	24.3

© CTC advanced GmbH Page 68 of 91

Plots: Receiver mode, spoiler antenna

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
129.792	5.72	33.5	27.78	1000	120	170.0	V	280.0	9.6
355.034	12.12	36.0	23.88	1000	120	170.0	Н	280.0	16.1
439.269	13.51	36.0	22.49	1000	120	98.0	Н	261.0	17.5
497.356	14.90	36.0	21.10	1000	120	98.0	٧	260.0	18.7
716.945	19.40	36.0	16.60	1000	120	101.0	V	260.0	22.0
798.111	28.56	36.0	7.44	1000	120	170.0	٧	182.0	22.7

© CTC advanced GmbH Page 69 of 91

11.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 26 GHz				
Trace mode	Max hold				
Measured modulation	GFSK				
Test setup	See sub clause 6.2 A (1 GHz - 18 GHz) See sub clause 6.3 A (18 GHz - 26 GHz)				
Measurement uncertainty	See sub clause 8				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC			
100			10			
	TX spurious em	issions radiated				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	812	.209				
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance			
Above 960 54.0 (Average) 3						
Above 960	Above 960 74.0 (Peak) 3					

© CTC advanced GmbH Page 70 of 91

Results: Transmitter mode, dipole evaluation antenna

	TX spurious emissions radiated [dBμV/m]								
2402 MHz 2440				2440 MHz		2480 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m]						
		All detecte	ed emissions	are more thai	n 20 dB below	the limit.			
	Peak			Peak			Peak		
	AVG			AVG			AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		

Results: Transmitter mode, black print antenna

	TX spurious emissions radiated [dBμV/m]								
2402 MHz 2440 MHz						2480 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
4804	Peak	49.8		Peak			Peak		
4004	AVG	43.0		AVG			AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		

Results: Transmitter mode, roof antenna

	TX spurious emissions radiated [dBμV/m]								
2402 MHz 2440 MH						2480 MHz			
F [MHz]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Level [dBµV/m]			
		All detecte	ed emissions	are more thai	n 20 dB below	the limit.			
	Peak			Peak			Peak		
	AVG			AVG			AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		

Results: Transmitter mode, spoiler antenna

	TX spurious emissions radiated [dBμV/m]								
2402 MHz 2440 MHz					2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m]					Level [dBµV/m]	
	All detected emissions are more than 20 dB below the limit.								
	Peak			Peak			Peak		
	AVG			AVG			AVG		
	Peak			Peak			Peak		
	AVG			AVG			AVG		

© CTC advanced GmbH Page 71 of 91

Results: Receiver mode, dipole evaluation antenna

RX spurious emissions radiated [dBμV/m]							
F [MHz] Detector Level [dBµV/m]							
All detecte	All detected emissions are more than 20 dB below the limit.						
	Peak AVG						

Results: Receiver mode, black print antenna

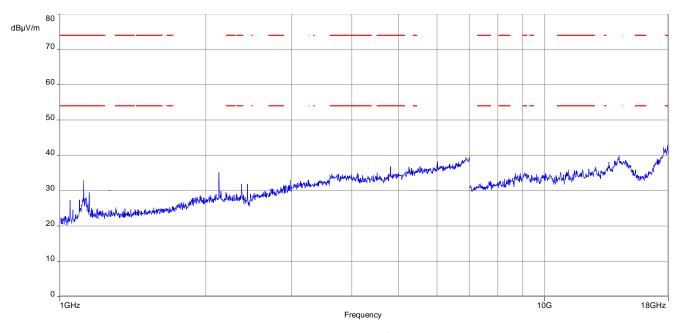
RX spurious emissions radiated [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
All detecte	All detected emissions are more than 20 dB below the limit.					
	Peak					
AVG						

Results: Receiver mode, roof antenna

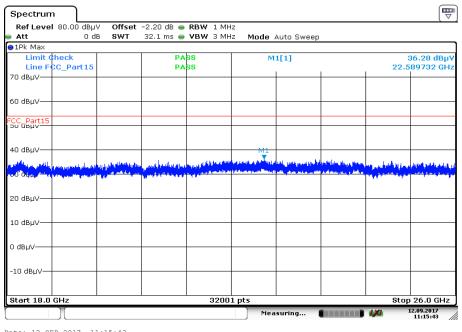
RX spurious emissions radiated [dBμV/m]						
F [MHz] Detector Level [dBµV/m]						
All detected	All detected emissions are more than 20 dB below the limit.					
	Peak					
	AVG					

Results: Receiver mode, spoiler antenna

RX spurious emissions radiated [dBμV/m]		
F [MHz]	Detector	Level [dBµV/m]
All detected emissions are more than 20 dB below the limit.		
	Peak	
	AVG	


Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

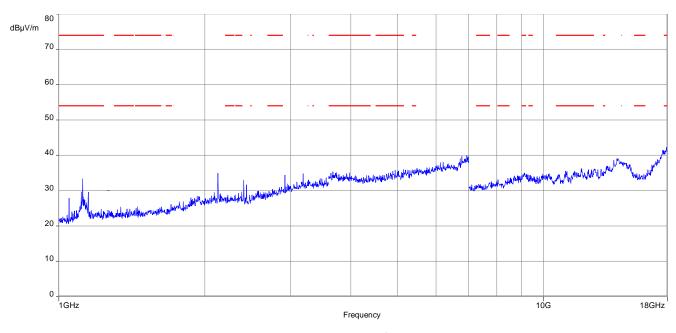
© CTC advanced GmbH Page 72 of 91


Plots: Transmitter mode, dipole evaluation antenna

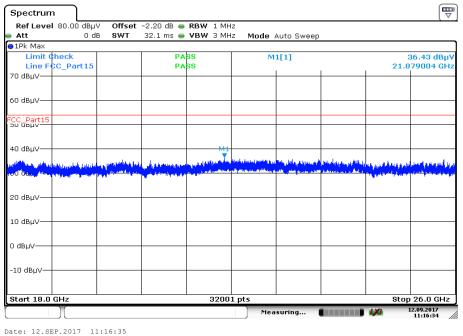
Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

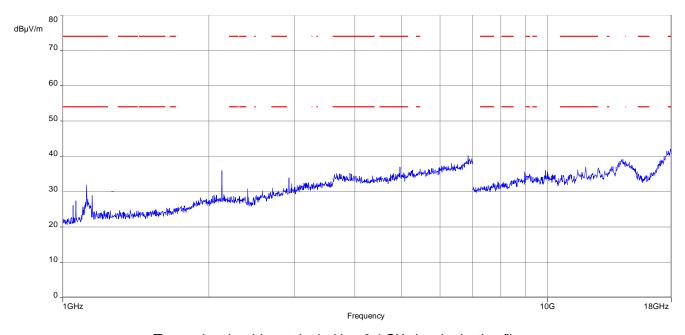
Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

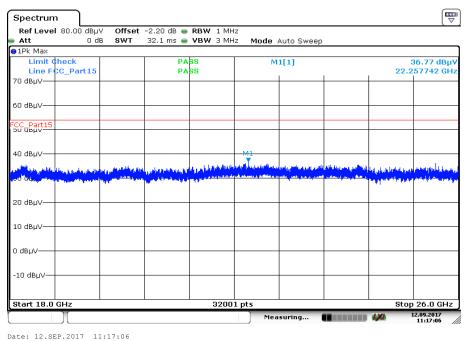


Date: 12.SEP.2017 11:15:43


© CTC advanced GmbH Page 73 of 91

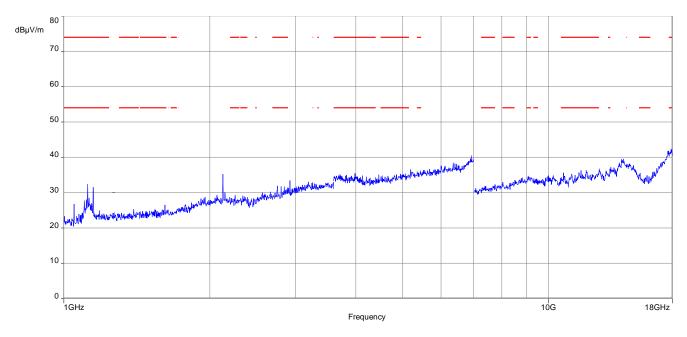
Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

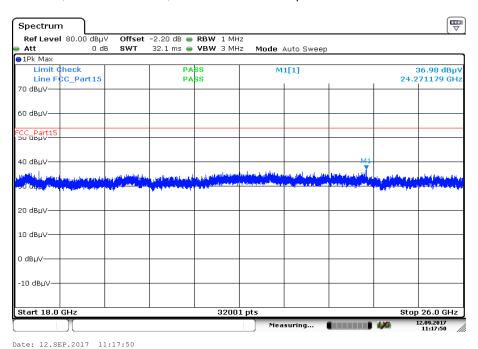

© CTC advanced GmbH Page 74 of 91

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization



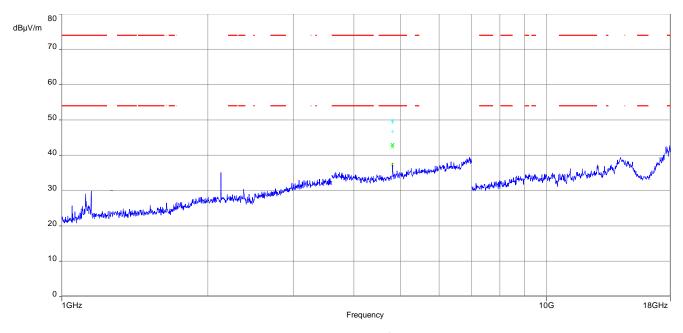
© CTC advanced GmbH Page 75 of 91



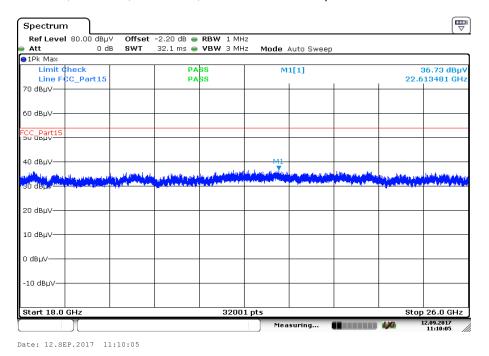
Plots: Receiver mode, dipole evaluation antenna

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

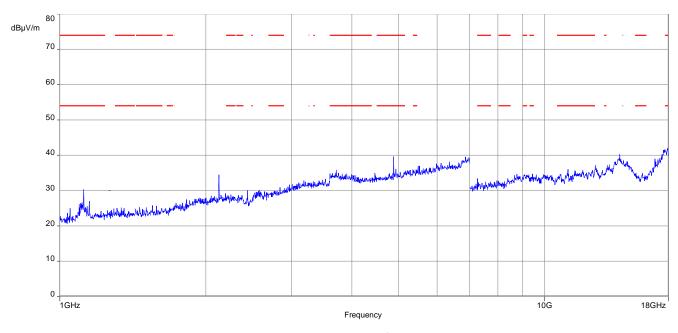


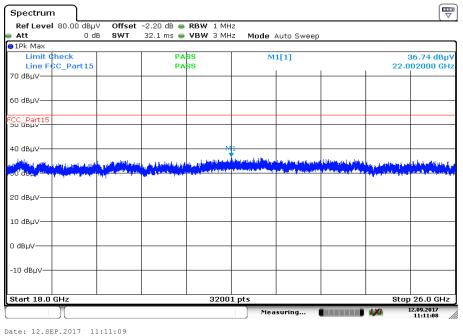
© CTC advanced GmbH Page 76 of 91


Plots: Transmitter mode, black print antenna

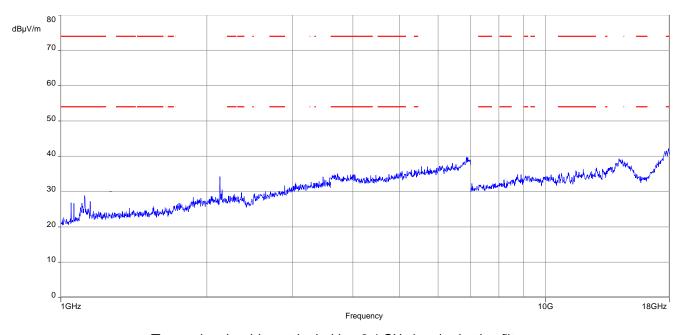
Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

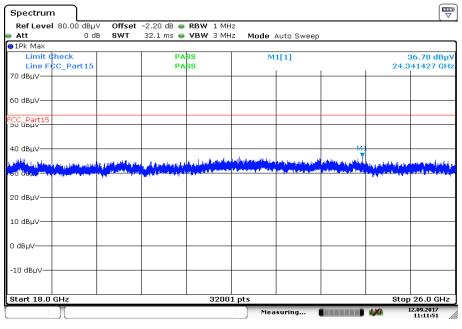
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


© CTC advanced GmbH Page 77 of 91

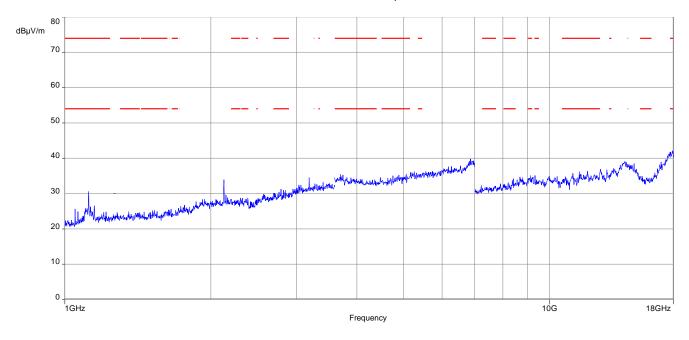
Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

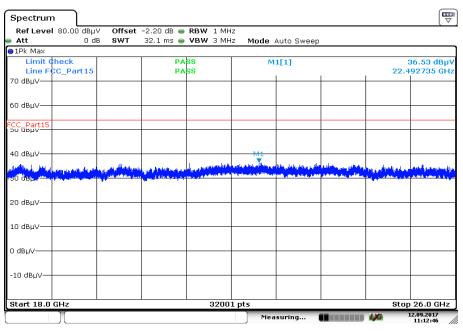

© CTC advanced GmbH Page 78 of 91

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization


Date: 12.SEP.2017 11:11:51

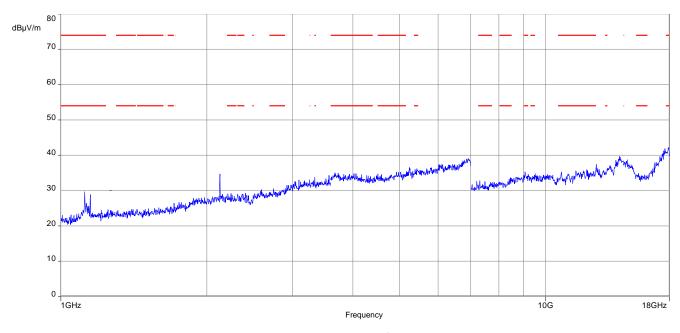
© CTC advanced GmbH Page 79 of 91



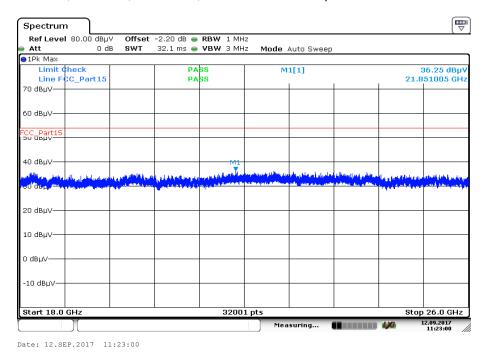
Plots: Receiver mode, black print antenna

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

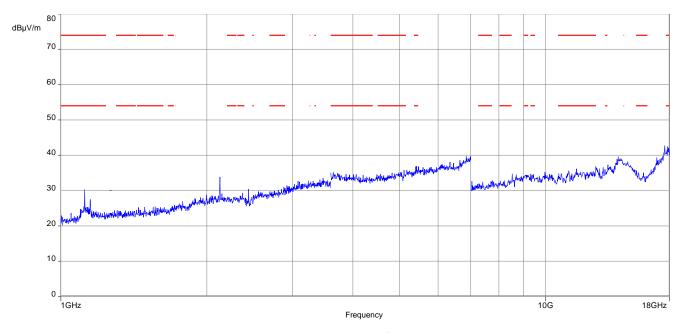

Date: 12.SEP.2017 11:12:46

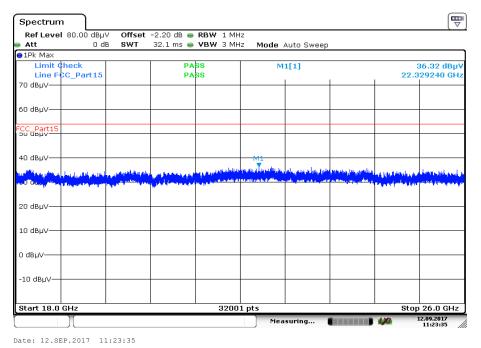
© CTC advanced GmbH Page 80 of 91


Plots: Transmitter mode, roof antenna

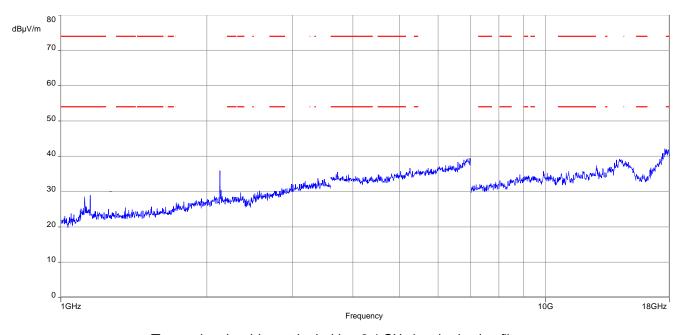
Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

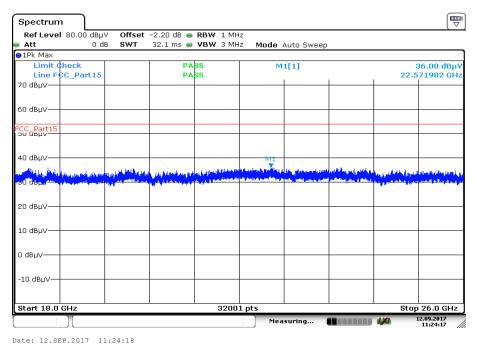
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


© CTC advanced GmbH Page 81 of 91

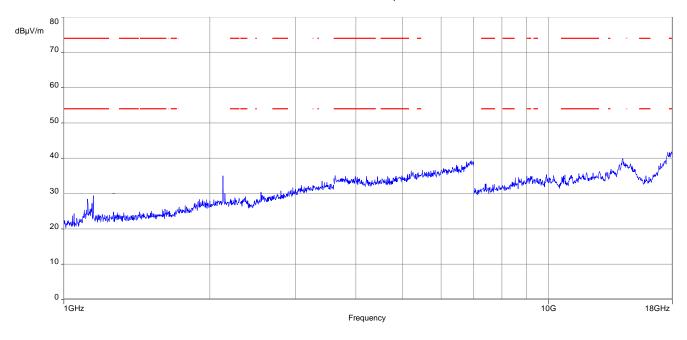
Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

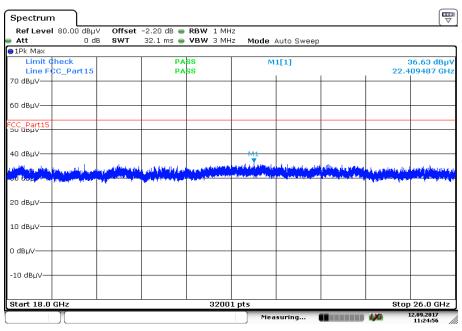

© CTC advanced GmbH Page 82 of 91

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization



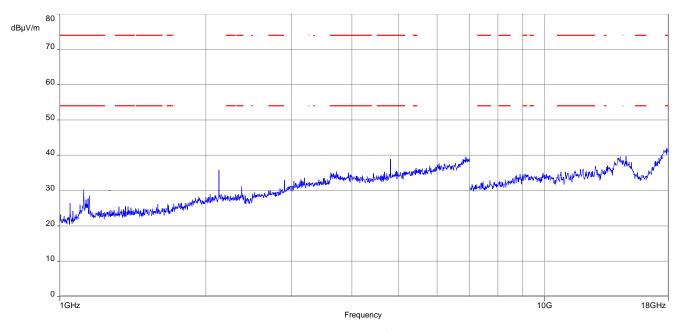
© CTC advanced GmbH Page 83 of 91



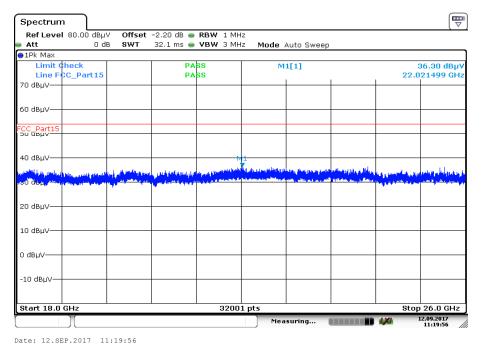
Plots: Receiver mode, roof antenna

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

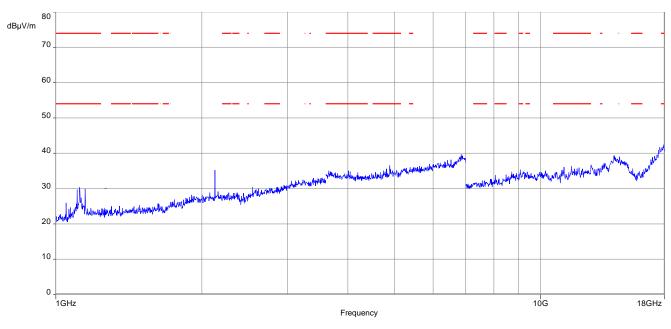

Date: 12.SEP.2017 11:24:56

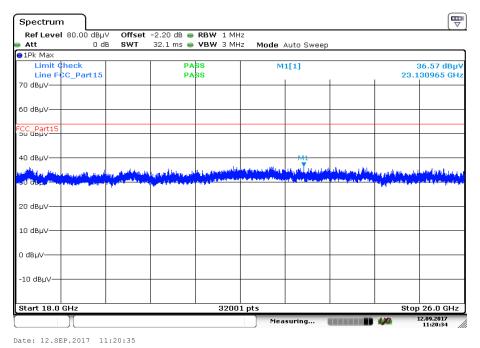
© CTC advanced GmbH Page 84 of 91


Plots: Transmitter mode, spoiler antenna

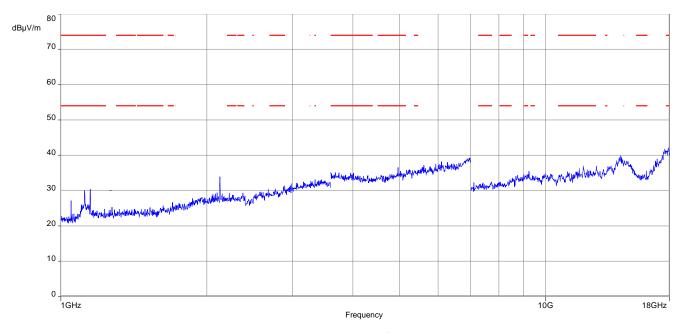
Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

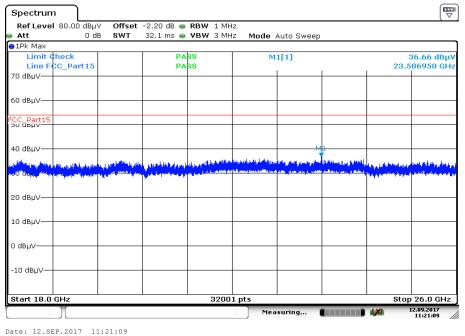
The carrier signal is notched with a 2.4 GHz band rejection filter.


Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization


© CTC advanced GmbH Page 85 of 91

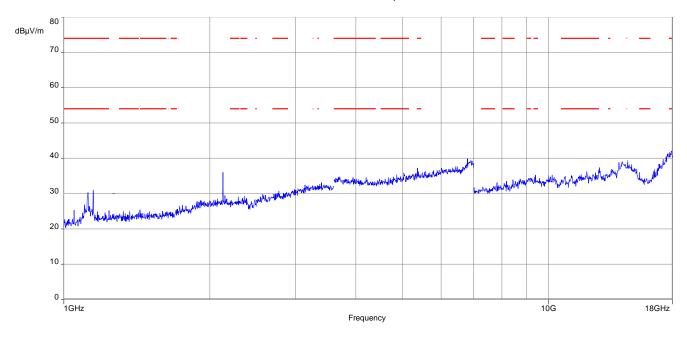
Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization


Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization

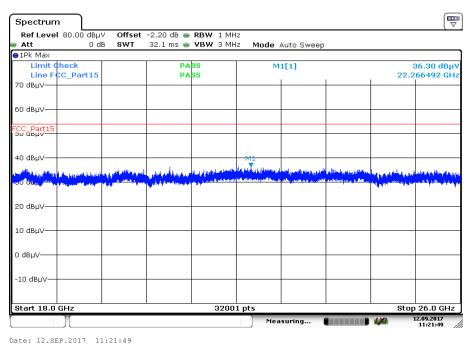

© CTC advanced GmbH Page 86 of 91

Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization

Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization



© CTC advanced GmbH Page 87 of 91



Plots: Receiver mode, spoiler antenna

Plot 1: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

© CTC advanced GmbH Page 88 of 91 Test report no.: 1-4502/17-01-02-A

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 89 of 91

Test report no.: 1-4502/17-01-02-A

Annex A Glossary

EUT	Equipment under test		
DUT	Device under test		
UUT	Unit under test		
GUE	GNSS User Equipment		
ETSI	European Telecommunications Standards Institute		
EN	European Standard		
FCC	Federal Communications Commission		
FCC ID	Company Identifier at FCC		
IC	Industry Canada		
PMN	Product marketing name		
HMN	Host marketing name		
HVIN	Hardware version identification number		
FVIN	Firmware version identification number		
EMC	Electromagnetic Compatibility		
HW	Hardware		
SW	Software		
Inv. No.	Inventory number		
S/N or SN	Serial number		
3/N 0/ 3N	Compliant		
NC	Not compliant		
NA NA	Not applicable		
NP	Not performed		
PP	Positive peak		
QP			
AVG	Quasi peak Average		
OC	-		
ocw	Operating channel Operating channel bandwidth		
OBW	Occupied bandwidth		
ODW	Out of band		
DFS	Dynamic frequency selection		
CAC	Channel availability check		
OP	Occupancy period		
NOP	Non occupancy period		
DC	Duty cycle		
PER	Packet error rate		
CM	Clean wave		
MC	Modulated carrier		
WLAN	Wireless local area network		
RLAN	Radio local area network		
DSSS	Dynamic sequence spread spectrum		
OFDM	Orthogonal frequency division multiplexing		
FHSS	Frequency hopping spread spectrum		
GNSS	Global Navigation Satellite System		
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz		
C/140	Camer to holog-denoity ratio, expressed in do-riz		

© CTC advanced GmbH Page 90 of 91

Test report no.: 1-4502/17-01-02-A

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-09-27
А	PMN changed	2018-05-29

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Burdesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 9raunschweig
is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PI-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PI-12076-01-03 Diefytg, (FH) Ball Before Held of Division	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Askrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation attested by DAKS. The accreditation are desired pursuant to the Act on the Accreditation Body (AkkSelleG) of 31 July 2009 (Federal Law Gazette I.p. 2625) and the Regulation (EC) NO 765/2008 of the European Parliament and of the Council of 5 July 2008 stering out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1. 218 of 9 July 2008, p. 30). DAKS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and international Laboratory Accreditation Cooperation (LIAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.usopean-accreditation.org IAC: www.lac.org IAF: www.lac.org
See notice confact.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 91 of 91