

1. FCC SAR TEST EXCLUSION CALCULATIONS

FCC ID: VC7120-0141

Model number: AURA29BLE

Based on guidance from KDB 447498

1.1 SAR TEST EXCLUSION CALCULATION FOR 915MHz BAND OPERATION

Time averaged conducted power			
Nominal power output	-5dBm	Set by Firmware	
Production tolerance	+0.5dB	IC tolerance over	
		temperature and supply	
max conducted power	-4.5dBm	"tune up tolerance"	
	(0.35mW)		
Max theoretical duty cycle in	0.14%	25ms every 17.6s	
normal operation			
Max average conducted power	0.00049 mW		
Rounded up to nearest mW	1 mW	(clause 4.3.1)	

Minimum test Separation Distance		
Minimum 5mm is used	It is conceivable that a user might touch the electronic	
(clause 4.1.5)	shelf label display while it is transmitting. Antenna is	
	4mm from the surface of the display.	

Minimum frequency	902.5 MHz
Maximum frequency	927.5 MHz

SAR test exclusion threshold calculation (clause 4.3.1)

Calculation = Power of channel (mW) / min test separation(mm) * [sqrt freq (GHz)]. result rounded to 1decimal place

Min channel: 1/5 * [sqrt 0.9025] = 0.2Max channel: 1/5 * [sqrt 0.9275] = 0.2

This is below the limits for 1-g SAR (3.0) and 10-g SAR (7.5) and so the product meets the thresholds for SAR test exclusion.

1.2 SAR TEST EXCLUSION CALCULATION FOR BLE BAND OPERATION

Time averaged conducted power			
Nominal power output	-1dBm	Set by Firmware and HW	
		RF chain	
Production tolerance	+0.5dB	IC tolerance over	
		temperature and supply	
max conducted power	-0.5dBm	"tune up tolerance"	
	(0.89mW)		
Max theoretical duty cycle in	0.54%	2.7ms every 500ms	
normal operation			
Max average conducted power	0.0048 mW		
Rounded up to nearest mW	1 mW	(clause 4.3.1)	

Minimum test Separation Distance		
Minimum 5mm is used	It is conceivable that a user might touch the electronic	
(clause 4.1.5)	shelf label display while it is transmitting. Antenna is	
	4mm from the surface of the display.	

Minimum frequency	2402 MHz
Maximum frequency	2480 MHz

SAR test exclusion threshold calculation (clause 4.3.1)

Calculation = Power of channel (mW) / min test separation(mm) * [sqrt freq (GHz)]. result rounded to 1decimal place

Min channel: 1/5 * [sqrt 2.402] = 0.3Max channel: 1/5 * [sqrt 2.480] = 0.3

This is below the limits for 1-g SAR (3.0) and 10-g SAR (7.5) and so the product meets the thresholds for SAR test exclusion.

2. MPE CALCULATION AND RADIATION EXPOSURE RISK ASSESSMENT

FCC ID: VC7120-0141 IC ID: 8910A-1200141 Model: AURA29BLE

2.1 MPE CALCULATION AND EXPOSURE RISK FOR 915MHz BAND OPERATION

Following guidelines in KDB 447498 D03 supplement C Cross-reference v01

Prediction of MPE limit at a given distance

$$S = \frac{1.64ERP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{1.64ERP}{S4\pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

ERP = EUT Maximum power

With the maximum test case 100% duty cycle the MPE calculation result based on radiated field measurements from AURA29BLE test report 15R352 FR (Max Result @ 902.5MHz = 86.1dBuV @ 3m = 0.07mW ERP)

Prediction frequency (MHz)	Max ERP (mW)	Power density limit (S) (mW/cm2)	Distance R cm required to be less than 0.6mW/cm2
902.5MHz	0.07	0.6	0.12

Exposure risk in normal operation in 915MHZ band operation

The maximum theoretical transmitter duty cycle in operation is 25ms every 17.6s, (0.14%), which reduces the average ERP to 0.0001mW In practice, it is impossible to reach the power density limit of 0.6mW/cm2 with average ERP, because the required distance R=0.005cm is smaller than the distance from the antenna to the outside surface of the device enclosure.

AURA29BLE is a fixed installation. In a retail shelf edge context it is possible human body will contact the device, but with only momentary exposure.

2.2 MPE CALCULATION AND EXPOSURE RISK FOR BLE BAND OPERATION

Following guidelines in KDB 447498 D03 supplement C Cross-reference v01

Prediction of MPE limit at a given distance

$$S = \frac{1.64ERP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{1.64ERP}{S4\pi}}$$

where:

S = power density R = distance to the centre of radiation of the antenna

ERP = EUT Maximum power

With the maximum test case 100% duty cycle the MPE calculation result based on radiated field measurements from AURA29BLE test report 15R352 FR (Max Result @ 2402MHz = 89.1dBuV @ 3m = 0.07mW ERP)

Prediction frequency (MHz)		Power density limit (S) (mW/cm2)	Distance R cm required to be less than 0.6mW/cm2
902.5MHz	0.14	0.6	0.17

Exposure risk in normal operation in BLE band operation

The BLE transmitter duty cycle in operation is 2.7ms every 500ms, (0.54%), which brings average ERP to 0.00007mW.

In practice, it is impossible to reach the power density limit of 0.6mW/cm2 with average ERP, because the required distance R=0.012cm is smaller than the distance from the antenna to the outside surface of the device enclosure.

AURA29BLE is a fixed installation. In a retail shelf edge context it is possible human body will contact the device, but with only momentary exposure.

3. INDUSTRY CANADA RSS-102 exemption requirements

IC ID: 8910A-1200141

Installation of the device when in service could be <20cm from any part of the user.

Therefore the electronic shelf label AURA29BLE falls under RSS-102 issue 5, section 2.5.1

To meet the requirement for exemption from routine evaluation the maximum EIRP must then be less than 200mW.

From AURA29BLE test report 15R352FR:-

Maximum TX power = 89.1 dBuV @ 3m @ 2402MHz = 0.24mW EIRP (0.14mW ERP)

Assessment carried out by:-

Simon Cox

Senior Hardware Engineer

Date of Assessment: Oct 4th 2015

Tel +441344292110 Mob +447713261059 simon.cox@displaydata.com