

1. FCC SAR TEST EXCLUSION CALCULATIONS

FCC ID: VC7120-0112

Model number: CHROMA 29

Based on guidance from KDB 447498

1.1 SAR TEST EXCLUSION CALCULATION

Time averaged conducted power				
Nominal power output	-5dBm	Set by Firmware		
Production tolerance	+0.5dB	IC tolerance over		
		temperature and supply		
max conducted power	-4.5dBm	"tune up tolerance"		
	(0.35mW)			
Max theoretical duty cycle in	0.14%	25ms every 17.6s		
normal operation				
Max average conducted power	0.00049 mW			
Rounded up to nearest mW	1 mW	(clause 4.3.1)		

Minimum test Separation Distance			
Minimum 5mm is used	It is conceivable that a user might touch the electronic		
(clause 4.1.5)	shelf label display while it is transmitting. Antenna is		
	3mm from the surface of the display.		

Minimum frequency	902.5 MHz
Maximum frequency	927.5 MHz

SAR test exclusion threshold calculation (clause 4.3.1)

Calculation is Power of channel (mW) / min test separation(mm) * [sqrt freq (GHz)]. (result rounded to 1decimal place)

Min. channel: 1/5 * [sqrt 0.9025] = 0.2Max. channel: 1/5 * [sqrt 0.9275] = 0.2

This is below the limits for 1-g SAR (3.0) and 10-g SAR (7.5) and so the product meets the thresholds for SAR test exclusion.

2. MPE CALCULATION AND RADIATION EXPOSURE RISK ASSESSMENT

FCC ID: VC7120-0112 IC ID: 8910A-1200112 Model: Chroma 29

2.1 MPE CALCULATION AND EXPOSURE RISK

Following guidelines in KDB 447498 D03 supplement C Cross-reference v01

Prediction of MPE limit at a given distance

$$S = \frac{1.64ERP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{1.64ERP}{S4\pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

ERP = EUT Maximum power

With the maximum test case 100% duty cycle the MPE calculation result based on radiated field measurements from Hursley EMC test report no.17R506 FR "FCC Part 15C, Industry Canada, AS/NZS 4268 Certification Report for the Chroma 29 Display":

Max Result at 913.5MHz is 80.76dBuV/m @ 3m, equivalent to 0.0218mW ERP

Prediction frequency (MHz)		Power density limit (S) (mW/cm2)	Distance R cm required to be less than 0.6mW/cm2	
913.5MHz	0.0218	0.6	0.069	

Exposure risk in normal operation

The maximum theoretical transmitter duty cycle in operation is 25ms every 17.6s, (0.14%), which reduces the average ERP to 0.000054mW.

In practice, it is impossible to reach the power density limit of 0.6mW/cm2 even with 100% duty cycle, because the required distance R is smaller than the distance from the antenna to the outside surface of the device enclosure.

Chroma 29 is a fixed installation. In a retail shelf edge context it is possible human body will contact the device, but with only momentary exposure.

3. INDUSTRY CANADA RSS-102 exemption requirements

IC ID: 8910A-1200112 Model: Chroma 29

The minimum distance and bystander could be <5mm, if the bystander is touching the product, therefore the electronic shelf label CHROMA 29 falls under RSS-102 issue 5, section 2.5.1

From RSS-102 issue 5, section 2.5.1 table 1 the appropriate exemption limit for the 902.5 to 927.5MHz band of operation is between 7mW and 17mW for <5mm separation distance. (assumed 7mW for worst case)

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency		nW)			
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW

From Hursley EMC test report no.17R506 FR "FCC Part 15C, Industry Canada, AS/NZS 4268 Certification Report for the Chroma 29 Display":

Max Result (100% duty cycle) at 913.5MHz is 80.76dBuV/m @ 3m, equivalent to 0.0357mW EIRP (0.0218mW ERP)

Maximum TX power with 100% duty cycle, adjusted for +0.5dB production tolerance: 81.26dBuV/m@3m @ 902.5MHz = 0.0401mW EIRP (0.0244mW ERP)

The maximum theoretical transmitter duty cycle in operation is 25ms every 17.6s, (0.14%), which reduces the maximum EIRP to 0.0000995mW.

This meets the requirement for exemption from routine evaluation.

Assessment carried out by:

Oli Bailey (Senior Hardware Engineer)

Date of Assessment: 19TH October. 2017

Tel: +44 1344 292 110

Email: oli.bailey@displaydata.com