HC02 Universal ISM Band FSK Transmitter

HC02 is a single chip, low power, multi-channel FSK transmitter designed for use in applications requiring FCC or ETSI conformance for unlicensed use in the 433, 868, and 915 MHz bands. Used in conjunction with HC01, HC's FSK receiver, the HC02 transmitter produces a flexible, low cost, and highly integrated solution that does not require production alignments. All required RF functions are integrated. Only an external crystal and bypass filtering are needed for operation. The HC02 offering a higher output power and an improved phase noise characteristic.

The HC02 features a completely integrated PLL for easy

RF design, and its rapid settling time allows for fast frequency hopping, bypassing multipath fading and interference to achieve robust wireless links. In addition, highly stable and accurate FSK modulation is accomplished by direct closed-loop modulation with bit rates up to 115.2 kbps. The PLL's high resolution allows the use of multiple channels in any of the bands.

The integrated power amplifier of the transmitter has an open-collector differential output that directly drive a loop antenna with programmable output level. No additional matching network is required. An automatic antenna tuning circuit is built in to avoid costly trimming procedures and de-tuning due to the "hand effect".

For low-power applications, the device supports automatic activation from sleep mode. Active mode can be initiated by several wake-up events (on-chip timer timeout, low supply voltage detection).

FEATURES

- Fully integrated (low BOM, easy design-in)
- No alignment required in production
- Fast settling, programmable, high-resolution PLL
- Fast frequency hopping capability
- Stable and accurate FSK modulation with programmable deviation
- Programmable PLL loop bandwidth
- Direct loop antenna drive
- Automatic antenna tuning circuit
- Programmable output power level
- SPI bus for applications with microcontroller
- Clock output for microcontroller
- Integrated programmable crystal load capacitor
- Multiple event handling options for wake-up activation
- Wake-up timer
- Low battery detection
- 2.2V to 5.4V supply voltage
- Low power consumption
- Low standby current (0.3 μA)
- Transmit bit synchronization

TYPICAL APPLICATIONS

- Remote control
- Home security and alarm
- Wireless keyboard/mouse and other PC peripherals
- Toy control
- Remote keyless entry
- Tire pressure monitoring
- Telemetry
- Personal/patient data logging
- Remote automatic meter reading

DETAILED FEATURE-LEVEL DESCRIPTION

The HC02 FSK transmitter is designed to cover the unlicensed frequency bands at 433, 868, and 915 MHz. The device facilitates compliance with FCC and ETSI requirements.

PLL

The programmable PLL synthesizer determines the operating frequency, while preserving accuracy based on the on-chip crystal-controlled reference oscillator. The PLL's high resolution allows the usage of multiple channels in any of the bands. The FSK deviation is selectable (from 30 to 210 kHz with 30 kHz increments) to accommodate various bandwidth, data rate and crystal tolerance requirements, and it is also highly accurate due to the direct closed-loop modulation of the PLL. The transmitted digital data can be sent asynchronously through the FSK pin or over the control interface using the appropriate command.

HC Power Amplifier (PA)

The power amplifier has an open-collector differential output and can directly drive a loop antenna with a programmable output power level. An automatic antenna tuning circuit is built in to avoid costly trimming procedures and the so-called "hand effect."

Crystal Oscillator

The chip has a single-pin crystal oscillator circuit, which provides a 10 MHz reference signal for the PLL. To reduce external parts and simplify design, the crystal load capacitor is internal and programmable. Guidelines for selecting the appropriate crystal can be found later in this datasheet.

The transmitters can supply the clock signal for the microcontroller, so accurate timing is possible without the need for a second crystal. When the chip receives a Sleep Command from the microcontroller and turns itself off, it provides several further clock pulses ("clock tail") for the microcontroller to be able to go to idle or sleep mode. The length of the clock tail is programmable.

Low Battery Voltage Detector

The low battery voltage detector circuit monitors the supply voltage and generates an interrupt if it falls below a programmable threshold level.

Wake-Up Timer

The wake-up timer has very low current consumption (1.5 uA typical) and can be programmed from 1 ms to several days with an accuracy of $\pm 5\%$.

It calibrates itself to the crystal oscillator at every startup, and then every 30 seconds. When the oscillator is switched off, the calibration circuit switches on the crystal oscillator only long enough for a quick calibration (a few milliseconds) to facilitate accurate wake-up timing.

Event Handling

In order to minimize current consumption, the device supports sleep mode. Active mode can be initiated by several wake-up events: timeout of wake-up timer, detection of low supply voltage or through the serial interface.

If any wake-up event occurs, the wake-up logic generates an interrupt, which can be used to wake

up the microcontroller, effectively reducing the period the microcontroller has to be active. The cause of the interrupt can be read out from the transmitters by the microcontroller through the nIRQ pin.

Interface

An SPI compatible serial interface lets the user select the operating frequency band and center frequency of the synthesizer, polarity and deviation of FSK modulation, and output power level. Division ratio for the microcontroller clock, wake-up timer period, and low battery detector threshold are also programmable. Any of these auxiliary functions can be disabled when not needed. All parameters are set to default after power-on; the programmed values are retained during sleep mode.

PACKAGE PIN DEFINITIONS

Pin type key: D=digital, A=analog, S=supply, I=input, O=output, IO=input/output

9	MOD	DI	Connect to logic high
10	RFN	AO	Power amplifier output (open collector)
11	RFP	AO	Power amplifier output (open collector)
12	nIRQ	DO	Interrupt request output for microcontroller (active low) and status read output
13	VDD_RF	S	RF VDD(Connect to VDD)
14	VDD_A	S	Analog VDD(Connect to VDD)
15	VDD_D	S	Digital VDD(Connect to VDD)
16	FSK	DI	Serial data input for FSK modulation

Typical application

GENERAL DEVICE SPECIFICATION

All voltages are referenced to V_{ss} , the potential on the ground reference pin VSS.

Symbol	Parameter	Min	Max	Units
V _{dd}	Positive supply voltage	-0.5	6.0	V
Vin	Voltage on any pin except open collector outputs	-0.5	V _{dd} +0.5	V
V _{oc}	Voltage on open collector outputs	-0.5	6.0	V
l _{in}	Input current into any pin except VDD and VSS	-25	25	mA
ESD	Electrostatic discharge with human body model		1000	V
T _{st}	Storage temperature	-55	125	°C

Absolute Maximum Ratings (non-operating)

Recommended Operating Range

Symbol	Parameter	Min	Max	Units
V _{dd}	Positive supply voltage	2.2	5.4	V
V _{oc}	Voltage on open collector outputs (Max 6.0 V)	V _{dd} - 1	V _{dd} + 1	V
T _{op}	Ambient operating temperature	-40	85	°C

ELECTRICAL SPECIFICATION

(Min/max values are valid over the whole recommended operating range, typ conditions:

T_{op} =27°C;V_{dd} =V_{oc}=2.7V)

DC Characteristics

Symbol	Parameter		Conditions/Notes	Min	Тур	Max	Units
I _{dd_TX_0}	Supply current	433 MHz band	Active state with		12		mA
	(TX mode,	868 MHz band	0dBm		14		
	Pout =0dBm)	915 MHz band	output power		15		
I _{dd_TX_PMAX}	Supply current	433 MHz band	Active state with		21		mA
	(TX mode,	868 MHz band	maximum output		23		
	Pout =P _{max})	915 MHz band	power		24		
I _{pd}	Standby current	in sleep mode	All blocks		0.3		μA
	(Note 1)		disabled				
l _{wt}	Wake-up timer c	urrent			1.5		μA
	consumption						
I _{Ib}	Low battery dete	ector current			0.5		μA
	consumption						
l _x	Idle current		Only crystal		1.5		mA
			oscillator is on				

V _{lba}	Low battery detection accuracy			75		mV
V _{lb}	Low battery detector threshold	Programmable in	2.2		5.3	V
		0.1 V steps				
Vil	Digital input low level				$0.3^{*}V_{dd}$	V
V _{ih}	Digital input high level		$0.7^{*}V_{dd}$			V
lii	Digital input current	V _{il} = 0 V	-1		1	μA
l _{ih}	Digital input current	$V_{ih} = V_{dd}, V_{dd} = 5.4$	-1		1	μA
		V				
V _{ol}	Digital output low level	I _{ol} = 2 mA			0.4	V
V _{oh}	Digital output high level	I _{oh} = -2 mA	V _{dd} -0.4			V

AC Characteristic

Symbol	Parameter	Conditions/Notes	Min	Тур	Max	Units
f _{ref}	PLL reference frequency	Crystal operation mode is parallel (Note 2)	9	10	11	MHz
fo		433MHz band, 2.5kHz resolution 868MHz band, 5.0kHz resolution 915MHz band, 7.5kHz resolution	430.24 860.48 900.72		439.75 879.51 929.27	MHz
t _{lock}	PLL lock time	Frequency error < 10 kHz after 10 MHz step, POR default PLL setting(Note 7)		20		μs
t _{sp}	PLL startup time	After turning on from idle mode, with crystal oscillator already stable, POR default PLL setting (Note 7)			250	μs
Ι _{Ουτ}	Open collector output current (Note 3)	At all bands	0.5		6	mA
P _{maxL}	Available output power (433MHz band)	With opt. antenna impedance (Note 4)		8		dBm
P_{maxH}	Available output power (868 and 915 MHz band)	With opt. antenna impedance (Note 4)		6		dBm
P _{out}	Typical output power	Selectable in 3 dB steps (Note 3)	P _{max} -21		P _{max}	dBm
P _{sp}	Spurious emission	At max power with loop antenna (Note 5)			-50	dBc

	Output capacitance	At low bands	1.5	2.3	2.8	
Co	(set by the automatic	At high bands	1.6	2.2	3.1	pF
	antenna tuning circuit)					
0	Quality factor of the		16	18	22	ъĘ
Qo	output capacitance					μг
		100 kHz from carrier		-85		dBc/Uz
∟out	Output phase hoise	1 MHz from carrier (Note 7)		-105		UDC/NZ
BR _{FSK}	FSK bit rate	(Note 7)			115.2	kbps
df	FSK frequency	Programmable in 20 kHz stope	30		210	
Ulfsk	deviation	Programmable in 30 km2 steps		KHZ		КПД
	Crystal load	Programmable in 0.5 pF steps,	8.5		16	
C.	capacitance See	tolerance +/-10%				ъĒ
Uxi	Crystal Selection					pF
	Guidelines					
teop	Internal POR timeout	After V_{dd} has reached 90% of			50	ms
POR	(Note 6)	final value				113
+	Crystal oscillator	Crystal ESR < 100 Ohms		1.5	5	ms
LSX	startup time					1113
t	Wake-up timer clock	Calibrated eveny 30 seconds	0.95	0.95 1.05		me
L PBt	period	Calibrated every 50 seconds			1115	
+ .	Programmable		1		5 *10 ¹¹	ma
lwake-up	wake-up time					1115
C	Digital input				2	ъĘ
Uin, D	capacitance					μг
t .	Digital output rise/fall	15 pE puro capacitivo loca			10	200
۲, f	time	15 pF pure capacitive load				115

Note 1: Using a CR2032 battery (225 mAh capacity), the expected battery life is greater than 2 years using a 60-second wake-up period for sending 50 byte packets in length at 19.2 kbps with +6 dBm output power in the 915 MHz band.

Note 2: Using anything but a 10 MHz crystal is allowed but not recommended because all

crystal-referred timing and frequency parameters will change accordingly.

Note 3: Adjustable in 8 steps.

Note 4: Optimal antenna admittance/impedance for the HC02:

	Yantenna [S]	Zantenna [Ohm]	Lantenna [nH]
434 MHz	1.3E-3 - j6.3E-3	31 + j152	58.00
868 MHz	1.35E-3 - j1.2E-2	9 + j82	15.20
915 MHz	1.45E-3 - j1.3E-2	8.7 + j77	13.60

Note 5: With selective resonant antennas .

Note 6: During this period, no commands are accepted by the chip.

Note 7: The maximum FSK bitrate and the Output phase noise are dependent on the actual setting of the PLL Setting Command.

TYPICAL PERFORMANCE DATA (E02)

Phase noise measurements in the 868 MHz ISM band

Unmodulated RF Spectrum

The output spectrum is measured at different frequencies. The output is loaded with 50 Ohms through a matching network.

At 915 MHz

Modulated RF Spectrum

At 433 MHz with 180 kHz Deviation at 9.6 kbps

At 868 MHz with 180 kHz Deviation at 9.6 kbps

Other Important Characteristics

The antenna tuning characteristics was recorded in "max-hold" state of the spectrum analyzer. During the measurement, the transmitters were forced to change frequencies by forcing an external reference signal to the XTL pin. While the carrier was changing the antenna tuning circuit switched trough all the available states of the tuning circuit. The graph clearly demonstrates that while the complete output circuit had about a 40 MHz bandwidth, the tuning allows operating in a 220 MHz band. In other words the tuning circuit can compensate for 25% variation in the resonant frequency due to any process or manufacturing spread.

CONTROL INTERFACE

Commands to the transmitters are sent serially. Data bits on pin SDI are shifted into the device upon the rising edge of the clock on pin SCK whenever the chip select pin nSEL is low. When the nSEL signal is high, it initializes the serial interface. The number of bits sent is an integer multiple of 8. All commands consist of a command code, followed by a varying number of parameter or data bits. All data are sent MSB first (e.g. bit 15 for a 16-bit command). Bits having no influence (don't care) are indicated with X. The Power On Reset (POR) circuit sets default values in all control and command registers.

Symbol	Parameter	Minimum Value [ns]
t _{CH}	Clock high time	25
t _{CL}	Clock low time	25
t _{ss}	Select setup time (nSEL falling edge to SCK rising edge)	10
t _{sн}	Select hold time (SCK falling edge to nSEL rising edge)	10
t _{SHI}	Select high time	25
t _{DS}	Data setup time (SDI transition to SCK rising edge)	5
t _{DH}	Data hold time (SCK rising edge to SDI transition)	5
t _{OD}	Data delay time	10

Timing Specification

Timing Diagram

Control Commands

	Control Command	Related Parameters/Functions
1	Configuration Sotting Command	Frequency band, microcontroller clock output, crystal load
1	Configuration Setting Command	capacitance, frequency deviation
2	Power Management Command	Crystal oscillator, synthesizer, power amplifier, low battery
2	Power management Command	detector, wake-up timer, clock output buffer
3	Frequency Setting Command	Carrier frequency
4	Data Rate Command	Bit rate
5	Power Setting Command	Nominal output power, OOK mode
6	Low Battery Detector Command	Low battery threshold limit
7	Sleep Command	Length of the clock tail after power down
8	Wake-Up Timer Command	Wake-up time period
9	Data Transmit Command	Data transmission
10	Status Register Command	Transmitter status read
11	PLL Setting Command	PLL bandwidth can be modified by this command

Note: In the following tables the POR column shows the default values of the command registers after power-on.

SGS Reports

			1000.0004	L' T C ARALE	**********	~ 960 A 612			
Limi	Line	Level	Level	Factor	Factor	Loss	Freq		
d	dBuV/m	dBuV/m	dBuV	dB	dB/m	dB	MHz ·		
-11.4	77.00	65.58	78.87	44.70	29.82	1.59	1720.000		1
-9.0	77.00	67.91	78,13	44.80	32.54	2.04	2602.000	8	2
-29.9	77.00	47.02	56.47	45.01	33.21	2.35	3466.000		3

H02 BONDING DIAGRAM

Pad Opening: 85um square, except 76um octagon pads (AN1, AN2)

Die Size: 2220 X 2525 um