

EMC TEST REPORT

Applicant	: MIWA LOCK CO., LTD. 3-1-12, Shiba, Minato-ku, Tokyo, Japan, 105-8510
Type of Equipment	: ALV2 ENTRANCE READER
Model Number	: ALV2DCU·DP
FCC ID	: VBU-ALV2DCU
Standard	: 47 CFR Part 15 Subpart C Section 15.225
Receipt Date of Sample	: 2014-07-28
Date Tested	: 2014-08-01, 2014-08-04, and 2014-08-05
Date Report Issued	: 2014-08-28
Report Number	: EMC14141

The measurements and tests covered by this document have been performed in accordance with the requirements of ISO/IEC 17025 and are traceable to national or international standards of measurement.

This report summarizes the result of a single investigation performed on the described test object and test results relate only to tested sample. The report shall not be reproduced except in full without the written approval of IPS Corporation.

APPROVED by:

Tetsushi Yamaguchi / Director

TESTS SUPERVISED by:

Hougane Mikitomo Horigane

IPS Corporation 1878-1, Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken, 399-0601 Japan Phone: +81-266-44-5200 Fax: +81-266-44-5300

KO

Contents	Page
1 GENERAL INFORMATION	
1.1 Product Description	
1.2 Product Specification	
1.3 Summary of Test Result	
1.4 Measurement Uncertainty	
1.5 Tested Systems Details	
1.6 Test Facility	
2 SYSTEM TEST CONFIGURATION	
2.1 Justification	
2.2 EUT Exercise Software	
2.3 Special Accessories	
2.4 Equipment Conditions	
2.5 Configuration of Tested System	
3 CONDUCTED EMISSION TEST	7
4 RADIATED EMISSION TEST (9 kHz to 30 MHz)	7
4.1 Test Setup	7
4.2 Testing System	7
4.3 Description of Measurement Procedure	7
4.3.1 Exploratory Test	7
4.3.2 Final Test	
4.4 Field Strength Calculation	9
4.5 Test Details	9
5 RADIATED EMISSION TEST (30 MHz to 1 GHz)	
5.1 Test Setup	
5.2 Testing System	
5.3 Description of Measurement Procedure	
5.3.1 Exploratory Test	
5.3.2 Final Test	
5.4 Field Strength Calculation	
5.5 Test Details	
6 FREQUENCY STABILITY TEST	
6.1 Test Setup	
6.2 Testing System	
6.3 Test Details	
7 TEST DATA	
8 TEST CONFIGURATION PHOTO	
8.1 Radiated Emission Test (Axial Direction of EUT)	
8.2.1 Radiated Emission Test	
8.2.2 Radiated Emission Test	
8.3 Frequency Stability Test	

1 GENERAL INFORMATION

1.1 Product Description

The Equipment Under Test (EUT) Model: ALV2DCU•DP is a low power transmitter for hotel card lock and its fundamental frequency is 13.56 MHz. It has two 13.56 MHz transmitters. One is for detection of the approach of RFID card, the other is for communication with RFID card. They do not work simultaneity.

This product was tested according to the standards below.

Condition of EUT

	: Mass-production	\checkmark	: Pre-production		: Engineering prototype
--	-------------------	--------------	------------------	--	-------------------------

1.2 Product Specification

•	Power Supply Rating	: DC3 V, 98 mA
---	---------------------	----------------

- Weight : 400 g
- Dimensions : W 120 mm × D 58.8 mm × H 162 mm
- Highest frequency used : 20 MHz
- Transmitting Frequency : 13.56 MHz

Power source

AC/DC	Ph	EUT	
	Circala Dhasas	: Without PE	
	Single Phase	: With PE	
AC	Three Phases	: Three wires with PE	
		: Four wires with PE	
DC	3	V from DOOR CONTROL UNIT	\checkmark

1.3 Summary of Test Result

Standard		Measurement Frequency Range	Result
Code of Federal Reg	ulation 47 Part 15 Subpart C		
Sec. 15.207	Conducted Emission	150 kHz to 30 MHz	Not performed
Sec. 15.225 (a), (b)), (c), (d), and Sec. 15.209		
	Radiated Emission	9 kHz to 30 MHz	Pass
Sec. 15.225 (d) and	d Sec. 15.209		
	Radiated Emission	30 MHz to 1 GHz	Pass
Sec. 15.225 (e)	Frequency Stability		Pass

1.4 Measurement Uncertainty Emission Test

	onducted Emission AMN Test				U (dB)				
Conducted Emission Test			Frequency range	Polarization	No 3, 10 m Semi-Anechoic Chamber		No 2, 3 m Semi-Anechoic Chamber		
Main port	(ESH2-Z K)	LISN 25, KNW-407, 1W-411)	9 kHz to 30 MHz	-	1.	1.7		1.7	
Telecommunication port	(ISN T	ISN 8, ISN ST08)	150 kHz to 30 MHz	-	1.	.1	1.	.1	
relectoninum cation port	(CVP 2	Probe 200A, F-35A)	150 kHz to 30 MHz	-	1	.2	1.	.2	
						U (dB)		
Radiated Emission Test	Antenna, Clamp		Frequency range	Polarization	No 3, 10 m Semi-Anechoic Chamber		No 2, 3 m Semi-Anechoic Chamber		
					10 m	3 m	10 m	3 m	
	Biconical (BBA9106)		30 MHz to 300 MHz	Horizontal	3.9	3.9	-	4.0	
				Vertical	4.0	4.0	-	4.1	
	LogPeriodic (UHALP9108-A)		300 MHz to 1 GHz	Horizontal	4.1	4.1	-	4.1	
				Vertical	4.1	4.1	-	4.1	
	Dipole (VHA9103)		30 MHz to 300 MHz	Horizontal	3.8	3.8	-	3.8	
				Vertical	4.0	4.0	-	4.0	
Radiated Emission	Dipole (UHA9105)		300 MHz to 1 GHz	Horizontal	3.8	3.8	-	3.8	
				Vertical	4.0	4.0	-	4.0	
		Bilog	20 MHz to 1 CHz	Horizontal	4.2	-	-	-	
	(CBL611	1, CBL6112B)	50 WINZ to 1 ONZ	Vertical	4.2	-	-	-	
	Guide	(EMCO3115, 3117)	1 GHz to 18 GHz	Horizontal	_	26	_	26	
	Horn	* (EMCO3116)	18 GHz to 40 GHz	& Vertical	_	2.0	_	2.0	
Magnetic Field	Loop	(HLA6120)	9 kHz to 30 MHz	-	-	2.6	-	2.6	
Emission	La (ML	rge loop A2000-L)	9 kHz to 30 MHz	-	2.9 -				
Disturbance Power	Absor	oing (KT-10)	30 MHz to 300 MHz	-	3	.5	3.	.5	

Note : Coverage factor k=2

: * Applied for Code of Federal Regulation 47 Part 15

1.5 Tested Systems Details EUT, PERIPHERALS, AND CABLES USED

EUT

Equipment		Manufasturan	MadalNa	Carial Ma	ECC ID and Nata	
ID	Name	Manufacturer	Model No.	Serial No.	FCC ID and Note	
А	ALV2 ENTRANCE READER	MIWA LOCK CO., LTD.	ALV2DCU•DP	14G000558T	FCC ID: VBU-ALV2DCU	

Peripherals

Equipment		Manufaatunan	Madal Na	Coriol Mo	ECC ID and Nota
ID	Name	Manufacturer	Model No.	Serial No.	FCC ID and Note
В	DOOR CONTROL UNIT	MIWA LOCK CO., LTD.	CMHL-001	08G000001T	

Interface Cables

	Cable	Equipment Connected (IDs)	Length	Shield	Bundle	FCC ID and Note	
ID	Name	(From - To)	Length	Silleiu	Buildle	FCC ID allu Note	
а	AC Cable	B - AC Power Supply	2.3 m	No	No	EUT, AC120 V/60 Hz	
b	DC Cable	A - B	2.6 m	No	No	EUT, DC3.0 V	
c	Signal Cable	A - B	2.6 m	No	No	EUT	
d	Earth Cable	A - Ground	2.3 m	No	No	EUT	

Note: Bundle No: The cable is not bundled.

1.6 Test Facility

The test facility is located in following places of IPS Corporation.

Nagano EMC Center
1878-1, Ono, Tatsuno-machi, Kamiina-gun, Nagano-ken, 399-0601 Japan

The test site is registered to FCC pursuant to title 47 CFR §2.948 (e)(1)

- MRA; US-Japan MRA
- Test Firm Registration Number (MRA); 171180
- Designation Number; JP5085
- FCC Registration Number (FRN); 0006-2272-27

2 SYSTEM TEST CONFIGURATION

2.1 Justification

- All tests were performed without any deviation from the ANSI C63.4:2009.
- The system was configured for testing a typical fashion (as a customer would normally use it). The test data of the Radiated emission is presented for the "worst case" measurements, that test program as clause 2.2 should be working and the cable routing was attempted to maximize the emission.
- EUT was tested in three orthogonal orientations for Radiated emission in order to present "the worst case".
- EUT was set to transmit continuously during test by using RF circuit.
- Tests were performed in the following one mode with DC3 V from DOOR CONTROL UNIT.
 - Detection mode Detecting the approach of RFID card.

2.2 EUT Exercise Software

The EUT exercise program used during all testing was designed to exercise the various system components in manner similar to a typical use.

2.3 Special Accessories None.

2.4 Equipment Conditions

The condition at the time of receipt of EUT	: Good
The condition at the time of return of EUT	: Good
Limited conditions	: None
No modification has been carried out by the test labor	oratory.

2.5 Configuration of Tested System

Figure

Note: Refer to the figure/photos of each test for the actual test arrangement.

3 CONDUCTED EMISSION TEST

- No test was performed, as the EUT was DC power operated equipment.

4 RADIATED EMISSION TEST (9 kHz to 30 MHz)

4.1 Test Setup

The test setup was made according to ANSI C63.4:2009.

The measurement distance was 3 m.

- The test was performed with frequency range 9 kHz to 30 MHz.
- The center of EUT was aligned to the center of a non-conductive table.
- The table size was 0.8 m high \times 2.0 m wide \times 1.0 m deep.
- The dimension of Loop Antenna can be completely enclosed by a square having sides of 0.6 m in length.
- The antenna was located at 3 m of distance horizontally from the boundary of the EUT. The antenna height was 1 m.

4.2 Testing System

Instruments

Noto
le INOLE
01-31
04-30 1)
2)
03-31
02-28
)u ;-0 ;-0 ;-0

Note: 1) System Bandwidth=9 kHz, Detector Mode= Quasi-Peak 2) Detector Mode=Peak

2) Detector I

Software:

Toyo Corporation, EP5/RE, Version 5.5.10

4.3 Description of Measurement Procedure

4.3.1 Exploratory Test

EUT is tested in all operating modes.

<Step1>

EUT and system are set up according to "IPS measurement procedures" and "ANSI C63.10:2009".

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

Loop Antenna

4.3.1 Exploratory Test (Continued)

<Step3>

The Spectrum analyzer is controlled by PC EMI software as follows:

- Set to Peak Detector mode and Max-Hold mode.
- Sweep measurement frequency range.

Following parameters are also controlled by PC EMI software:

- Turntable (rotate 0° to 360°)
- Antenna polarization (vertical: 0° and 90°, horizontal: not rotated)
- Antenna height (1 m)

<Step4>

The operator performs following operations.

- Prints out the Spectrum chart from PC EMI software.
- Records frequency (ies) with minimum margin(s).
- Determines the operating mode where maximum emission is detected.

4.3.2 Final Test

<Step1>

EUT system is operated in the operation mode determined by Exploratory Test.

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

• Loop Antenna

<Step3>

Following operation is performed by the operator:

EMC Test Receiver is set to the system bandwidth and detection mode specified by the test standard.

<Step4>

The operator controls turntable, antenna polarization and rotate to determine the combination where maximum emission was detected.

• Loop Antenna

The center of the loop antenna was 1 m above the ground.

Loop antenna was positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. Also, loop antenna was positioned with its plane horizontal at the specified distance from EUT.

<Step5>

The operator arranges the apparatus and the cables to determine the configuration where maximum emission was detected.

<Step6>

The operator enters the values displayed on EMC Test Receiver into PC EMI software.

The measurement result is calculated by PC EMI software.

The same operation is repeated for all modes that should be measured.

4.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

c. f. = AF + CL - AGF S = RA + c.f.

Where	c.f.	= Correction Factor
	FS	= Field Strength (Emission Level - Result)
	RA	= Receiver Amplitude (Reading Level)
	AF	= Antenna Factor
	CL	= Cable Loss
	AG	= Amplifier Gain

Assume a receiver reading of 52.5 dBµV is obtained. The Antenna Factor of 7.4 dB/m and a Cable Loss of 1.1 dB is added. The Amplifier Gain of 29.0 dB is subtracted, giving a field strength of 32.0 dBµV/m. The 32.0 dBµV/m value was mathematically converted to its corresponding level in μ V/m. FS = 52.5 dBµV + 7.4 dB/m + 1.1 dB - 29.0 dB = 32.0 dBµV/m Level in μ V/m = Common Antilogarithm [(32.0 dBµV/m)/20] = 39.8 μ V/m

4.5 Test Details <u>13.110 MHz to 14.010 MHz (as required by Sec. 15.225 (a), (b), and (c))</u> Test Details for Pattern 1 Test Date: <u>2014-08-01</u>

Test data: Refer to Section 7 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement):

13.110 MHz, 26.0 dB(μ V/m) Quasi-Peak Value and it has 43.5 dB margin from the limit(69.5 dB(μ V/m)). 14.010 MHz, 26.0 dB(μ V/m) Quasi-Peak Value and it has 43.5 dB margin from the limit(69.5 dB(μ V/m)).

Test configuration photo: Refer to Section 8.2.1

4.5 Test Details (Continued)

Test Details for Pattern 2 Test Date: <u>2014-08-01</u>

Test data: Refer to Section 7 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): 13.110 MHz, 26.0 dB(μ V/m) Quasi-Peak Value and it has 43.5 dB margin from the limit(69.5 dB(μ V/m)). 14.010 MHz, 26.0 dB(μ V/m) Quasi-Peak Value and it has 43.5 dB margin from the limit(69.5 dB(μ V/m)).

Test configuration photo: Refer to Section 8.2.1

Test Details for Pattern 3 Test Date: <u>2014-08-01</u>

```
Test data: Refer to Section 7 of this report for test data and spectrum chart. (Spectrum chart is presented)
```

Summary of the measurement data (Worst measurement): 14.010 MHz, 26.1 dB(μ V/m) Quasi-Peak Value and it has 43.4 dB margin from the limit(69.5 dB(μ V/m)).

Test configuration photo: Refer to Section 8.2.1

<u>9 kHz to 30 MHz (as required by Sec. 15.225 (d) and Sec. 15.209)</u> Test Details for Pattern 1 Test Date: <u>2014-08-01</u>

Test data: Refer to Section 7 of this report for spectrum chart. (Spectrum chart is presented)

Test configuration photo: Refer to Section 8.2.1

Test Details for Pattern 2 Test Date: <u>2014-08-01</u>

Test data: Refer to Section 7 of this report for spectrum chart. (Spectrum chart is presented)

Test configuration photo: Refer to Section 8.2.1

4.5 Test Details (Continued)

Test Details for Pattern 3 Test Date: <u>2014-08-01</u>

Test data: Refer to Section 7 of this report for spectrum chart. (Spectrum chart is presented)

Test configuration photo: Refer to Section 8.2.1

Note: See clause 8.1 for the axial direction of EUT (Pattern 1, Pattern 2, and Pattern 3).

5 RADIATED EMISSION TEST (30 MHz to 1 GHz)

5.1 Test Setup

The test setup was made according to ANSI C63.4:2009.

The measurement distance was 3 m

- The test was performed with frequency range 30 MHz to 1 GHz.
- The center of EUT was aligned to the center of a non-conductive table.
- The table size was 0.8 m high \times 2.0 m wide \times 1.0 m deep.
- Measurements were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was scanned in height from 1 m to 4 m.

5.2 Testing System

Instruments

Equipment	Monufacturar	Madal	S/M	Calibration		Nata
Equipment	Manufacturer	Widdei	3 /1 N	Date	Due	INOLE
Semi-Anechoic Chamber	Otsuka Science	3 m	No. 2	2014-01-11	2015-01-31	
EMI Test Receiver	Rohde & Schwarz	ESIB40	100208	2013-08-29	2014-08-31	1), 2)
Biconical Antenna	Schwarzbeck	BBA9106	1586	2013-11-14	2014-11-30	3)
LogPeriodic Antenna	Schwarzbeck	UHALP9108-A	0942	2013-11-14	2014-11-30	4)
Cable System	IPS Corporation	RE (32)	N/A	2014-02-24	2015-02-28	

Note: 1) System Bandwidth=120 kHz, Detector Mode=Quasi-Peak

2) Detector Mode=Peak

3) For 30 MHz to 300 MHz

4) For 300 MHz to 1 GHz

Software:

Toyo Corporation, EP5/RE, Version 5.5.10

5.3 Description of Measurement Procedure

5.3.1 Exploratory Test

EUT is tested in all operating modes.

<Step1>

EUT and system are set up according to "IPS measurement procedures" and "ANSI C63.10:2009".

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

- Broadband Antenna (This Antenna is used for 30 MHz to 1 GHz)
- Double Rigid Guide Antenna (This Antenna is used for over 1 GHz)

<Step3>

The Spectrum analyzer is controlled by PC EMI software as follows:

- Set to Peak Detector mode and Max-Hold mode.
- Sweep measurement frequency range.

Following parameters are also controlled by PC EMI software:

- Turntable (rotate 0° to 360°)
- Antenna polarization (horizontal and vertical)
- Antenna height (1 m to 4 m)

5.3.1 Exploratory Test (Continued)

<Step4>

The operator performs following operations.

- Prints out the Spectrum chart from PC EMI software.
- Records frequency (ies) with minimum margin(s).
- Determines the operating mode where maximum emission is detected.

5.3.2 Final Test

<Step1>

EUT system is operated in the operation mode determined by Exploratory Test.

<Step2>

The operator selects an antenna from among the following depending on the measurement frequency.

- Broadband Antenna (This Antenna is used for 30 MHz to 1 GHz)
- Double Rigid Guide Antenna (This Antenna is used for over 1 GHz)

<Step3>

Following operation is performed by the operator:

EMC Test Receiver is set to the system bandwidth and detection mode specified by the test standard.

<Step4>

For 30 MHz to 1 GHz, the operator controls the turntable and antenna height and polarization to reproduce the combination where maximum emission was detected during the Exploratory Test.

For over 1 GHz, the operator controls the turntable and antenna height, polarization, azimuth and elevation to reproduce the combination where maximum emission was detected during the Exploratory Test.

<Step5>

The operator arranges the apparatus and the cables to reproduce the configuration where maximum emission was detected during the Exploratory Test.

<Step6>

The operator enters the values displayed on EMC Test Receiver into PC EMI software.

The measurement result is calculated by PC EMI software.

The same operation is repeated for all modes that should be measured.

5.4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

c. f. = AF + CL - AGF S = RA + c.f.

Where	c.f.	= Correction Factor
	FS	= Field Strength (Emission Level - Result)
	RA	= Receiver Amplitude (Reading Level)
	AF	= Antenna Factor
	CL	= Cable Loss
	AG	= Amplifier Gain

Assume a receiver reading of 52.5 dBµV is obtained. The Antenna Factor of 7.4 dB/m and a Cable Loss of 1.1 dB is added. The Amplifier Gain of 29.0 dB is subtracted, giving a field strength of 32.0 dBµV/m. The 32.0 dBµV/m value was mathematically converted to its corresponding level in μ V/m. FS = 52.5 dBµV + 7.4 dB/m + 1.1 dB - 29.0 dB = 32.0 dBµV/m Level in μ V/m = Common Antilogarithm [(32.0 dBµV/m)/20] = 39.8 μ V/m

5.5 Test Details 30 MHz to 1 GHz (as required by Sec. 15.225 (d) and Sec. 15.209) Test Details for Pattern 1 Test Date: 2014-08-04

Test data: Refer to Section 7 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 45.146 MHz, 34.9 dB(μ V/m) Quasi-Peak Value and it has 5.1 dB margin from the limit(40.0 dB(μ V/m)).

Test configuration photo: Refer to Section 8.2.2

Test Details for Pattern 2 Test Date: 2014-08-04

Test data: Refer to Section 7 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 45.383 MHz, 33.4 dB(μ V/m) Quasi-Peak Value and it has 6.6 dB margin from the limit(40.0 dB(μ V/m)).

Test configuration photo: Refer to Section 8.2.2

5.5 Test Details (Continued)

Test Details for Pattern 3 Test Date: 2014-08-04

Test data: Refer to Section 7 of this report for test data and spectrum chart. (Spectrum chart is presented)

Summary of the measurement data (Worst measurement): Vertical Polarization, 44.788 MHz, 35.0 dB(μ V/m) Quasi-Peak Value and it has 5.0 dB margin from the limit(40.0 dB(μ V/m)).

Test configuration photo: Refer to Section 8.2.2

Note: See clause 8.1 for the axial direction of EUT (Pattern 1, Pattern 2, and Pattern 3).

6 FREQUENCY STABILITY TEST

6.1 Test Setup

- The test setup was made according to ANSI C63.4: 2009.
- The EUT was placed in a temperature and humidity chamber.
- The near field magnetic sensor was placed near the EUT inside the chamber.

<u>Figure</u>

Key

- A ALV2 ENTRANCE READER (EUT)
- B DOOR CONTROL UNIT
- C EXA Test Receiver
- D EMI Probe

6.2 Testing System

Instruments

Equipment	Manufacturar	Madal	S/N	Calibration		Noto	
Equipment	Manufacturer	lacturer wroder		Date	Due	Note	
Temperature Chamber	ESPEC	MC-811P	1120008892	2013-10-31	2014-10-31		
EMI Probe	Anritsu	MA2601C	MA-01	2014-01-20	2015-01-31		
EMI Test Receiver	Agilent Technologies	N9038A	MY52260179	2014-05-21	2015-05-31		

6.3 Test Details

The table below shows the test details as required by Sec.15.225(e).

	Date: 2014-08-05	Operator: M.Horigane
Product Name: ALV2P ENTRANCE READER	Test location: Testing Room (EMC Center)	
S/N: 14G000558T	Model: ALV2DCU · DP	
	Reference Condition: Temp / Humi: 25.4 °C / 40	%

Temperature: -20 °C		Voltage: DC3.0 V				
Time	Start Up	2 min.	5 min.	10 min.	Diviation	
Frequency (MHz)	13.559937509	13.559937280	13.559937056	13.559936722	-0.000063	MHz
					-0.000467	%

Temperature: 20 °C		Voltage: DC3.0 V				
Time	Start Up	2 min.	5 min.	10 min.	Diviation	
Frequency (MHz)	13.560007614	13.560007533	13.560007458	13.560007335	0.000008	MHz
					0.000056	%

Temperature: 50 °C	Voltage: DC3.0 V					
Time	Start Up	2 min.	5 min.	10 min.	Diviation	
Frequency (MHz)	13.559992508	13.559992858	13.559993192	13.559993668	-0.000007	MHz
					-0.000047	%

Test configuration photo: Refer to Section 8.3

7 TEST DATA

•	Radiated Emission Test Data	
	13.110 MHz to 14.010 MHz (as required by Sec. 15.225 (a), (b), and (c))	
	Pattern 1	Page 18
	Pattern 2	Page 19
	Pattern 3	Page 20
	9 kHz to 30 MHz (as required by Sec. 15.225 (d) and Sec. 15.209)	
	Pattern 1 (Spectrum chart)	Page 21
	Pattern 2 (Spectrum chart)	Page 22
	Pattern 3 (Spectrum chart)	Page 23
	30 MHz to 1 GHz (as required by Sec. 15.225 (d) and Sec. 15.209)	
	Pattern 1	Page 24
	Pattern 2	Page 25
	Pattern 3	Page 26

Note: See clause 8.1 for the axial direction of EUT (Pattern 1, Pattern 2, and Pattern 3).

<<Radiated Emission>> 1 August, 2014 1E14202003. dat : FCC 15C 13.56MHz 3m Standard ALV2DCU · DP Mode1 S/N 14G000558T Product Name ALV2 ENTRANCE READER File No 003 Power Source Temp/Humi DC3V from DOOR CONTROL UNIT : 23.6°C / 44% Test Mode Remarks Pattern 1 , Distance = 3m : M. Horigane Operator Final Result -- 0 deg (QP)-No. Frequency Reading c.f Result Height Limit Margin Angle $\begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \begin{bmatrix} dB(\mu V/m) \end{bmatrix}$ [MHz] [dB] cm 18.0 13.560 19.8 22.2 42.0 124.0 82.0 100.0 1 90 deg (QP) Reading c.f Result Limit $[dB(\mu V)] [dB(1/m)] [dB(\mu V/m)] [dB(\mu V/m)]$ No. Frequency Margin Height Angle MHz [dB] cm [°

1	13.110	3.9	22.1	26.0	69.5	43.5	100.0	122.0
2	13.410	3.9	22.1	26.0	80.5	54.5	100.0	122.0
3	13.553	9.9	22.1	32.0	90.5	58.5	100.0	122.0
4	13.560	21.7	22.2	43.9	124.0	80.1	100.0	122.0
5	13.567	8.4	22.2	30.6	90.5	59.9	100.0	122.0
6	13.710	3.8	22.2	26.0	80.5	54.5	100.0	122.0
7	14.010	3.8	22.2	26.0	69.5	43.5	100.0	122.0

0 L 13.000

-

13.250

13.750

14.000 14.100

[MHz]

-

13.500

Frequency

60 53

13.000

13.250

11

Frequency

13.750

13.500

- 1

[MHz]

14.000 14.100

***** <<Radiated Emission>> 1 August, 2014 1E14202005. dat : FCC 15C 13.56MHz 3m : ALV2DCU·DP Standard Model S/N 14G000558T ALV2 ENTRANCE READER Product Name File No 005 Power Source DC3V from DOOR CONTROL UNIT : Temp/Humi Test Mode 23.7°C / 44% Remarks : Pattern 2 , Distance = 3m Operator : M. Horigane Final Result 0 deg (QP) No. Frequency Reading c.f Result Limit Margin Height Angle $[dB(1/m)] [dB(\mu V/m)] [dB(\mu V/m)]$ [MHz] $[dB(\mu V)]$ [dB]cm [° 11.0 13.560 42.3 100.0 20.122.2 124.0 81.7 1 90 deg (QP) No. Reading Frequency c.f Result Limit Margin Height Angle [dB(1/m)] [MHz] $[dB(\mu V)]$ $[dB(\mu V/m)] [dB(\mu V/m)]$ [dB][cm] 97.0 3.9 22.1 26.0 69.5 100.0 1 13.110 43.580.5 22.1 100.0 97.0 2 13.410 3.9 26.0 54.5 3 22.1 31.9 90.5 13.553 9.8 58.6 100.0 97.0 4 13.560 21.6 22.2 43.8 124.0 80.2 100.0 97.0 22.2 90.5 97.0 5 13.567 30.6 59.9 100.0 8.4 22.2 6 13.710 3.8 26.0 80.5 54.5 100.0 97.0 7 14.010 3.8 22.2 26.0 69.5 43.5 100.0 97.0

IPS Corporation

13.250

13.500

Frequency

13.750

14.000 14.100

[MHz]

0 E 13.000

Page 19 of 30

13.000

13.250

13.500

Frequency

13.750

14.000 14.100

[MHz]

<<Radiated Emission>> 1 August, 2014 1E14202007. dat : FCC 15C 13.56MHz 3m Standard : ALV2DCU · DP Model S/N 14G000558T Product Name : ALV2 ENTRANCE READER File No : 007 Power Source : DC3V from DOOR CONTROL UNIT Temp/Humi : 23.7°C / 44% Test Mode : Pattern 3 , Distance = 3m Remarks Operator : M. Horigane Final Result - 0 deg (QP)--... D di M Haight

$ \begin{bmatrix} MHz \end{bmatrix} \begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \begin{bmatrix} dB \end{bmatrix} \begin{bmatrix} cm \end{bmatrix} \\ 1 & 13.560 & 13.4 & 22.2 & 35.6 & 124.0 & 88.4 & 100.0 \\ \hline & 90 \ deg \ (QP) \\ No. \ Frequency \ Reading \ c.f \ Result \ Limit \ Margin \ Height \\ \begin{bmatrix} MHz \end{bmatrix} \ \begin{bmatrix} dB(\mu V) \end{bmatrix} \ \begin{bmatrix} dB(1/m) \end{bmatrix} \ \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \ \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \ \begin{bmatrix} dB \end{bmatrix} \ \begin{bmatrix} cm \end{bmatrix} \\ \begin{bmatrix} mHz \end{bmatrix} \ \begin{bmatrix} dB(\mu V) \end{bmatrix} \ \begin{bmatrix} dB(1/m) \end{bmatrix} \ \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \ \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \ \begin{bmatrix} dB \end{bmatrix} \ \begin{bmatrix} cm \end{bmatrix} \\ \begin{bmatrix} mHz \end{bmatrix} \ \begin{bmatrix} mHz \end{bmatrix} \ \begin{bmatrix} dB(\mu V) \end{bmatrix} \ \begin{bmatrix} dB(1/m) \end{bmatrix} \ \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \ \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \ \begin{bmatrix} dB \end{bmatrix} \ \begin{bmatrix} cm \end{bmatrix} \ \begin{bmatrix} cm \end{bmatrix} \\ 1 \ 13.110 \ 3.9 \ 22.1 \ 26.0 \ 80.5 \ 54.5 \ 100.0 \\ 2 \ 13.410 \ 3.9 \ 22.1 \ 26.0 \ 80.5 \ 54.5 \ 100.0 \\ 3 \ 13.553 \ 9.0 \ 22.1 \ 31.1 \ 90.5 \ 59.4 \ 100.0 \\ 4 \ 13.560 \ 20.4 \ 22.2 \ 42.6 \ 124.0 \ 81.4 \ 100.0 \\ \end{bmatrix} $	Lo l
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	238.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} MHz \end{bmatrix} \begin{bmatrix} dB(\mu V) \end{bmatrix} \begin{bmatrix} dB(1/m) \end{bmatrix} \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \begin{bmatrix} dB(\mu V/m) \end{bmatrix} \begin{bmatrix} dB \end{bmatrix} \begin{bmatrix} cm \end{bmatrix} \\ 1 & 13, 110 & 3.9 & 22.1 & 26.0 & 69.5 & 43.5 & 100.0 \\ 2 & 13, 410 & 3.9 & 22.1 & 26.0 & 80.5 & 54.5 & 100.0 \\ 3 & 13, 553 & 9.0 & 22.1 & 31.1 & 90.5 & 59.4 & 100.0 \\ 4 & 13, 560 & 20.4 & 22.2 & 42.6 & 124.0 & 81.4 & 100.0 \\ \end{bmatrix} $	Angle
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[°]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176.0
$4 \qquad 13.560 \qquad 20.4 \qquad 22.2 \qquad 42.6 \qquad 124.0 \qquad 81.4 \qquad 100.0$	176.0
	176.0
5 13.567 7.7 22.2 29.9 90.5 60.6 100.0	176.0
6 13.710 3.8 22.2 26.0 80.5 54.5 100.0	176.0
7 14.010 3.9 22.2 26.1 69.5 43.4 100.0	176.0

IPS Corporation

0 L 13.000

13.250

13.750

14.000 14.100

[MHz]

-

13.500

Frequency

60 53

13.000

11

Frequency

13.750

13.500

-1

[MHz]

14.000 14.100

-

13.250

Report No.: EMC14141

Report No.: EMC14141

Report No.: EMC14141

****	*****	********	*******	***** IPS Co < <radia< th=""><th>orporation * ted Emission></th><th>******** >></th><th>******</th><th>********* 4 A 1E14</th><th>********** ugust, 2014 202008. dat</th></radia<>	orporation * ted Emission>	******** >>	******	********* 4 A 1E14	********** ugust, 2014 202008. dat
Stan Mode S/N Prod File Powe Temp Test Rema Oper **** Fina	dard 1 No r Source /Humi Mode rks ator ************************************	: FCC Pa : ALV2D0 : 14G000 : ALV2 P : 008 : DC3V f : 22.3°C : : Patten : M.Hor: *********	art15 Subpa CU•DP D558T ENTRANCE RJ from DOOR (C / 49% rn 1 igane	artC EADER CONTROL UNIT	*****	****	****	*****	****
No. 1 2 3 4	Horizontal Frequency [MHz] 45.022 149.162 257.642 829.861	Polarizatio Reading [dB(µV)] 39.7 43.3 39.9 32.6	c. f [dB(1/m)] -13. 0 -10. 5 -7. 5 -1. 0	Result [dB(µV/m)] 26.7 32.8 32.4 31.6	Limit [dB(µV/m)] 40.0 43.5 46.0 46.0	Margin [dB] 13.3 10.7 13.6 14.4	Height [cm] 208.0 200.3 130.5 300.3	Angle [°] 118.0 267.0 244.0 10.0	
 No. 1 2 3 4	Vertical Po Frequency [MHz] 32.114 45.146 108.813 149.161	larization Reading [dB(µV)] 34.6 48.0 37.3 38.7	(QP) c. f [dB(1/m)] -8. 3 -13. 1 -13. 7 -10. 5	Result [dB(µV/m)] 26.3 34.9 23.6 28.2	Limit [dB(µV/m)] 40.0 40.0 43.5 43.5	Margin [dB] 13.7 5.1 19.9 15.3	Height [cm] 100.0 100.0 100.0 100.0	Angle [°] 336.0 162.0 273.0 217.0	

IPS Corporation

Page 24 of 30

******	******	*******	********	***** IPS Co < <radia< th=""><th>orporation * ted Emission></th><th>******** >></th><th>*******</th><th>*********** 4 Au 1E142</th><th>********** 1gust, 2014 202009. dat</th></radia<>	orporation * ted Emission>	******* * >>	*******	*********** 4 Au 1E142	********** 1gust, 2014 202009. dat
Standard Model S/N Product File No Power Sa Temp /Hu Test Moo Remarks Operaton ******* Final Re	d Name ource umi de r ******** esult	: FCC Pa : ALV2D0 : 14G000 : ALV2 H : 009 : DC3V f : 21.2°C : : Patten : M.Hor: *********	art15 Subpa CU·DP D558T ENTRANCE RI from DOOR (C / 47% cn 2 igane	artC EADER CONTROL UNIT *******	****	*****	****	*****	****
Horr No. Fre 1 2 3 4 5	izontal equency [MHz] 149.164 257.644 731.244 759.363 840.726	Polarizatic Reading [dB(µV)] 43.6 42.3 38.6 38.6 36.5	on (QP) c. f [dB(1/m)] -10.5 -7.5 -2.2 -2.2 -0.8	$\begin{array}{c} \text{Result} \\ [\text{dB} (\; \mu \; \text{V/m}) \;] \\ 33.\; 1 \\ 34.\; 8 \\ 36.\; 4 \\ 36.\; 4 \\ 35.\; 7 \end{array}$	Limit [dB(µV/m)] 43.5 46.0 46.0 46.0 46.0	Margin [dB] 10.4 11.2 9.6 9.6 10.3	Height [cm] 216.6 131.7 100.0 106.7 100.0	Angle [°] 260. 0 263. 0 102. 0 332. 0 0. 0	
Vert No. Fre 1 2 3 4 5 2 6	tical Po equency [MHz] 32.646 45.383 149.162 176.285 257.644 846.693	larization Reading [dB(µV)] 34.6 46.5 38.5 37.6 38.1 32.6	(QP) c. f [dB(1/m)] -8. 4 -13. 1 -10. 5 -9. 3 -7. 5 -0. 6	Result [dB(µV/m)] 26.2 33.4 28.0 28.3 30.6 32.0	Limit [dB(µV/m)] 40.0 40.0 43.5 43.5 46.0 46.0	Margin [dB] 13.8 6.6 15.5 15.2 15.4 14.0	Height [cm] 100.0 100.0 100.0 100.0 100.0 199.5	Angle [°] 47.0 147.0 221.0 286.0 29.0 5.0	

IPS Corporation

>	**	********	*******	***** IPS Co < <radia< th=""><th>orporation * ted Emission></th><th>********* >></th><th>*******</th><th>******** 4 1E1</th><th>*********** August, 2014 4202010. dat</th></radia<>	orporation * ted Emission>	********* >>	*******	******** 4 1E1	*********** August, 2014 4202010. dat
Star Mode S/N Proo File Powe Temp Test Rema Oper **** Fina	ndard 91 No er Source 0 /Humi t Mode arks rator ************************************	: FCC P: : ALV2D0 : 14G000 : ALV2 1 : 010 : DC3V : : 22.0°C : : : Patte: : M.Hor: *********	art15 Subpa CU•DP D558T ENTRANCE RI from DOOR (C / 46% cn 3 igane	artC EADER CONTROL UNIT	****	******	****	*****	****
No. 1 2 3 4 5 6	Horizontal Frequency [MHz] 44.784 149.162 176.281 230.522 257.643 705.121	Polarizatic Reading [dB(µV)] 40.1 43.7 45.4 41.3 42.4 38.0	on (QP) c. f [dB(1/m)] -12. 9 -10. 5 -9. 3 -8. 2 -7. 5 -2. 1	Result [dB(µV/m)] 27.2 33.2 36.1 33.1 34.9 35.9	Limit [dB(µV/m)] 40.0 43.5 43.5 46.0 46.0 46.0	Margin [dB] 12.8 10.3 7.4 12.9 11.1 10.1	Height [cm] 209.7 210.8 182.7 143.3 124.2 121.2	Angle [°] 98.0 96.0 109.0 109.0 115.0 209.0	
No.	Vertical Po Frequency [MHz] 31.693 44.788 257.644 705.121	larization Reading [dB(µV)] 34.9 47.9 39.4 36.7	(QP) c. f [dB(1/m)] -8. 1 -12. 9 -7. 5 -2. 1	Result [dB(µV/m)] 26.8 35.0 31.9 34.6	Limit [dB(µV/m)] 40.0 40.0 46.0 46.0	Margin [dB] 13.2 5.0 14.1 11.4	Height [cm] 100.0 100.0 100.0 100.0	Angle [°] 277.0 149.0 88.0 226.0	

IPS Corporation

8.1 Radiated Emission Test (Axial Direction of EUT)

8.2.1 Radiated Emission Test 9 kHz to 30 MHz Pattern 1 **TEST CONFIGURATION PHOTOS** were separated from this report. Pattern 2 Pattern 3

This cable routing was attempted to maximize the radiated emission.

IPS Corporation