

Date:	ESPOO 29.02.2008	Page: <u>1 (39)</u> Appendices					
Number: No. 1 / 1	102639	Date of handing in: 27.02.2008 Measured by:					
		Timo Hietala, Test Engineer Reviewed by:					
SORT OF EC	QUIPMENT:	Timo Leismala, Test Manager WiMAX Base Station RF module					
MARKETING NAME: TYPE: MANUFACTURER:		Nokia Siemens Networks Flexi WiMAX BTS RF module 2.5GHz FYRF Nokia Siemens Networks Oy					
FCC ID: CLIENT: ADDRESS: TELEPHONE	::	VBNFYRF-01 Nokia Siemens Networks Oy P.O.Box 319, FI-90651 OULU, FINLAND +358 7180 08000					
TEST LABOF FCC REG. N	RATORY: O.	NSN Oulu 411251					
REFERENCE	Ξ:	FCC Part 27, SUBPART M					

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 4 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Nemko Oy • P.O.Box 19, FI-02601 Espoo, Finland Street address: Perkkaantie 11, FI-02600 Espoo Telephone +358 (0)424 5454 1 • Telefax +358 (0)9 5489 6371

Contents

1.	EUT a	and Accessory Information	3
	1.1	EUT description	3
	1.2	EUT and accessories	3
Sı	Immary	y of Test Data	4
2.	Gene	ral Equipment Specification	5
3.	RF Po	ower Output	7
4.	99% (Occupied Bandwidth	15
5.	Spurio	ous Emissions at Antenna Terminals	17
6.	Field	Strength of Spurious	26
7.	Frequ	ency stability	31
8.	List of	f test equipment	33
9.	Photo	graphs of Test Setup	34
10	.ANNE	EX A, TEST DETAILS	35
11	.ANNE	EX B, TEST DIAGRAMS	38

N Nemko

1. EUT and Accessory Information

1.1 EUT description

The EUT is a WiMAX Base station RF module 2.5 GHz with 2 power amplifier.

1.2 EUT and accessories

Manufacturer:	Nokia Siemens Networks Oy
Model:	FYRF, s/n: K7080800004
Other Units:	System module, FYSB, s/n: L9080100305

General:

All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 27, Subpart M.

$I \times I$
$V \times$

New Submission

 \bowtie

Production Unit

Class II Permissive Change Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. **NONE**

Nemko Oy authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Oy accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

Summary of Test Data

NAME OF TEST	SECTION IN CFR 47	SPEC.	RESULT
RF Power Output	27.50 (h), 2.1046	33 dBW+ 10log(X/Y) dBW	Complies
99% Occupied Bandwidth	2.1049, (i)	Unspecified	Complies
Spurious Emissions at Antenna Terminals	27.53(l)(2)(6), 2.1051	- 13 dBm	Complies
Field Strength of Spurious Emissions	27.53(l)(2), 2.1053	- 13 dBm E.I.R.P	Complies
Frequency stability	27.54, 2.1055	± 0.05 ppm ¹⁾	Complies

Note ¹⁾ Limit is the manufacturer's specification

Measurement uncertainty is expressed to a confidence level of 95%.

Page	4 (39)
rage	+ (00)
Date	29 02 2008
Duio	20.02.2000

N Nemko

2. General Equipment Specification

Supply Voltage Input:	48 Vdc
Frequency Bands: TX:	 2583 – 2690 MHz Lowest tunable freq. 2588.000 MHz Middle freq. 2636.000 MHz Highest tunable freq. 2685.000 MHz
Frequency Bands: RX:	∑ 2583 – 2690 MHz
Emission Designator:	WiMAX (10M0W7D)
Maximum No. of Carriers:	1
Output Impedance:	50 ohms.
RF Power Output:	43 dBm (20 W) conducted
Duty Cycle:	1:1 to 3:1
Duplex Mode:	Time Division Duplex (TDD)
Channel Bandwidth:	10 MHz
Modulation:	QPSK 16QAM 64QAM

System Description

Nokia Flexi WiMAX Base Station is based on WiMAX TDD (Time Division Duplex) system and is designed according to IEEE 802.16e-2005 radio access technology. This is a licensed base transceiver station and is designed for use with antennas that are fixed mounted on outdoor permanent structures.

Test setup

Nokia BTS Site Manager is used for the BTS's configuration. The AHTI is used for sending test model and PER measure messages.

Nokia BTS Site Manager has the following features:

- BTS set-up management (e.g. parameter settings, software downloading).
- BTS status monitoring.

The AHTI has the following features:

BTS Testing.

All RF tests were performed in normal temperature by repeating the Frequency Stability in environmental chamber.

Frequency Stability was performed also over a variation in the primary supply voltage 85 percent to 115 percent of the rated supply voltage at a temperature of 20° Celsius.

The test configurations were as close to normal intended use as possible. Cable connections were accordance with the instruction of the manufacturer.

Grounding of the equipment was performed in accordance with the guideline of the manufacturer.

All measurements were performed on the base station downlink signal, when having the base station transmitter active at maximum power level. For all tests test model 67075 was used.

Test model 67075

The WiMAX system protocol utilizes three modulations with various code rates.

Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM. The code rate doesn't change the transmitted RF signal, therefore it's not necessary to measure all possible variations.

In Test model 67075 the modulation mode is switched continuously at maximum speed permitted by the system and all the supported modulation schemes are used. Test model 67075 duty cycle was 60%.

Test model 67075 has been specified worst case frame structure and the information presented in this test report is believed to represent a worst case scenario.

Figure TX test setup

The BTS under test (System Module + RF Module) was DC powered and configuration of 1 carrier which rated output power is 20W, 1*1 20W.

The BTS System Module contains the Transport functional block (Transport Sub-module), the Control & Clock functional block and the BB functional block, whereas the RF Module contains the RF functional block. For transmitter measurements, Signal Analyzer Rohde & Schwarz FSQ 26 with K93 WiMAX-option was used.

3. RF Power Output

NAME OF TEST: RF Power Output	PARA.NO.: 27.50 (h) & 2.1046
TESTED BY: Timo Hietala	DATE: 27/02/2008

Test Results:

Complies.

Measurement Data: Refer to attached plot.

Modulation Type	Frequency	Measured Output	
	(MHz)	Power	Power
		(dBm)	(W)
Test model 67075	2588	43.27	21.23
Test model 67075	2636	43.34	21.58
Test model 67075	2685	43.20	20.89

Note: Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM, duty cycle 60%

Equipment used:	11, 12, 17, 18
Measurement Uncertainty:	± 0.7 dB.
Temperature:	23 °C.
Relative Humidity:	10 %.

Test Data – RF Power Output

Nemko Oy, Finland

Data Plot				R	F POW	ER OU	TPUT					
Page <u>1</u> of <u>7</u>									Co	omplete x		
Job No.:	102639)			Date:	27/02/2008	_		Prelim	inary:		
Specification:	PT27			Temperat	ture (°C):	23	-					
Tested By:	Timo H	ietala		Relative Hum	idity (%):	10	-					
E.U.T.:	WiMAX	TRANS	MITTER			-	-					
Configuration:	TX FUI	I POWE	FR BOTTOM C	HANNEI								
Sample Number		1										
Location:	NET/IN	AN Oulu				RBW/·	Refer to	nlots	Measur	ement		
Detector type:	R	me	-			VBW/	Refer to		Die	tance: N/A	m	
Detector type.		1115	-			VBVV.		plots	DIS		'''	
Test Equipme	ent Used	<u>t</u>			Directio	nal Counler:						
Antenna. Pro Amo:			-		Directio	Coblo #1:						
Filtor:			-			Cable #1.						
Filler.		4	_			Cable #2:						
Receiver:		1	-			Cable #3:						
Attenuator #1:		17	—			Cable #4:						
Attenuator #2:			_			Mixer:						
Additional equipr	ment use	d:										
Measurement Ur	ncertainty	/:	± 0.7 dB									
®				IEEE 80	2.16e-20	005 OFDM	Α	1				
Frequency: 2.58	88 GHz			Signal Leve	I Setting:	13.2 dBm	 	Ref. Level	/Att:	14.7 dBm / 3	2.8 dB	
NFT: 102	4			Sweep Mod	e:	Continuot	is	I rigger Mo	de / Unset:	Power/0 S		
Zone / Seg: DL-	PUSC, I	D=A, Se	:g=0	Modulation:		ALL		Zone Offse	et / Length:	1/28 Symbol	S	
				Adjacen	it Channel F	Power Relati	ve					
Channel		E	3andwidth	Sp	acing		Lower			Upper		
ТХ			10 MHz					43.15 dBm				
Adjacen	t		10 MHz	10) MHz		-52.11 0	βB		-52.32 dB		
Alternate	1		10 MHz	20) MHz		-57.41 0	dΒ	-58.99 dB			
Alternate	2		10 MHz	30) MHz		-60.40 0	βB	-60.48 dB			
Alternate	:3											
Alternate	4											
Spectrun	nACP					RBW 100	kHz	Marker	1	23.4 c	lBm	
						VBW 1 M	Hz			2.588 (GHz	
Ref	14.7 dł	3m	Att/EL	<u>20.00 / 5.00</u>	dB	SWT 2 s	r –		Sweep	1	of 1	
- 38			<u> </u>		ω	0		<u> </u>				
- 20-			d1		1			cu1				
- 20-						·····					В	
- 18			└───									
					d1	u1					GAT	
		42	┟───┼┼		<u> </u>					2		
		02 T								2	TRG	
											LVL	
-12			d2					012				
-22—					_							
				manna	4	~	h				u3 	
32					_		- min					
40												
-42		d3							a	13		
2552 719		4	<u>↓</u>		7 056 1	/Hz/div	ļ	<u>Į </u>	 	2623 283	U • MH z	
2002.710										02		

Notes:

Test Data – RF Power Output

Nemko Oy, Finland

Data	Plot					I	RF	POW	/ER	OU	TPUT	[
Page <u>2</u> 0	of <u>7</u>															Comp	ete <u>x</u>	_
Job No.:	:	102639	Э					Date:	27/02/	2008	_				Pre	limina	y:	_
Specifica	ation:	PT27				Tempe	eratu	ire (°C):	23	3	_							
Tested E	By:	Timo H	lietala		_ F	Relative H	umic	dity (%):	1()	_							
E.U.T.:		WiMA>	TRANS	MITTER														
Configur	ration:	TX FULL POWER CENTER CHANNEL																
Sample	Number:		1															
Location	n:	NET/I	MN Oulu	_						RBW:	Refer t	o plo	ots		Meas	sureme	nt	
Detector	r type:	F	lms	_						VBW:	Refer t	o plo	ots		0	Distanc	e: N/A	- ^m
Test Ed	<u>quipme</u>	nt Use	<u>d</u>					Diagoti										
Antenna	1:			_				Directi	onal Co	upier:								
Pre-Amp	p:			_					Cat	le #1:				•				
Filter:				_					Cat	ie #2:								
Receive	r:		1	_					Car	le #3:				•				
Attenuat	tor #1:		17	_					Cat	ie #4:								
Attenuat	tor #2:			_						vixer:								
Addition	al equipn	nent use	ed: /'	+ 0 7 dB														
				20.1 08	-			160.0	0.05.0		A							
Eroguon	<u></u>	4 6117						Sotting	124	dDm	A	De	FLO		++.	120) dDm / 2.2 (
Frequence N	102					Swoon M	odo	Setting:	- 13.0 	inuo	16	Re	. Le	wei / A	() Offered	13.5	9 UBITI / 32.0	3 OB
Zone / S	ea. DI -		D=A Se	0=D		Modulatio	ouc.			muot	13	70	ne (Offset /	Length	1/2	B Symbols	
20110 / 0	ieg. DL i	000,1	0-11,00	<u>,g=0</u>		Adiac	ent	Channel	Power	Relati	ve	20		5113017	Length	. 172		
	Channel		6	Bandwidth			Spa	cing			Lower					Up	per	
	ТХ			10 MHz						43.26 dBm								
ŀ	Adjacent			10 MHz		10 MHz				-55.00 dB -53.37 dB								
A	Iternate	1		10 MHz		20 MHz				-59.23 dB				-58.69 dB				
A	Iternate	2		10 MHz		30 MHz				-60.75 dB					-60.66 dB			
A	Iternate	3																
A	Iternate	4											_					
5	spectrum	NACP							RBM	100	KHZ		ма	irker 1			23.54 dBn	ה -
6	Ref	139d	Зm	Att/FI	21	0 00 / 5 (0 0 d	IB	V D VV SW/T	2 5	пи			S	ween		2.030 GH	2
ĺ		13.7 0				0.0073.0	Ī			23	[Π	5			101	*
	- 37						L (<u></u> 0		<u>.</u>								_∦∎
	07			ď	1				1				cu1					
	- 21							·	· · · · ·									
	- 17									+			╟			_		
1 RM	_ 7						cl	1		du1_								GAT
CLRWR	'		d2													cu2		TRG
	3									_			╟		_	_		-H.v.
	10																	
	13			d2	1								CU ²	2				T
 d	3 -23-												Ť		_	_		_ll cu3
Ĭ	33				L		لمس			\square	mm		LL.					4
		~~												· ····	Jum		· · · · · · · · · · · · · · · · · · ·	
	43		- d3							+			╞┼╴			cu3		1
	0000 - 12		-		I		I	7 0-0					Ц			-		
	2000.718	IVIE						7.056	ivir⊐z/al\								201 1.282 IVI	Ľ

Notes:

Test Data – RF Power Output

Nemko	Ov.	Finland
I ICHINO	Ο,	1 mana

Data	a Plot					F	RF	PO	WER		TPUT	Γ							
Page 3	of <u>7</u>															С	omple	te <u>x</u>	-
Job No	.:	102639)					Date	e: 27/0	2/2008						Prelin	ninary	:	_
Specific	cation:	PT27				Tempe	ratu	re (°C):		23	_								
Tested	By:	Timo H	ietala		_ 1	Relative H	umic	lity (%):		10									
E.U.T.:		WiMAX	TRAN	SMITTER							_								
Configu	uration:	TX FUI	L POW	ER HIGHES	T Cł	HANNEL								-					
Sample	Number	:	1											-					
Locatio	n:	NET/II	MN Oulu	l					-	RBW:	Refer to	ор	lots		Ν	leasur	remen	t	
Detecto	or type:	R	ms	_						VBW:	Refer to	о р	lots	-		Dis	stance	: <u>N/A</u>	m
Test E	quipme	ent Use	<u>t</u>																
Antenn	a:			_				Direc	ctional (Coupler:									
Pre-Am	np:			_					C	able #1:				-					
Filter:									C	able #2:				-					
Receive	er:		1						C	able #3:				-					
Attenua	ator #1:		17						C	able #4:				_					
Attenua	ator #2:									Mixer:				-					
Additio	nal equipr	ment use	d:																
Measu	rement Ur	ncertainty	<i>ı</i> :	± 0.7 dB										-					
¢\$						IEEE 8	302	2.16e-	2005	OFDM	A								
Frequer	ncy: 2.68	85 GHz				Signal Le	vel	Setting	: 14	.1 dBm	1	R	ef. L	evel /	Att:		15.6	dBm / 32.8	dB
N _{FFT} :	102	24				Sweep M	ode:		Cc	ntinuou	JS	T	rigg	er Mo	de / O	ffset:	Powe	r/0 S	
Zone / S	Seg: DL-	PUSC, I	D=A, Se	eq=0		Modulatio	on:		AL	L		Z	one	Offse	t / Ler	ngth:	1/28	Symbols	
				J		Adiac	ent	Channe	Powe	r Relati	ve					5.		.,	
	Channel			Dondwidth			Cnc			ritoluti	Lour						llor	or	
		I					эра	cing			Lower			4.2.4			opp		
	IX		1	10 MHz			•							43.0	18 gBL	n			
	Adjacen	t		10 MHz			10	MHz			-51.57 (dB					-49.	77 dB	
/	Alternate	e1		10 MHz			20	MHz			-58.29	dB					-57.	84 dB	
/	Alternate	2		10 MHz			30	MHz			-60.16	dB					-60.	23 dB	
/	Alternate	93																	
	Alternate	94																	
	Spectrun	mACP							RBW V BV	/ 100 / 1M	kHz Hz		M	arker	1			23.39 dBm 2.685 GHz	1
	Ref	<u>15.6 dl</u>	3m	Att/EL	2	20.00/5.0	<u>)0 c</u>	B	SWI	2 s					Swee	р		1 of 1	
	- 38		-	<u> </u>	+		۲Ľ	.0 I	+										
	20			d	1				1				cu	1					
	_ 28							·		_									B
	- 18						_						╈						1
1 RM	- 8				_				_	_ cu1			++						GAI
CLRWR			d2													cu	2		TRG
	-2		+		+		-		+				╉						⁺ I ₁ √
			1																
	-12—		1		+				1				++	0					#
	-22-			d	2									2					1
C	d3 -22						mon			m	mm.							C	xu3
	32				┥╍	And the second s	<u> </u>		_			~~~	┶╁╁						
	h															~~~~			╢
	-42-								+		-		╉						╢
			d3													CL	13 I		1
	26/0 710		•	• • •	•		•	7 054			•		-++				-		-+-
	2043.1 IC							1.00		AI V							2	.1 20.202 111	∠

Notes:

Data Plot					RF PC	WER (יטכ	[PU	<u> </u>				
Page <u>4</u> of <u>7</u>											Compl	ete <u>x</u>	
Job No.:	102639				Da	ate: 27/02/2	800	i.			Preliminar	y:	
Specification:	PT27			Temp	erature (°C	c): <u>2</u> 3							
Tested By:	Timo Hietala			Relative H	umidity (%	5): 10							
E.U.T.:	WIMAX TRA	NSMITTER											
Configuration:	TX FULL PO	WER HIGH	IEST C	HANNEL									
Sample Number:	1												
Location:	NET/IMN Ou	ulu				 F	BW:	Refer	to plots		Measureme	nt	
Detector type:	Rms					١	/BW:	Refer	to plots		Distanc	e: <u>N/A</u>	m
Test Equipme	nt Used												
Antenna:					Dir	ectional Cou	pler:						
Pre-Amp:						Cabl	e #1:						
Filter:						Cabl	e #2:						
Receiver:	1					Cabl	e #3:						
Attenuator #1:	17					Cabl	e #4:						
Attenuator #2:						N	lixer:						
Additional equip	nent used:												
Measurement Un	ncertainty:	± 0.7	dB										
<i>®</i> €				IEEE	802.16€	-2005 OI	DMA	1					
Frequency: 2.58	38 GHz			Signal Le	vel Settir	ng: 10 dF	ßm		Ref. Le	evel / Att	: 20 d	Bm /34	.2 dB
N=T: 102	4			Sween M	ode:	Conti	ทนดมร	5	Triage	r Mode /	Offset: Powe	er / 0 S	
Zone / Sect DL		Seq-0		Modulati	nn [.]	Δ11			7000)ffsot / L	enath: 1/20	Symbols	
Conturo	Momon(No of	Comple		01						Duffor Stort	7 05 71 4	
Capture	vietnory	Cantu	sample re Tim	es 3000 1e 50 m	0 I S	Gate	Off		i inte to	Capture Mark	er 1	7.00/14 50.90	dBm
Ref 20	0 dBm	Att/El		20.00	-) / 5.00 dl	B Zone/Sea	10 (10)				30.77) s
	a di Mahara da da di	المغلب مبادلاتهم		(Material d	All the set of	Line of the local states of the		ارادر وروالا		to and al	. All the set of	Allow and a	
													<u> </u>
												-	A
												_	
					h .						1.		TRG
hudt.	tus.te.	Under 1	T I	d.HN.	M. Hka	N. M. K.	1	UNR		ur.	H.M.	A MARKET	LVL
	╶╎╢╢╢			n, k h i	 " −					•• • •	<u> </u>	<u> </u>	
	╶┨╌┅┼╺╢─				┍┌─┼╄┼				-				
				(m) (
0.0000 m	S				5.0	0000 ms⁄di∨						50.0000) ms
Burst Sur	mmary												
Zone/S	Segment II	D = A											
Frame	Burst 3	ID Ty	pe	Modul	ation	No.of	Slc	ots	Powe	r[dBm]	EV	/M[dB]	
1		0 E	CH		QPSK			4		43.07	-	-43.96	
1		1 N	IAP		QPSK			56		43.28	} -	-44.99	
1		2 Da	ita		QPSK			60		43.31		-41.25	
1		3 Da	ita		16QAM			36		43.28	3 -	-42.42	
1		4 Da	ita		16QAM			42		43.50) -	-42.83	
1		5 Da	ita		QPSK		1	68		43.37	-	-42.57	
1		6 Da	ita		64QAM			54		43.02	2 -	-42.54	
Overal	.1						4	20		43.26	; -	-42.80	
2		0 E	CH		QPSK			4		43.06	- -	-44.35	
2		1 N	IAP		QPSK			56		43.28	} -	-44.27	
2		2 Da	ita		QPSK			60		43.31		-41.61	
Running													
Notes:													

Data Plot					RF PC	OWER	OU	TPU	<u> </u>				
Page <u>5</u> of <u>7</u>											Comp	ete x	
Job No.:	102639				Da	ate: 27/0	2/2008	_			Prelimina	y:	
Specification:	PT27			Temp	erature (°C	C):	23	-					
Tested By:	Timo Hietala			Relative H	lumidity (%	6):	10	_					
E.U.T.:	WIMAX TRAN	SMITTER											
Configuration:	TX FULL POV	VER CENT	ER CH	HANNEL									
Sample Number:	1												
Location:	NET/IMN Ou	lu					RBW:	Refer	to plots		Measureme	nt	
Detector type:	Rms						VBW:	Refer	to plots		Distanc	e: <u>N/A</u>	m
Toot Equipmon		_											
Antenno:	it Used					reational C							
Pro Ame:					ווט								
Filter:													
Filler:	4					Ca	able #2:						
Receiver:	1					Ca							
Attenuator #1:	1/					Ca							
Attenuator #2:							Mixer:						
Additional equipm	ent used:												
Measurement Unc	certainty:	± 0.7 c	IB										
®				IEEE	802.166	e-2005	OFDM	A					
Frequency: 2.636	5 GHz			Signal Le	evel Settir	ng: 9.2	dBm		Ref. Le	evel / Att	19.2	2 dBm / 34	1.2 dB
NFFT: 1024				Sweep M	ode:	Со	ntinuou	S	Trigge	r Mode /	Offset: Pow	er/0S	
Zone / Seg: DL-P	USC, ID=A, S	Seg=0		Modulati	on:	AL			Zone C	Offset / L	ength: 1/28	3 Symbols	5
Capture M	emory	No of S	ample	es 5600	01				Time to	Capture	Buffer Start	7.76786	ό μs
		Captur	e Time	e 50 ms	8	Gate	Off			Mark	ter 1	51.23	dBm
Ref 19	.2 dBm	Att/EI		20.00	<u>) / 5.00 d</u>	B Zone/S	eg 10 ((10)				(0 s
	_hhilister	-labilitation-		<u>ileda</u>						<u></u>			—
<mark></mark>	_	-	_		-	_						-	
<mark></mark>	_	-	_		-	_						-	_ _ _
<u>-</u>	-	-	_		-	_						-	
ul t-			— <u>"</u>	1.4	يقرر أرار			يا بي ال	iu	nd.	alte telle	the set	
			P		┉╨		-4	Щ <u>щ</u> ица,	╺───┛╹╢┙		┛╢╌╫╢╏┼───	┛╫╫╢╴	
	╉╌╨┼╌		<u> </u>	Щ'∔—	╻┽╨┷┿					<u>e 1</u>		<u>↓ " "</u>	
-7		┛┫╾╌┥╾┶						<u> </u>			-	d	
- 15 -											<u> </u>		
0.0000 ms					5.0)000 ms/d	iv					50.000	0 ms
Burst Sum	mary												
Zone/Se	egment II) = A											
Frame	Burst I	D Ty	pe	Modul	ation	No.c	f Slo	ots	Power	r[dBm]	E	VM[dB]	
1		0 F	СН		QPSK			4		43.26	, ,	-43.27	
1		1 M	AP		QPSK			56		43.45)	-44.08	
1		2 Da	ta		QPSK			60		43.49) .	-44.09	
1		3 Da	ta		16QAM			36		43.48	} .	-44.43	
1		4 Da	ta		16QAM			42		43.68	} .	-44.23	
1		5 Da	ta		QPSK		-	168		43.55)	-44.66	
1		6 Da	ta		64QAM			54		43.22	2	-44.66	
Overall	L						4	420		43.45	,	-44.18	
2		0 F	СН		QPSK			4		43.25	; .	-44.81	
2		1 M	AP		OPSK			56		43.45	, .	-45.36	
2		2 Da	ta		OPSK			60		43.49) .	-42.92	
Running					2- 010								
Notes:													

Data Plot					VER OU	TPUT			
Page <u>6</u> of <u>7</u>								Complete x	_
Job No.: 1	02639			Date	27/02/2008	-		Preliminary:	_
Specification: P	T27		Tempe	erature (°C):	23	_			
Tested By: T	imo Hietala		Relative H	umidity (%):	10	_			
E.U.T.: W	/iMAX TRANS	MITTER							
Configuration: T	X FULL POW	ER HIGHEST	CHANNEL						
Sample Number:	1								
Location: N	NET/IMN Oulu				RBW:	Refer to	plots M	leasurement	
Detector type:	Rms				VBW:	Refer to	plots	Distance: N/A	m
Test Equipment	llsod	_							_
Antenna:	0000			Direc	tional Coupler:				
Pre-Amp:		_		Direc	Cable #1:				
Filtor:		_			Cable #1.				
	1	_			Cable #2.				
	17	-							
Attenuator #1:	17	_			Caple #4:				
Attenuator #2:		_			Mixer:				
Additional equipmer	nt used:	. 0 7 -10							
weasurement Unce	rtainty:	± 0.7 dB	-						
8			IEEE	802.16e-	2005 OFDM	A			
rrequency: 2.685	GHZ			ever Setting:	: 9.3 dBm	F	ker. Level / Att:	19.3 dBm / 34.2	ar ar
NFFT: 1024			Sweep M	ode:	Continuou	s 1	rigger Mode / Of	fset: Power/0S	
Zone / Seg: DL-PU	SC, ID=A, Se	eg=0	Modulati	on:	ALL	Z	Zone Offset / Len	gth: 1/28 Symbols	
Capture Me	mory	No of Sam	oles 5600	01		Ti	me to Capture Bu	iffer Start 7.76786 μ	IS
		Capture Ti	me 50 m	S	Gate Off	··	Marker	1 50.95 d	Bm
Ref 19.3	dBm	Att/EI	20.00) / 5.00 dB	Zone/Seg 10	(10)		2 0	s T
This a								inter de la contra d	
	_				_				
	_			-	-	_			
	_			_	_	_			-
(t orte-	с. н. i.e	sat u				-	that I during	
				 7 7 1 1			<mark></mark>		
2	╉┼╧╫╧┥	╘╹╧┛╏┥	<u>шич</u>	╟┼╵╎╵╎					_
-6	- Luder			 	A	· ·			_
14									
0.0000 ms				5.000	00 ms/div			50.0000 r	ns
Burst Summ	nary								
Zone/Seg	gment ID	= A							
Frame	Burst II) Type	Modul	ation	No.of Sl	ots I	Power[dBm]	EVM[dB]	
1	() FCH		QPSK		4	43.24	-43.87	
1	1	L MAP		QPSK		56	43.44	-43.29	
1	2	2 Data		QPSK		60	43.50	-41.33	
1		B Data		16QAM		36	43.49	-42.65	
1	4	1 Data		16QAM		42	43.68	-41.87	
1	5	5 Data		QPSK		168	43.54	-42.86	
1	6	5 Data		64QAM		54	43.24	-42.49	
Overall		- 2004		~		420	43.45	-42.55	
								12.00	
2	() FCH		QPSK		4	43.25	-44.82	
2	1	L MAP		QPSK		56	43.44	-45.12	
2	2	2 Data		QPSK		60	43.49	-41.24	
Running				~ `					
Notes:									

ta Plot				JVVL				JYUIC			
	<u>t</u>										
<u>7</u> of <u>7</u>	-								Cor	nplete <u>x</u>	
lo.:	102639				Date:	27/02/2008	3		Prelimi	nary:	
fication:	PT27		Temp	perature	(°C):	23	_				
d By:	Timo Hietala		Relative H	Humidity	/ (%):	10					
.:	WIMAX TRANS	SMITTER					·				
guration:	TX FULL POW	ER CENTER	CHANNEL								
le Number	r: 1										
ion:	NET/IMN Oulu	1				RBW	: Refer to	olots	Measure	ment	
tor type:	Peak	_				VBW	/: Refer to	plots	Dista	ance: N/A	
Equipme	ent Used										
ina:					Directi	ional Couple	r:				
mp:						Cable #1	1:				
		_				Cable #2	2:				
iver:	1					Cable #3	3:				
uator #1:	17	_				Cable #4	4:				
uator #2:		_				Mixe	r:				
ional equip	ment used:										
urement U	ncertainty:	± 0.7 dB									
						RBW 1	MH 7	Delta	2 [m1 ·	1	
•						VBW 3	MH 7	Derta	L J [II . _3	87 dB	
Dof	22 2 dBm		* 7 + + 2	ap 0		VDW 3	MHZ 0 mg		2 014	5.07 UB	
Kei	22.2 0.6.11	1	ALL Z	<u>ив</u>		SWI I			2.010		
-20			+eAtt 1	∲ dB				Marke	r 1 [T1]	
									-45	.14 dBm	
									2.467	949 ms	A
10-	الأراب الماريسي المرزان	h			<u>k i</u> l		ا مىسىلىلىر ا		2 [Т1]	MU.	SG
* *	************	Mallehall			MMM	"WHAT WAR	NG MINING WA		- 0	.11 d ha n	
R	Male Analysis				1.1.1	1 1 1 1 1 1 1 1 1	. հեռեն է է	111	5.026	442 ms	
-0			+								
10-											
_											
20											
20-											-
20-											
20-											EX
20- 30-											EX
20- 30-											EX 3D
20- 30-											EX 3D
20- 30- 40-		1						2			EX 3D
20- 30- 40-					3			2			EX 3D
					3			2			EX 3D
					5			2		alinala a	EX 3D
20- 30- 40-					3			2		alinada a	EX 3D
					5			2		Pinty A	EX 3D
20- 30- 40- 50-				We dependent	3			2		Pirty A	EX 3D
20- 30- 40- 50-				We dependent	3			2		Pirty A	EX 3D
20- 30- 40- 50- 60-				We dependent	3			2		Pintoj A	EX 3D
20- 30- 40- 50- 60-					3			2		Pintoj A	= EX 3D
20- 30- 40- 50- 60- 70-					3			2		Pinty P	EX 3D

Notes: Tx duty cycle 60% ON 40%OFF

🔊 Nemko

4. 99% Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth	PARA.NO.: 2.1049, (i)
TESTED BY: Timo Hietala	DATE: 27/02/2008

Test Results:

Complies.

Test Data:

See attached plot(s).

	Frequency	Measured 99%
Modulation Type	(MHz)	Occupied Bandwidth
		(MHz)
Test model 67075	2636.0	9.143

Note: Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM, duty cycle 60%

Equipment used:	1, 17
Measurement Uncertainty:	± 0.7 dB.
Temperature:	23 °C.
Relative Humidity:	10 %.

Test Data – 99% Occupied Bandwidth

Nemko Oy, Finland

Data	Plo	<u>ot</u>			(99'	% Occu	pied Ba	an	dwic	lth			
Page <u>1</u> o	of <u>1</u>											C	Complete	x
Job No.:		10	2639				Date	e: 01/06/20	06			Preli	minary:	
Specifica	ation:	PT	27			Tem	perature (°C)	: 23						
Tested E	By:	Ti	mo Hietala		Rela	ative	Humidity (%)	: 10						
E.U.T.:		W	IMAX TRAN	ISMITTER						-				
Configur	ration:	Tک	FULL POV	VER CENTE	R CHAN	NEL								
Sample	Numbe	er:	1											
Location	n.	N	FT/IMN Ou	u					sw∙	Refer t	o plots	Measu	irement	
Detector	r type:		Rms	_				VE	BW:	Refer t	o plots	Di	stance: N/A	<u> </u>
Test Ec	quipn	nent (Used											
Antenna	l:						Dire	ctional Coup	ler:					
Pre-Amp	D :							Cable	#1:					
Filter:								Cable	#2:					
Receive	r:		1					Cable	#3:					
Attenuat	tor #1:		17					Cable	#4:					
Attenuat	tor #2:							Mix	xer:					
Addition	al equi	pmen	t used:											
Measure	ement	Uncer	tainty:	± 0.7 dE	3									
R								* RBW 10	00	kHz	Marke	er 2 [T1]	
V .								* VBW 1	MH	Iz		-36	5.77 dBm	
	Ref	47	.1 dBm		* Att	2	0 dB	* SWT 50	00	ms		2.618500	0000 GHz	
Í		OFF	+ 2 2 2	0 40	0744	0	ЧЪ				OBW	9 142628	205 MH7	
		OLL	sel 32	. 8 GB	eall	. 0	ав				Mowley	9.142020	1	
	-40-				-						Mark]	2
												-36	.// aBm	A
1 PM *											_	2.618500	0000 GHZ	GAT
CLRWR	-30-										Temp	1 [TI OF	BW]	TRG
						rr 1			Т	2		21	.36 dBm	LVL
						<i>†</i> ∼	man	+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	maP			2.631400	641 GHz	
	-20-										Temp	2 [T1 OF	3W]	
												22	.56 dBm	
												2.640543	269 GHz	
	-10-													
	-0													
	L 10													3DB
	-10.													
	20-													
	20													
	20-									Window	i			
	2		امسي		MULLIN					· •••1	~Whyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhyhy	م با الانقانية. (ما المانية ال	kuus s	
	mm	~mMil	W M M								••••••••••••••••••••••••••••••••••••••	Men	man man man for the	
	40-				_									
	Cent	er	2.636 G	Hz			3.5 1	MHz/				Span	35 MHz	
L														

Notes:_____

5. Spurious Emissions at Antenna Terminals

NAME OF TEST:	Spurious Emissions @ Antenna Terminals	PARA.NO.: 27.53(I), 2.1051
TESTED BY: Timo	Hietala	DATE: 27/02/2008

Test Results:

Complies.

Test Data:

See attached plots.

Frequency		Spurious Emission
(MHz)	Modulation	(dBm) rms det.
321.109	Test model 67075	-23.11
7909.615	Test model 67075	-49.10
All other	Test model 67075	More than 20 dB below limit -13 dBm

Lower Band Edge

Frequency		Peak Emission
(MHz)	Modulation	Level (dBm) rms det.
2583.000	Test model 67075	-25.28

Upper Band Edge

	Frequency		Peak Emission
	(MHz)	Modulation	Level (dBm) rms det.
	2690.000	Test model 67075	-24.93
Equipment used	: 1, 2, 3, 4	4, 7, 8, 9, 12, 13, 14	
Measurement Uncertainty:	± 0.7 dE	3.	
Temperature:	23 °C.		
Relative Humidity:	10 %.		

Note: Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM, duty cycle 60%

The spectrum was searched from 9 kHz to the 10th harmonic of the carrier.

Nemko Oy, Finland

Data	Plo	<u>ot</u>		<u>Spuri</u>	ous Emi	issic	ons	at Ante	enn	a Teri	ninals				
Page <u>1</u> 0	of <u>8</u>											Co	mplete	х	
Job No.:		10	2639				Date	: 27/02/2	800			Prelim	inary:		
Specifica	ation:	PT	27		Temp	beratur	e (°C):	23							
Tested E	By:	Tin	no Hietala		Relative H	Humidi	ty (%):	10		-					
E.U.T.:	,	WI	MAX TRANS	SMITTER			, ()			-					
Configur	ration.	тх	FULL POW	FRIOWEST	CHANNEL										
Sample	Numb	or: 17	1		ONAMILE										
Jacotion	inumb.	UI.						-		Deferte	nloto	Magaur			
Location		INI		<u> </u>				ĸ	BVV:	Refer to	plots	Measure	ement		
Detector	type:		Rms	_				V	BW:	Refer to	plots	Dist	ance: N	I/A	m
Test Ed	quipn	nent l	Jsed												
Antenna	:						Direc	tional Cou	pler:						
Pre-Amp	D:			_				Cable	e #1:						
Filter:				_				Cable	e #2:						
Receive	r:		1					Cable	e #3:						
Attenuat	or #1:	_	17					Cable	#4:						
Attenuat	or #2:			_				М	ixer:						
Addition	al equi	pment	used:	_											
Measure	ement	Uncert	ainty:	± 0.7 dB	_										
R								* RBW	100	kHz	Marke	er 2 [T1]		
N N								* VBW	100	kHz		-27	7.72 d	Bm	
	Ref	52	4 dBm		* A++ 20	0 dB		* SWT	2 5			2 582000	0000 G	Hz	
		55		1	1.00 2.		1	5.11			1	1	1		
	-40-	Off	et 32	8 dB					_		Marke	<u>r 1 [T1</u>]		
												-25	.28 d	Bm	
												2.583000	000 G	Hz	A
	-30-													s	GL
1 RM *														G	JAT
CLRWR									~ ~~	~~~~~				т	RG
	-20-								_				$ \rightarrow $	I	LVL
	-10-								_						
	-0								_						
	10								_						
			D1 -13 (1Bm ——					_						NDB
														Ĩ	
	20														
	20		D2 -	23 dBm —			:	l							
							P							~~	
	30			hanne	umun	puth	m								
	~~~~	_nmm	mm												
	40														
	<b>_</b>					_									
	50					F F		1	+						
							F	ц							
	Cent	er	2.583 GI	Hz		1	2.2	MHz/				Span	22 M	Hz	

**Notes:** Tx 2588 MHz, LOWER BANDEDGE. RBW of 100kHz was used 1-11MHz from band edge and the limit was adjusted from -13dBm to -23dBm for compensate the reduced bandwidth.



#### Nemko Oy, Finland

Data	Plo	ot		<u>Spur</u>	ious E	missic	ons a	at An	tenn	a Tei	minals	<u>5</u>		
Page 2 of	f <u>8</u>											C	omplete	x
Job No.:		10	2639				Date	: 27/02/	/2008	_		Prelir	ninary:	
Specificat	tion:	PT	27		Т	emperatur	e (°C):	23	3	_				
Tested By	y:	Tir	no Hietala		Relat	tive Humidi	ty (%):	10	0	-				
E.U.T.:		WI	MAX TRA	NSMITTER						-				
Configura	ation:	ТХ	FULL PO	WER HIGHE	ST CHAN	NEL								
Sample N	Jumbe	-r.	1											
Location:		NI	ET/IMN OI	du				-	RBW.	Refer f	o nlots	Measu	rement	
Dotoctor t	tuno:								1/B///	Pofor t		Nicasu	stanco: N/A	m
Delector l	type.		KIVIO						V D VV.	Relefi		Di		111
Test Eq	uipm	nent l	Jsed											
Antenna:							Direc	tional Co	oupler:					
Pre-Amp:								Cab	ole #1:					
Filter:								Cat	ole #2:					
Receiver:			1					Cat	ole #3:					
Attenuato	or #1:		17					Cat	ole #4:					
Attenuato	or #2:								Mixer:					
Additional	l equi	nment	used.											
Measuren	nent l	Uncert	ainty:	± 0.7 dF	3									
Modouron	nont	oncon	anty.	10.1 0										
R								* RBW	100	kHz	Marl	ser 2 [T]	1	
MS/								* VBW	100	 געי	FIGE 1	-2'	, 7 17 dBm	
	of	52	1 dPm		* 7++	20 dB		* CMT	2 9	14112		2 691000		
	(ET	52	. 4 0.000		ALL	20 0.8		SWI	2 5			2.091000	JOOU GHZ	2
–	50-	Off	set 3	2 8 dB							Marl	cer 1 [T1	]	
												-24	.98 dBm	
												2.69000	000 GHz	A
ŀ	40-													SGL
1 RM *														GAT
CLRWR														TRG
-	30-													LVL
		_												
						~~~	~~							
	20-	1												
	10-													
Ι Γ	-0													
														3DB
	10-													
	-10		D1 -13	d Bm										
				1										
	-20													
			D2	-23 dBm										
							L	~~~						
<u>~</u>	سس ے -30-							***	m	······				
											min	-from man	minan	
L	40-							- F2-						
	10						F1	.						
	Cent	er	2.69 G	Hz		5	2.2 M	Hz/				Span	22 MHz	-
				-		-		,				0rail	2	

Notes: Tx 2685 MHz, UPPER BANDEDGE . RBW of 100kHz was used 1-11MHz from band edge and the limit was adjusted from -13dBm to -23dBm for compensate the reduced bandwidth.

Distance: N/A m

3DB

mana

Stop 1 GHz

-: -4 .: E 4 D

Nemko	o Oy, F	inland	d d												
Data	Plot		-	<u>Spu</u>	irious I	Emise	sions	at Ante	nn	a Tern	ninals				
Page 3	of <u>8</u>	400000						07/00/00				C	omplete		X
Job No.:	:	102639)			-	Dat	e: 27/02/20	800	-		Prelir	ninary:		
Specific	ation:	P127			Dala	i empera	ature (°C)	: 23		-					
	ву:				Rela	tive Hur	niaity (%)	: 10		-					
E.U.T.	rotion:														
Sampla	Numbor:	IAFUL	1												
Location		NET/I							R1\\/∙	Refer to r	nlots	Measu	rement		
Detector	r type:	REI/II	MS	-				1/6	3₩. 3₩.	Refer to		Die	stanco.	Ν/Δ	
Delecto	r type.		IVIO	_				VL	JVV.	Refer to	01013	Di	stance.	11/7	
Test E	quipme	nt Used	d												
Antenna	a:			_			Dire	ctional Coup	oler:						
Pre-Am	p:			_				Cable	#1:						
Filter:				_				Cable	#2:						
Receive	er:		1	_				Cable	#3:						
Attenuat	tor #1:		17	_				Cable	#4:						
Attenuat	tor #2:			_				Mi	xer:						
Addition	al equipn	nent use	d:												
Measure	ement Un	certainty	/:	± 0.7 d	B										
R								*RBW 1	00	kHz	Marke	er 1 [T1]		
XY -								* VBW 1	00	kHz		-36	5.27	dBm	
	Ref	10.6	dBm		* Att	30 c	lВ	*SWT 2	s		32	24.715035	5256 1	MHz	
	10 O	ffset	31.	3 dB	_						Marke	r 2 [T1]		
												-37	1.66 0	dBm	
	-0											1.000000	000 1	MHz	A
4 - D. C. A.															
CHRWIC	10														LVL
		D1	-13 d	.Bm —											
	20														
					1										
1	F								1				1		

Start 9 kHz

40

-50

-60**-**

-70-

-80

99.9991 MHz/

Notes: Tx 2636 MHz

Nemko Oy, Finland

Data P	lot	<u>Spu</u>	rious Er	nissions	at Antenr	na Termina	als_		
Page <u>4</u> of <u>8</u>							C	omplete	x
Job No.:	102639			Da	ite: 27/02/2008	_	Preli	minary:	
Specification	: PT27		Te	mperature (°C	:):23	_			
Tested By:	Timo Hietala	a	Relativ	e Humidity (%	b): 10	_			
E.U.T.:	WIMAX TRA	ANSMITTER							
Configuratio	n: TX FULL PO	OWER MIDDL	E CHANNEI	L			-		
Sample Nun	ber: 1	-	-				-		
Location:	NET/IMN C)ulu				Refer to plots	Measu	rement	
Detector typ	e: RMS				VBW:	Refer to plots	Di	stance: N/A	A m
T (F)							•		
Test Equip	oment Used			Dia					
Antenna:				Dir	ectional Coupler:				
Pre-Amp:					Cable #1:		-		
Filter:					Cable #2:		-		
Receiver:	1				Cable #3:		-		
Attenuator #	1:17				Cable #4:		-		
Attenuator #	2:				Mixer	:			
Additional ed	uipment used:						_		
Measureme	nt Uncertainty:	± 0.7 d	<u>B</u>						
					*RBW 1 M	Hz Ma	rker 1 [T1]	
× Y					*VBW 1 M	Hz	-23	.11 dBm	
Rei	10.6 dBm		* Att	30 dB	*SWT 2 s		321.109266	026 MHz	
10	Offeet 3	1 3 dB		1	1	Ma	rker 2 [T]	1	1
10	OIISEC 3					110	-21	, 24 dBm	
							200 715025	DEG MUR	A
-0-							239.713033	230 MHZ	
1 RM *									
махн									
1	0								LVL
	DI -13	авт — —							
2	0			1					
				Northern	Munu.				
	- 2			and and a second	www.				
د	<u> </u>							~	
	0								
4	0								
									3DB
	0								
-5	-								
6	0								
7	0			_					
8	0								
				1	J				
Ce	nter 321.67	01635 MH	Z	5 N	MHz/		Span	50 MHz	

Notes: Tx 2636 MHz

<u>Data</u>	I Plo	<u>ot</u>		Spuri	ous En	nissions	at Ante	nna	Termin	<u>als</u>			
Page 5	of <u>8</u>										Corr	plete x	
Job No.:	:	10	2639			Dat	te: 27/02/20	08			Prelimin	ary:	
Specific	ation:	PT	27		Ter	mperature (°C)): 23						
Tested I	By:	Tin	no Hietala		Relative	e Humidity (%)): 10						
E.U.T.:		WI	MAX TRANS	SMITTER						_			
Configu	ration:	TX	FULL POW	ER MIDDLE	CHANNEL					_			
Sample	Numbe	er:	1				_						
Location	ר:	N	ET/IMN Oulu	<u> </u>			RE	3W: <u>R</u> e	efer to plots	_	Measuren	nent	
Detector	r type:		RMS	_			VE	3W: <u>R</u> e	efer to plots	-	Dista	nce: N/A	m
Test E	quipn	nent L	<u>Jsed</u>										
Antenna	a:			_		Dire	ectional Coup	oler:					
Pre-Am	p:			_			Cable	#1:		-			
Filter:			-	_			Cable	#2:		_			
Receive	er:		1				Cable	#3:		_			
Attenuat	tor #1:		17				Cable	#4:		_			
Attenuat	tor #2:			_			Mi	xer:					
Addition	al equi	pment	used:							-			
weasure	ement	Uncert	anty:	± 0.7 dB	_								
R R							*RBW	1 MHz	1	Marker	2 [Т1]]	
XY .							* VBW	1 MHz			-24.	.10 dBm	
	Ref	41	.7 dBm		* Att	10 dB	*SWT 2	2 s		2	.9871794	187 GHz	
	- 10-	<u></u>							,	arter	1 [77] .	1	1
	40	OIIS	set 33	ав	PALL	20 aB			1	Marker	± [±±].	70 dpm	
										2	1 6246103		2
	-30-									4	0340153	SOS GHZ	A
1 RM *													
CLRWR													
	-20-										\vdash		LVL
	-10-				1		1	1					
											Į		
	-0												
	10												
			D1 -13	dBm									
			_										3DB
	20						-	-					
												¥	
			L		┥								
	30												
	-40			1			1						
	50												
	<u> </u>			1	I		I						
	Star	rt 1	GHz			200	MHz/				Stop	3 GHz	
L													

Data Pl	ot	<u>Spurious</u>	Emissions	at Antenna	a Termina	ls	
Page <u>6</u> of <u>8</u>						C	complete x
Job No.:	102639		Da	te: 27/02/2008		Preli	minary:
Specification	: PT27		Temperature (°C): 23			
Tested By:	Timo Hietala	Re	ative Humidity (%):10			
E.U.T.:	WIMAX TRAN	NSMITTER					
Configuration	n: TX FULL PO	VER MIDDLE CHAN	NEL				
Sample Num	ber: 1						
Location:	NET/IMN Ou	lu		RBW:	Refer to plots	Measu	rement
Detector type	e: RMS			VBW:	Refer to plots	Di	stance: <u>N/A</u> m
Test Equip	ment Used		5				
Antenna:			Dire	ectional Coupler:			
Pre-Amp:				Cable #1:			
Filter:	13			Cable #2:			
Receiver:	1			Cable #3:			
Attenuator #*	1: 15			Cable #4:			
Attenuator #2	2:			Mixer:			
Additional eq	uipment used:						
Measuremen	t Uncertainty:	± 0.7 dB					
		• 244		*RBW 1 MHz *VBW 1 MHz	z Mar	ker 1 [T1 -48] .33 dBm
Rei	3.3 dBm	* Att	U dB	*SWT 5 s		7.903846	154 GHz
- 0-	Offset 18	.3 dB					
							A
1	0						
1 RM *	D1 -13	dBm —					
CLRWR							T.VT.
2	0						
3	0						
	0						
4	0						
		1					
5	0	Y					
5							3DB
6	0						
					- ~	\sim	~~~~~
م	o		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
8	0					-	
9	0						
Sta	art 3 GHz		. 1.7	GHz/	•	Stop	20 GHz
500			±• /	/		Scop	
I							

Data	l Plo	<u>ot</u>		<u>Spuri</u>	ous Em	issions	at Ante	nna T	erminals	<u>s</u>		
Page <u>7</u>	of <u>8</u>					_				(Complete	x
Job No.	:	10	2639			Dat	te: 27/02/20	08		Preli	minary:	
Specific	ation:	PT	27		Tem	perature (°C)): 23					
Tested	By:	Tir	no Hietala		Relative	Humidity (%)):10					
E.U.T.:		W	IMAX TRAN	SMITTER								
Configu	ration:	ТХ	FULL POW	ER MIDDLE	CHANNEL							
Sample	Numb	er:	1									
Location	n:	Ν	ET/IMN Oulu	1			RE	BW: Refe	er to plots	Measu	irement	
Detecto	r type:		RMS	_			VE	BW: Refe	er to plots	Di	stance: N/A	<u> </u>
Test E	quipn	nent l	<u>Jsed</u>			5						
Antenna	a:					Dire	ectional Coup	oler:				
Pre-Am	p:						Cable	#1:				
Filter:			13	_			Cable	#2:				
Receive	er:		1				Cable	#3:				
Attenua	tor #1:		15	_			Cable	#4:				
Attenua	tor #2:			_			Mi	xer:				
Addition	nal equi	ipment	t used:									
Measur	ement	Uncer	tainty:	<u>± 0.7 dB</u>								
R							* RBW 1	MHz	Mark	er 1 [T]	1	
MS/							* VBW 1	MH 7	Mark		, 10 dem	
	Pof	_1 (9 dpm		* 7 + + 0	dP	* CMT 5	rinz a		7 90961		
	Ker	-1.0		1	ALL U	ub	SW1 5	5		7.909013	JJJJJ GHZ	I
		Offs	et 13.	2 dB								
	10		D1 10	1								A
			DI -13 (iBm —								
1 RM *												
MAXH	20											
												LVL
	30.											
	4.0											
	40											
							1					
	50						и . Тин					
	50					MMAAAAA	a contratatatata	hunn.				
				M	Webellinger			"Ululu				
	60-								u.			3DB
				WWW					www			
				and performed					N.			
	70		Manuth						W. M. Market	the.		
			www.							approxim		
	80											
	90									-		
	100	0										
	Cent	cer	7.908573	3718 GHz		5 M	Hz/			Span	50 MHz	
										- T 2		
L												

Data P	lot		<u>Spur</u>	ious E	missic	ons a	t Ant	enn	a Termi	nals			
Page <u>8</u> of <u>8</u>						_					(Complete	x
Job No.:	10)2639		_		Date:	27/02/2	2008	-		Preli	minary:	
Specificatio	n: P	Γ27		Te	emperatur	e (°C):	23		-				
Tested By:	Ti	mo Hietala		Relati	ve Humidi	ty (%):	10		-				
E.U.T.:	W	IMAX TRAN	SMITTER										
Configuratio	on: <u>T</u>	K FULL POW	ER MIDDLE	E CHANNE	L								
Sample Nur	nber:	1											
Location:	N	ET/IMN Ould	u				I	RBW:	Refer to plo	ots	Measu	irement	
Detector typ	be:	RMS					,	VBW:	Refer to plo	ots	D	stance: N/	A m
<u>Test Equi</u>	pment	Used											
Antenna:			_			Direct	ional Co	upler:					
Pre-Amp:			_				Cab	le #1:					
Filter:		14					Cab	le #2:					
Receiver:		1					Cab	le #3:					
Attenuator #	<i>‡</i> 1:	16					Cab	le #4:					
Attenuator #	#2:						r	Aixer:					
Additional e	quipmen	t used:											
Measureme	nt Uncer	tainty:	± 0.7 dB										
R							* RBW	1 MH	Iz	Markeı	с 1 [Т1]	
XY -							* VBW	1 MH	Iz		-50).33 dBm	
Re	f 14	dBm		* Att	0 dB		* SWT	5 s		26	5.156250	000 GHz	
	off	hat 20	dD							1			1
-10)	set 29	ав										
													A
													A
1 RM * -0-								-					
CLRWR													
													LVL
	10	D1 _13	Bm —										
	20												
	20												
:	30							_					
	40												
													SDB
												1	
 -!	50						<u> </u>	-	~~~~~~		~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
		<u> </u>		+		<u> </u>	\sim	γ					
	50												
	70 ——												
	30							-					1
Q+	art 3	0 GH7			6	50 MF	Iz/		I	I	Stop ?	6 5 GH7	0
	are z	0112			0	55 111					500p 2	0.5 0112	

6. Field Strength of Spurious

NAME OF TEST:	Field Strength of Spurious Emissions	PARA.NO.: 27.53(I), 2.1053
TESTED BY: Timo	Hietala	DATE: 28/02/2008

Test Results:

Complies.

Test Data:

See attached table.

Frequency	Spurious Emission
(MHz)	EIRP (dBm) ave
All	More than 20 dB below limit -13 dBm

Equipment used:	19, 20, 21, 22, 24, 29, 30, 31, 32
Measurement Uncertainty:	± 5.2 dB.
Temperature:	23 °C.
Relative Humidity:	10 %.

Note: Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM, duty cycle 60%

The spectrum was searched from 30 MHz to the 10th harmonic of the carrier.

Test Data – Radiated Emissions

Nemko Oy, Finland

Data Plot		<u>Radia</u>	ted Emissio	ns Substituti	on Method	<u>k</u>			
Page <u>1</u> of <u>4</u>							Comple	ete <u>x</u>	
Job No.:	102639			Date: 28/02/2008	-		Preliminar	y:	
Specification:	PT27		Temperature	(°C): 23	-				
Tested By:	Timo Hietala	l	Relative Humidity	/ (%):10	-				
E.U.T.:	WIMAX TRA	NSMITTER							
Configuration:	TX FULL PC	WER MIDDLE	CHANNEL						
Sample Number:	1								
Location:	NET/IMN O	ulu		RBW:	1 MHz		Measureme	nt	
Detector type:	Ave			VBW:	1 MHz		Distance	e: <u>3</u> m	
Test Equipme	nt Used								
Antenna:	21, 22, 24	1		Directional Coupler:					
Pre-Amp:	29, 30			Cable #1:					
Filter:				Cable #2:					
Receiver:	19			Cable #3:					
Attenuator #1:	-			Cable #4:					
Attenuator #2:				Mixer:					
Additional equipr	nent used:	31, 32							
Measurement Ur	certainty:	± 5.2 dB	_						
	-		-	-			-		
Frequency	Meter	Correction	Gen.	Substitution	EIRP	EIRP	Polarity	Comments	5
	Desilies	Fastar	1						
	Reading	Factor	Levei	Antenna Gain				_	-
(MHz)	(dBm)	(dB)	(dBm)	(dBi)	(dBm)	(µW)			

Notes: Pre measurement in stack installation Tx 2636 MHz, transmitters full power terminated 50Ω

Page	27 (39)
Date	29.02.2008

Test Data – Radiated Emissions 30 MHz - 26.5 GHz

Nemko Oy, Finland

Dat	a Plot			Ra	ndia	ted	Em	issio	ons S	ubsti	tutio	n Me	thod						
Page 2	<u>2 of 4</u>														Corr	plete	х	_	
Job No	o.:	102639							Date:	28/02/2	2008				Prelimin	ary:			
Specif	ication:	PT27					Tem	peratur	e (°C): _	23									
Testec	d By:	Timo Hie	etala			R	elative	Humidi	ty (%):	10									
E.U.T.	:	WIMAX	TRANS	MITTE	R														
Config	uration:	TX FULL	- POWE	ER MIE	DDLE	CHA	NNEL												
Sampl	e Number	: 1																	
Locatio	on:	NET/IM	N Oulu	_						F	RBW:	120 k	Hz	N	easuren	nent			
Detect	or type:	Pe	ak	-						Ň	/BW:				Dista	nce:	3	r	n
Test I	Equipme	ent Used	-						Discoti										
Antenr	na:		2	-					Directi	onal Col									
Pre-Ar	np:	2	9	_						Cab	e #1:								
Flitter:			0	_						Cab	e #2:								
Receiv	/er:	2	0	_						Cab	e #3:								
Attenu	ator #1:			_						Cab	e #4:								
Attenu	ator #2:			-	~~					P	/lixer:								
Additio	mai equipi	ment used	•	31	, ა:2 ეკე														
weasu		icentainty:		± 5.	∠ub	_													
Le	vel [dE	βµV/m]																	
90																			
																			_
80																			
00																			
70							_												
60														_	_				_
50																			_
40																			
40												h	1.				١.	1. 100	a Aprel
											Lul		1		y	man	and all the	Meren .	
30											<u> </u>		14114	Mundum	Man .				
30	m									NV.	(1)	W V	1'V' W						
		M. 1				M	www	humburt	winding	w./ (W	~							
20		- m	ml.			1	·												
20			~~~	WWW	V~~														
10															+	-			-+
0																			
	30M	50	M	70	М	1	00M			200	M	300	M	50	0M	700	M	1	G
							Fr	eque	ncv [ŀ	-Iz]									
								1.0	- 7 ['										
	MES	HE280	7208	01	nre	ΡK													
		- CC 47		ייי ג 2⊿	F	· '\ F	hlai	Stror	naht I	imit									
		5541	011	、	•	1	1010	5401	igin L										

Notes: Limit line (84.4 dBuV/m) is converted from substitution limit (-13 dBm) to unit dBuV/m in 3 meter measurement distance

Data	Plot		Radi	ated Em	issio	ns S	ubstit	ution	Metho	<u>d</u>				
Page <u>3</u> c	of <u>4</u>										_	Comp	lete	x
Job No.:		102639		_		Date:	28/02/20	800			Pre	eliminai	ry:	
Specifica	ation:	PT27		Tem	nperature	e (°C):	23							
Tested E	By:	Timo Hietala		Relative	Humidit	y (%): _	10							
E.U.T.:		WIMAX TRANSM	ITTER							_				
Configur	ration:	TX FULL POWER	RMIDDL	E CHANNEL						_				
Sample	Number:	1					_							
Location	n:	NET/IMN Oulu					R	BW:	1 MHz	-	Meas	sureme	ent	
Detector	r type:	Peak					V	BW:	1 MHz	-	L	Jistanc	:e:	<u> </u>
Test Ec	quipme	nt Used												
Antenna	ť.	24				Directi	ional Cou	pler:						
Pre-Amp	o: .	29					Cable	e #1:		_				
Filter:							Cable	#2:		_				
Receiver	r:	20					Cable	#3:		_				
Attenuat	tor #1:	-					Cable	e #4:		_				
Attenuat	tor #2:						М	ixer:						
Additiona	al equipn	nent used:	31, 32							_				
Measure	ement Un	certainty:	± 5.2 dE	3										
Lev	el [dB	µV/m]												
90 🗆														
80 -					-									
70 –					$ \rightarrow $									
						$ \square $								
							ransm	itter fre	q.					
60														
			he M	W WALL			M. W.	W	9					ata a
	In Mr.	We we we we	N/W	₩ 1 .	hull	N WW	1.44/9/	" YURHI YUHHI		I. M			Ju.	MAY HAVE ALL MY
Mw.	MM., "M.	1 And Martin Contraction		V	Mir Marson I					Mark -			wW ***	
										r i	1 days	MAL MA	·	
50									N.		June .			
50														
40														
40 -	G		20	<u> </u>	3		10	2 5		C 7	<u>_</u>		1	2 750
'	0		20	- -	5						0		1.	2.750
				Fr	equer	ncy [H	ΗΖ]							
I	MES	HE280208 ()2_pre	e PK										
II	LIM F	CC 47 CFR	24 F	Field	Stren	ght L	.imit							
						-								

Notes: Tx 2636 MHz

Data	a Plot		Radiate	d Emi	<u>ssions S</u>	ubstitu	tion Met	hod				
Page 4	of <u>4</u>								С	omplete	X	
Job No	o.:	102639			Date:	28/02/2008	3		Prelir	ninary:		
Specifi	cation:	PT27		Temp	erature (°C):	23						
Tested	By:	Timo Hietala		Relative H	- 	10						ļ
E.U.T.:	,	WIMAX TRANSMI	TTER									
Config	uration.	TX FULL POWER		IANNEI								
Sample	Number	1										
Locatio	n.	NFT/IMN Oulu				RBV	/· 1 MHz	,	Measu	rement		
Detecto	or type:	Peak				VBW	/· 1 MHz		Die	stance:	з	m
Dotool	or type.	1 out				101			DR		<u> </u>	
Test E	Equipme	nt Used										
Antenn	ia:	21			Directi	ional Couple	r:					
Pre-Am	np:	30				Cable #	l:					
Filter:						Cable #2	2:					
Receiv	er:	20				Cable #3	3:					
Attenua	ator #1:	-				Cable #4	1:					
Attenua	ator #2:					Mixe	r:					
Additio	nal equipn	nent used:	31, 32									
Measu	rement Un	certainty:	± 5.2 dB									
Le [،] 90 ر	vel [dB	µV/m]						1				
85												
00												
80										why hym	1 May M	nh ym
75												
70						helder whether	and the second	WWWWWWWW	WW			
65	W.W.	www.wathin	Wahand Mente	hhi yaha								
60												
	12.75G	i 1	6G	18	G	20G	22	2G	24G	6 2	26.5G	•
				Fre	quency [H	Ηz]						
					. , .	•						
	MES LIM F	HE280208_0 CC 47 CFR 2	03_pre P 24 F	K Field S	Strenght L	.imit						

Notes: Tx 2636 MHz

7. Frequency stability

RA.NO.: 27.54, & 2.1055
TE: 28/02/2008

Test Results:	Complies.
Standard Test Frequency:	2636.000 MHz.
Standard Test Voltage:	48 V DC.
Equipment used:	1, 5, 6, 7, 8, 17
EUT:	WIMAX TRANSMITTER.
Configuration:	TX FULL POWER MIDDLE CHANNEL

Measurement Data:

Frequency stability with voltage variation.

Voltage (V DC)	Temp (°C)	Rated (Hz/ppm)	Deviation (Hz)	Deviation (ppm)
48.0	20	132 / 0.05	27.2	0.0103
55.2	20	132 / 0.05	33.1	0.0126
40.8	20	132 / 0.05	26.8	0.0102

Measurement Uncertainty:	
Relative	

± 0.001 ppm (± 2.0 Hz).

RelativeHumidity:10 %.

Note: Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM, duty cycle 60%

NAME OF TEST: Frequency stability	
TESTED BY: Timo Hietala	

PARA.NO.: 27.54, & 2.1055

DATE: 28/02/2008

Complies.
2636.000 MHz.
48 V DC.
1, 5, 6, 7, 8, 17
WIMAX TRANSMITTER.
TX FULL POWER MIDDLE CHANNEL.

Measurement Data:

Frequency stability with temperature variation.

Voltage (V DC)	Temp (°C)	Rated (Hz/ppm)	Deviation (Hz)	Deviation (ppm)
48.0	50	132 / 0.05	-34.7	-0.0132
48.0	40	132 / 0.05	-19.8	-0.0075
48.0	30	132 / 0.05	16.3	0.0062
48.0	10	132 / 0.05	32.5	0.0123
48.0	0	132 / 0.05	28.8	0.0109
48.0	-10	132 / 0.05	21.9	0.0083
48.0	-20	132 / 0.05	-17.0	-0.0064
48.0	-30	132 / 0.05	-33.7	-0.0128

Measurement Uncertainty:

± 0.001 ppm (± 2.0 Hz).

Note: Test model 67075 includes modulation types; QPSK, 16-QAM and 64-QAM, duty cycle 60%

8. List of test equipment

Each active test equipment is calibrated annually.

Nr.	Equipment	Name of equipment	Serial number
1	Signal analyzer	Rohde & Schwarz:FSQ26/K93	100364
2	Network analyzer	Hewlett-Packard:HP8753E	US38431868
3	Network analyzer	Hewlett-Packard:HP8720ES	US39172107
4	Calibration kit	Hewlett-Packard:HP85032B	2919A04843
5	Environmental chamber	Weiss technick DU 22/500/80	221/19600
6	Frequency standard	Datum 8040	23006282
7	DC power	Sörensen	9950C0085
8	Temperature/humidity meter	VAISALA HMI 31	P3730008
9	Vector Network analyzer	Rohde & Schwarz:ZVA40	100102
10	Calibration kit	Rohde & Schwarz:ZV-Z34	100026
11	Power meter	Rohde & Schwarz:NRVD	832025/034
12	Power sensor	Rohde & Schwarz:NRVZ	839913/010
13	High Pass filter	Reactel 9HSX-3/20-S11	0531
14	High Pass filter	BSC MCN-S8282/02	1182501
15	Attenuator	Weinschel 66-10-34	BK1136
16	Attenuator	Aeroflex/Weinschel 68-20-11	401
17	Attenuator	Narda FSCM 99899	08275
18	Attenuator	Narda 752-30	FSCM99899
19	Semianechoic chamber	Siemens Matsushita 9m × 5m × 6m (room 0039)	Product No S&M B83317- C6019-T232
20	EMI Test Receiver	R&S ESIB 26	100335
21	LogPer Antenna	R&S HL025	349048/002 (1-26 GHz)
22	Bilog Antenna	Chase CBL6112B	2694
23	Horn Antenna	Emco 3115	6346
24	Horn Antenna	Emco 3115	000075697
25	Biconical Antenna	R&S HK116	836891/009
26	Dipole VHF	Mess-Elektronik VHA9103	
27	Dipole UHF	Mess-Elektronik UHA9105	
28	Signal Generator	R&S SMR 20	1715
29	Amplifier	Miteq AFSX4	791117
30	Amplifier	HP 83017A	3123A00444
31	Antenna Mast	Deisel HD240	2401323194
32	Mast Controller	Deisel HD100	1001331

N Nemko

9. Photographs of Test Setup

Photograph 1: Radiated spurious emissions test

10. ANNEX A, TEST DETAILS

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard:Para. No. 27.50 (h).(1) Main, booster and base stations. (i) The
maximum EIRP of a main, booster or base station shall not exceed
33 dBW + 10log(X/Y) dBW, where X is the actual channel width in
MHz and Y is either 6 MHz if prior to transition or the station is in the
MBS following transition or 5.5 MHz if the station is in the LBS and
UBS following transition, except as provided in paragraph (h)(1)(ii) of
this
section.
Sample calculation: 33dBW+ 10log(10 MHz / 5.5 MHz) dBW =34.26
dBW = ~2667 W.

Method Of Measurement:

CDMA Per ANSI/J-STD-014 TDMA Per ANSI/J-STD-010

Antenna terminal:

The power at antenna terminal is measured by using the R&S NRVD broad-band power meter and power sensor NRV-Z1. At Test model 67075 pulse mode duty cycle 60% was used.

NAME OF TEST: Occupied Bandwidth		PARA. NO.: 2.1049
Minimum Standard:	Para. No. 2.1049. The 99% occu frequency band such that, below frequency limits, the mean power the emitted power.	pied bandwidth is the width of a the lower and above the upper rs emitted are each equal to 0.5% of

Method Of Measurement:

The 99% occupied bandwidth of the carrier emission is measured using a signal analyzer with Resolution Bandwidth set to 1% of the necessary bandwidth of the transmitted carrier. R&S FSQ 26 signal analyzer with WiMAX K93 option was used.

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard:Para. No. 27.53(I). For BRS and EBS stations, the power of any
emissions outside the licensee's frequency bands of operation
shall be attenuated below the transmitter power (P) measured in
watts.
(I)(2) For fixed and temporary fixed digital stations, the attenuation
shall be not less than 43 + 10 log (P) dB

Method Of Measurement:

Spectrum analyzer settings: RBW: 1 MHz VBW: 1 MHz Within 1 MHz of the upper and lower edges of the assigned band of operation the resolution bandwidth is lowered to 1 % of the 26 dB occupied bandwidth of the transmitted carrier. A pre-measurement was performed with the max peak detector and spurious emissions closer than 20 dB to the limit was measured with rms detector.

NAME OF TEST: Field Strength of Spurious Radiation PARA.
--

Minimum Standard:	Para. No. 27.53(I). For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts.
	shall be not less than $43 + 10 \log (P) dB$

Test Method:

TIA/EIA-603-C-2004, Section 2.2.12

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test in the frequency range 30-26500 MHz the distance from the EUT to the measuring antenna was 3 m. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna were varied during the tests. The test was performed with the measuring antenna being both in horizontal and vertical polarizations.

Vertical and horizontal polarizations in the frequency range 30 - 26500 MHz was first measured by using the peak detector. During the peak detector scan the turntable was rotated from 0° to 360° with 30° step with the antenna heights 1.0 m and 2.5 m.

The limit of -13 dBm has been calculated to correspond 84.4 dB(μ V/m). Spurious emissions closer than 20 dB to the limit were measured with average detector.

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The EUT was replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator $G_{Antenna[dBi]}$. This antenna was fed with a signal at the spurious frequency $P_{Gen[dBm]}$. The level of the signal was adjusted to repeat the previously measured level. The resulting EIRP is the signal level fed to the reference antenna corrected for gain referenced to an isotropic. The formula below was used to calculate the EIRP of the EUT.

 $P_{EIRP[dbm]} = P_{Gen[dBm]} - L_{Cable[dB]} + G_{Antenna[dBi]}$

NAME OF TEST: Frequency Stability

PARA. NO.: 2.1055

Minimum Standard: Para. No. 27.54. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Method Of Measurement:

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency error is measure. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency error is measured.

Paga	27 (20)
гауе	37 (39)
Data	20 02 2008
Dale	29.02.2000

11. ANNEX B, TEST DIAGRAMS

RF Power Output PARA. NO.: 2.1046

Occupied Bandwidth PARA. NO.: 2.1049

Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Field Strength of Spurious Radiation PARA. NO.: 2.1053

Frequency Stability PARA. NO.: 2.1055

Frequency Stability With Voltage Variation

Frequency Stability With Temperature Variation

