

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFN | 2021-01-06 | 2022-01-06 |
| Block - DC                   | Fairview Microwave | SD3379 | AMM | 2020-09-21 | 2021-09-21 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |

#### **TEST DESCRIPTION**

The antenna port spurious emissions were measured at the RF output terminal of the EUT through 3 different attenuation configurations which continues through to the RF input of the spectrum analyzer. Analyzer plots utilizing a resolution bandwidth called out by the client's test plan were made for each modulation type from 9 KHz to 20 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than the limits also called out by the client's test plan shown below.

The measurement methods are detailed in KDB971168 D01v03 section 6 and ANSI C63.26-2015.

Per FCC 2.1057(a)(1) and RSS Gen 6.13, the upper level of measurement is the 10th harmonic of the highest fundamental frequency.

These measurements are for frequency band after the first 1.0 MHz bands immediately outside and adjacent to the frequency block.

Per section FCC 24.238(a) and RSS-133 section 6.5, the power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm for a 1 MHz measurement bandwidth. The limit is adjusted to -19 dBm [-13 dBm - 10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

The limit for the 9kHz to 150kHz frequency range was adjusted to -49dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 1MHz [i.e.: -49dBm = -19dBm -10log(1MHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to -39dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 1MHz [i.e.: - 39dBm = -19dBm -10log(1MHz/10kHz)]. The required limit of -19dBm with a RBW of > 1MHz was used for all other frequency ranges.

RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (FXFC) as the original certification test. The FXFC antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 3 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraph 5.7.2i.



|                    |                             |                                               |                                                      |                                     | TbtTx 2019.08.30.0 | XMit 2020.12.30.0 |
|--------------------|-----------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------|--------------------|-------------------|
| EUT:               | FXFC (FCC/ISED C2PC)        |                                               |                                                      | Work Order:                         | NOKI0029           |                   |
| Serial Number:     | 1M152245671                 |                                               |                                                      | Date:                               | 28-Apr-21          |                   |
| Customer:          | Nokia Solutions and Net     | works                                         |                                                      | Temperature:                        | 23.5 °C            |                   |
| Attendees:         | David Le John Battanav      | 200                                           |                                                      | Humidity:                           | 51 8% PH           |                   |
| Brojost            | Nono                        | ong                                           |                                                      | Baramatria Braz                     | 1011 mbor          |                   |
| Tested but         | None<br>Drandan Habba       |                                               | Bauran E4 V/DC                                       | Barometric Fres.                    |                    |                   |
| Tested by:         | Brandon Hobbs               |                                               | Power: 54 VDC                                        | Job Site:                           | 1702               |                   |
| LEST SPECIFICATI   | IONS                        |                                               | lest Method                                          |                                     |                    |                   |
| FCC 24E:2021       |                             |                                               | ANSI C63.26:2015                                     |                                     |                    |                   |
| RSS-133 Issue 6:20 | 013+A1:2018                 |                                               | RSS-133 Issue 6:2013+A1:2018                         |                                     |                    |                   |
| COMMENTS           |                             |                                               |                                                      |                                     |                    |                   |
| All measurement na | ath losses were accounte    | d for in the reference level offest including | any attenuators filters and DC blocks Band n2 carrie | rs were enabled at maximmum power   | (80watts/carrier)  |                   |
|                    |                             | a for in the reference lever onest mondaring  |                                                      | is were chabled at maximitain power | (oowarts/carrier)  |                   |
| DEVIATIONS FROM    | I TEST STANDARD             |                                               |                                                      |                                     |                    |                   |
| Configuration #    | 1,2,3                       | 1                                             | 2.1.1                                                |                                     |                    |                   |
|                    |                             | Signature                                     | Frequency                                            |                                     |                    |                   |
|                    |                             |                                               | Range                                                | Value (dBm)                         | Limit (dBm)        | Result            |
| 3and n2, 1930 MHz  | - 1990 MHz, 5G NR<br>Port 3 |                                               |                                                      |                                     |                    |                   |
|                    | 5 MHz Bandy                 | vdith<br>QPSK Modulation                      |                                                      |                                     |                    |                   |
|                    |                             | Mid Channel 1960 MHz                          | 9 kHz - 150 kHz                                      | -63.5                               | -49                | Pass              |
|                    |                             | Mid Channel 1960 MHz                          | 150 kHz - 20 MHz                                     | -05.0                               | -39                | Pass              |
|                    |                             | Mid Channel, 1900 MHZ                         |                                                      | -01.3                               | -39                | F d 5 5           |
|                    |                             | Mid Channel, 1960 MHZ                         |                                                      | -25.8                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 1910 MHz - 2010 MHz                                  | -25.3                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 3 GHz - 11 GHz                                       | -45.8                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 11 GHz - 20 GHz                                      | -41.7                               | -19                | Pass              |
|                    |                             | 16-QAM Modulation                             |                                                      |                                     |                    |                   |
|                    |                             | Mid Channel, 1960 MHz                         | 9 kHz - 150 kHz                                      | -64.4                               | -49                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 150 kHz - 20 MHz                                     | -61.3                               | -39                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 20 MHz - 3 GHz                                       | -26.0                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 1010 MHz 2010 MHz                                    | -20.0                               | -10                | Pass              |
|                    |                             | Mid Channel, 1900 MHz                         |                                                      | -24.3                               | -19                | FdSS              |
|                    |                             | Mid Channel, 1960 MHZ                         | 3 GHZ - 11 GHZ                                       | -45.5                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 11 GHz - 20 GHz                                      | -41.8                               | -19                | Pass              |
|                    |                             | 64-QAM Modulation                             |                                                      |                                     |                    |                   |
|                    |                             | Mid Channel, 1960 MHz                         | 9 kHz - 150 kHz                                      | -64.5                               | -49                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 150 kHz - 20 MHz                                     | -61.7                               | -39                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 20 MHz - 3 GHz                                       | -25.9                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 1010 MHz - 2010 MHz                                  | -25.1                               | -10                | Pass              |
|                    |                             | Mid Channel, 1960 Milz                        | 2 CU = 11 CU =                                       | -23.1                               | -13                | Dasa              |
|                    |                             | Mid Channel, 1960 MHZ                         | 3 GHZ - 11 GHZ                                       | -45.0                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHZ                         | 11 GHZ - 20 GHZ                                      | -41.7                               | -19                | Pass              |
|                    |                             | 256-QAM Modulation                            |                                                      |                                     |                    |                   |
|                    |                             | Mid Channel, 1960 MHz                         | 9 kHz - 150 kHz                                      | -63.4                               | -49                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 150 kHz - 20 MHz                                     | -61.0                               | -39                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 20 MHz - 3 GHz                                       | -25.7                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 1910 MHz - 2010 MHz                                  | -25.2                               | -19                | Pass              |
|                    |                             | Mid Channel 1960 MHz                          | 3 GHz - 11 GHz                                       | -45.6                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 11 GHz - 20 GHz                                      |                                     | -19                | Pass              |
|                    | 10 MHz Band                 | dwdith                                        |                                                      |                                     | -10                | 1 435             |
|                    |                             | 256-QAM Modulation                            |                                                      |                                     |                    |                   |
|                    |                             | Mid Channel, 1960 MHz                         | 9 kHz - 150 kHz                                      | -67.3                               | -49                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 150 kHz - 20 MHz                                     | -63.9                               | -39                | Pass              |
|                    |                             | Mid Channel 1960 MHz                          | 20 MHz - 3 GHz                                       | -25.9                               | -19                | Pass              |
|                    |                             | Mid Channel, 1060 MHz                         | 1010 MHz - 2010 MHz                                  | -20.0                               | -10                | Pare              |
|                    |                             | Mid Chappel 1060 MHz                          |                                                      | -24.0                               | -10                | n ass<br>Dace     |
|                    |                             | Mid Charmel, 1900 MHz                         |                                                      | -45.0                               | -19                | Fd55              |
|                    | 45.141.5                    | Mid Channel, 1960 MHZ                         | 11 GHZ - 20 GHZ                                      | -41.7                               | -19                | Pass              |
|                    | 15 MHz Band                 | 256-QAM Modulation                            |                                                      |                                     |                    |                   |
|                    |                             | Mid Channel 1960 MHz                          | 9 kHz - 150 kHz                                      | -68.1                               | -49                | Pass              |
|                    |                             | Mid Channel, 1060 Mile                        |                                                      | -30.1                               | 20                 | Pass              |
|                    |                             | Wid Channel, 1960 MHZ                         |                                                      | -65.3                               | -39                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 20 MHz - 3 GHz                                       | -25.9                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 1910 MHz - 2010 MHz                                  | -24.8                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 3 GHz - 11 GHz                                       | -45.7                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 11 GHz - 20 GHz                                      | -41.6                               | -19                | Pass              |
|                    | 20 MHz Band                 | Jwdith<br>256-OAM Modulation                  |                                                      |                                     |                    |                   |
|                    |                             |                                               |                                                      | 74.0                                | 40                 | Dett              |
|                    |                             | Mid Channel, 1960 MHz                         | 9 KHZ - 150 KHZ                                      | -/1.9                               | -49                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 150 kHz - 20 MHz                                     | -67.0                               | -39                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 20 MHz - 3 GHz                                       | -25.8                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 1910 MHz - 2010 MHz                                  | -25.3                               | -19                | Pass              |
|                    |                             | Mid Channel, 1960 MHz                         | 3 GHz - 11 GHz                                       | -45.4                               | -19                | Pass              |
|                    |                             | Mid Channel, 1060 MHz                         | 11 GHz - 20 GHz                                      |                                     | -10                | Pare              |
|                    |                             |                                               | 11 002 - 20 002                                      | -41.0                               | -19                | F d b b           |
|                    |                             |                                               |                                                      |                                     |                    |                   |





| 鱦 Key         | sight Spectrur       | m Analyzer - Elemer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Materials Technolo             | gy                       |                             |          |                                          |                                                                                                                 |                    |                                                            |
|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|-----------------------------|----------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------|
| <b>LXI</b> RL | -                    | RF   50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC I                              | PNO: Fast ↔→<br>Gain:Low | Trig: Free I<br>Atten: 6 dl | Run<br>B | Avg Type:<br>Avg Hold:                   | RMS<br>100/100                                                                                                  | 09:19:04<br>TF     | AM Apr 28, 2021<br>ACE 1 2 3 4 5 6<br>TYPE A<br>DET A NNNN |
| 10 dE         | R<br>Bidiv <b>R</b>  | ef Offset 9.3 d<br>ef -1.70 dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B<br>m                            |                          |                             |          |                                          |                                                                                                                 | Mkr1 1<br>-61.     | 62.4 kHz<br>318 dBm                                        |
| -11.7         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          |                                          |                                                                                                                 |                    |                                                            |
| -21.7         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          |                                          |                                                                                                                 |                    |                                                            |
| -31.7         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          |                                          |                                                                                                                 |                    |                                                            |
| -41.7         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          |                                          |                                                                                                                 |                    | -39.00 dBM                                                 |
| -51.7         | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          |                                          |                                                                                                                 |                    |                                                            |
| -61.7         | Non March            | ~ <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                          |                             |          |                                          |                                                                                                                 |                    |                                                            |
| -61.7         | Υ                    | and the state of t |                                   |                          |                             |          |                                          |                                                                                                                 |                    |                                                            |
| -91.7         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in failuraid for air line priorie |                          | alayin) addaday a tarabaa   |          |                                          |                                                                                                                 |                    |                                                            |
|               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          | ne fa felier i den ander den den den den | and the product of th | mail and a standay | atomatic interactions of the                               |
| Start<br>#Res | t 0.150 N<br>s BW 10 | /Hz<br>kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | #VB                      | W 30 kHz*                   |          |                                          | Sweep                                                                                                           | Stop 2<br>245.3 ms | 0.000 MHz<br>(8001 pts)                                    |
| MSG           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                          |                             |          | STATUS                                   |                                                                                                                 |                    |                                                            |





0

#VBW 3.0 MHz\*

STATUS

Start 1.91000 GHz #Res BW 1.0 MHz Stop 2.01000 GHz Sweep 1.067 ms (8001 pts)





|                                     |     |            |   | STATUS |       |
|-------------------------------------|-----|------------|---|--------|-------|
| Start 11.000 GHz<br>#Res BW 1.0 MHz | #VI | BW 3.0 MHz | * |        | Sweep |
|                                     |     |            |   |        |       |
| -56.0                               |     |            |   |        |       |
| -46.0                               |     |            |   |        |       |
| -36.0                               |     |            |   |        |       |
| -36.0                               |     |            |   |        |       |
|                                     |     |            |   |        |       |

**♦**<sup>1</sup>

Stop 20.000 GHz 16.00 ms (20001 pts)





| Range Value (dBm) Limit (dBm) Result |
|--------------------------------------|
|                                      |
| 150 kHz - 20 MHz -61.25 -39 Pass     |

| 🇾 Ke                | ysight Spectrur        | n Analyzer - Element I           | Materials Technolo | gy                                                                                                             |                              |                      |                                      |                |                     |                                                                     |
|---------------------|------------------------|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|--------------------------------------|----------------|---------------------|---------------------------------------------------------------------|
| L <mark>XI</mark> R | L                      | RF 50 Ω DC                       | F                  | PNO: Fast 🔸                                                                                                    | SENSE:INT                    | A A                  | LIGN OFF<br>Avg Type:<br>Avg Hold: 1 | RMS<br>100/100 | 09:07:42<br>TR<br>T | AM Apr 28, 2021<br>ACE 1 2 3 4 5 6<br>YPE A WWWW<br>DET A N N N N N |
| 10 di               | Re<br>B/div <b>R</b> e | ef Offset 9.3 dB<br>ef -1.70 dBm | lt                 | -Gain:Low                                                                                                      | Atten: 6 di                  | •                    |                                      |                | Mkr1 1<br>-61.      | 50.0 kHz<br>248 dBm                                                 |
| -11.7               |                        |                                  |                    |                                                                                                                |                              |                      |                                      |                |                     |                                                                     |
| -21.7               |                        |                                  |                    |                                                                                                                |                              |                      |                                      |                |                     |                                                                     |
| -31.7               |                        |                                  |                    |                                                                                                                |                              |                      |                                      |                |                     | 39.00 dBm                                                           |
| -41.7               |                        |                                  |                    |                                                                                                                |                              |                      |                                      |                |                     |                                                                     |
| -51.7               | 1                      |                                  |                    |                                                                                                                |                              |                      |                                      |                |                     |                                                                     |
| -71.7               | Way white              | ~                                |                    |                                                                                                                |                              |                      |                                      |                |                     |                                                                     |
| -81.7               |                        | North Contraction                |                    |                                                                                                                |                              |                      |                                      |                |                     |                                                                     |
| -91.7               |                        |                                  |                    | edi da se forma di serie de se d | Without a to a training to a | W. Maray Independent | liebet kenned op istensom bis        |                |                     |                                                                     |
|                     |                        |                                  |                    |                                                                                                                |                              |                      |                                      |                |                     | dente providente de                                                 |
| Star<br>#Re         | t 0.150 N<br>s BW 10   | 1Hz<br>kHz                       |                    | #VB                                                                                                            | W 30 kHz*                    |                      |                                      | Sweep          | Stop 2<br>245.3 ms  | 0.000 MHz<br>(8001 pts)                                             |
| MSG                 |                        |                                  |                    |                                                                                                                |                              |                      | STATUS                               |                |                     |                                                                     |









#VBW 3.0 MHz\*

Start 11.000 GHz #Res BW 1.0 MHz ø

Stop 20.000 GHz

Sweep 16.00 ms (20001 pts)

STATUS





| 📜 Ke         | ysight S | Spectrum Ar         | nalyzer - Element          | Materials Technolo | gy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                            |                           |                                        |                                |                                                |
|--------------|----------|---------------------|----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|---------------------------|----------------------------------------|--------------------------------|------------------------------------------------|
| R R          | L        | RF                  | 50 Ω D                     | 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT                    | <u>∧</u> A                                 | LIGN OFF                  |                                        | 09:14:13                       | 3 AM Apr 28, 2021                              |
|              |          |                     |                            | I                  | PNO: Fast 🔸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Trig: Free<br>Atten: 6 d   | Run<br>B                                   | Avg Type:<br>Avg Hold: 1  | RMS<br>100/100                         | IT                             | ACE 1 2 3 4 5 6<br>TYPE A WWWWW<br>DET A NNNNN |
| 10 di<br>Log | B/div    | Ref (<br><b>Ref</b> | 0ffset 9.3 d⊟<br>-1.70 dBm |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        | Mkr1 1<br>-61.                 | 50.0 kHz<br>683 dBm                            |
| -11.7        |          |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
| 24.7         |          |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
| -21.7        |          |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
|              |          |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                | -39.00 dBm                                     |
|              |          |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
| -51.7        | 1        |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
| -61.7        | <b>.</b> | all. adda           |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
| -71.7        |          |                     | Mar North Mark             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
|              |          |                     | "The second                | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        |                                |                                                |
|              |          |                     |                            |                    | Contraction of the local division of the loc | nenetal an an an an Angalian | an a start and a start of the start of the | uniter and a state of the | teris teristication and a state of the | A Restauring on A day services |                                                |
| Star         | 1 0.1    | 50 MH               | 7                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                           |                                        | Stop 2                         | 20.000 MHz                                     |
| #Re          | s BV     | V 10 KH             | Iz                         |                    | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W 30 kHz*                    |                                            |                           | Sweep                                  | 245.3 m                        | s (8001 pts)                                   |
| MSG          |          |                     |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            | STATUS                    |                                        |                                |                                                |









#VBW 3.0 MHz\*

Start 11.000 GHz #Res BW 1.0 MHz **\**1

Stop 20.000 GHz

Sweep 16.00 ms (20001 pts)

STATUS





| Keysight Sp          | pectrum Ana        | lyzer - Elemer         | nt Materials Technol    | ogy                                                                                                              |              |                          |                      |                          |                                  |                              |                                                 |
|----------------------|--------------------|------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|----------------------|--------------------------|----------------------------------|------------------------------|-------------------------------------------------|
| LXI RL               | RF                 | 50 Ω                   | DC                      |                                                                                                                  | SE           | NSE:INT                  | a dia a              | ALIGN OFF                |                                  | 09:17:                       | 23 AM Apr 28, 2021                              |
|                      |                    |                        |                         | PNO: Fast +<br>IFGain:Low                                                                                        | ••           | Trig: Free<br>Atten: 6 d | Run<br>B             | Avg Type:<br>Avg Hold: 1 | RMS<br>100/100                   |                              | TRACE 1 2 3 4 5 6<br>TYPE A WWWWW<br>DET A NNNN |
| 10 dB/div            | Ref Of<br>Ref -    | fset 9.3 d<br>1.70 dBr | B<br>n                  |                                                                                                                  |              |                          |                      |                          |                                  | Mkr1<br>-61                  | 182.3 kHz<br>I.025 dBm                          |
| -11.7                |                    |                        |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              |                                                 |
| -21.7                |                    |                        |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              |                                                 |
| -31.7                |                    |                        |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              | -39,00 dBm                                      |
| -41.7                |                    |                        |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              |                                                 |
| -51.7                |                    |                        |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              |                                                 |
| -61.7                | Minia Maria        |                        |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              |                                                 |
| -81.7                |                    | The state              |                         |                                                                                                                  |              |                          |                      |                          |                                  |                              |                                                 |
| -91.7                |                    |                        | National Anti-Mary Sec. | and the second | in last a fr | fur you have also        | antisi shata darta - | ter an a                 |                                  |                              |                                                 |
|                      |                    |                        |                         |                                                                                                                  |              |                          |                      |                          | ter in the grade of the spectrum | line and a star way the set. | ngtination, tradient/sized, da                  |
| Start 0.1<br>#Res BW | 50 MHz<br>/ 10 kHz |                        |                         | #V                                                                                                               | /BW          | 30 kHz*                  |                      |                          | Swe                              | Stop<br>ep 245.3 n           | 20.000 MHz<br>1s (8001 pts)                     |
| MSG                  |                    |                        |                         |                                                                                                                  |              |                          |                      | STATUS                   |                                  |                              |                                                 |





#VBW 3.0 MHz\*

STATUS

Start 1.91000 GHz #Res BW 1.0 MHz Stop 2.01000 GHz Sweep 1.067 ms (8001 pts)





| MSG         |                           |           |                                       |     |           | 000-000 <b>000-00</b> 0 | STATUS |       |                    |                       |
|-------------|---------------------------|-----------|---------------------------------------|-----|-----------|-------------------------|--------|-------|--------------------|-----------------------|
| Star<br>#Re | t 11.000 GH<br>s BW 1.0 M | Hz<br>IHz |                                       | #VB | W 3.0 MHz | *                       |        | Sweep | Stop 2<br>16.00 ms | 20.000 (<br>(20001    |
| -50.0       |                           |           |                                       |     |           |                         |        |       |                    |                       |
| -56.0       |                           |           |                                       |     |           |                         |        |       |                    |                       |
| -46.0       |                           |           | · · · · · · · · · · · · · · · · · · · |     |           |                         |        |       |                    |                       |
|             |                           |           |                                       |     |           |                         |        |       |                    | <b>●</b> <sup>1</sup> |
|             |                           |           |                                       |     |           |                         |        |       |                    |                       |
| 26.0        |                           |           |                                       |     |           |                         |        |       |                    |                       |
|             |                           |           |                                       |     |           |                         |        |       |                    | -19.0                 |
|             |                           |           |                                       |     |           |                         |        |       |                    |                       |

iHz ots)















| MSG         |                           |           |     |           |    | STATUS |       |                    |                           |
|-------------|---------------------------|-----------|-----|-----------|----|--------|-------|--------------------|---------------------------|
| Star<br>#Re | t 11.000 GI<br>s BW 1.0 N | Hz<br>IHz | #VB | W 3.0 MHz | t. |        | Sweep | Stop 2<br>16.00 ms | 20.000 GHz<br>(20001 pts) |
| -56.0       |                           |           |     |           |    |        |       |                    |                           |
| -46.0       |                           |           |     |           |    |        |       |                    |                           |
| 40.0        |                           |           |     |           |    |        |       |                    | <b>•</b> '                |
| -36.0       |                           |           |     |           |    |        |       |                    |                           |
| -26.0       |                           |           |     |           |    |        |       |                    |                           |
| -16.0       |                           |           |     |           |    |        |       |                    | -19.00 dBm                |











#VBW 3.0 MHz\*

STATUS

Start 1.91000 GHz #Res BW 1.0 MHz Stop 2.01000 GHz Sweep 1.067 ms (8001 pts)





#VBW 3.0 MHz\*

Start 11.000 GHz #Res BW 1.0 MHz **\**1

Stop 20.000 GHz

Sweep 16.00 ms (20001 pts)

STATUS















| ISG                               |          |      |            |          | STATUS |       |                    |                  |
|-----------------------------------|----------|------|------------|----------|--------|-------|--------------------|------------------|
| Start 11.000 GH<br>#Res BW 1.0 MI | lz<br>Hz | #VB  | W 3.0 MHz* | <b>t</b> |        | Sweep | Stop 2<br>16.00 ms | 20.000<br>(20001 |
| -56.0                             |          |      |            |          |        |       |                    |                  |
|                                   |          |      |            |          |        |       |                    |                  |
| 46.0                              |          | <br> |            |          |        |       |                    | <b>.</b>         |
| -36.0                             |          |      |            |          |        |       |                    | 1                |
| -26.0                             |          |      |            |          |        |       |                    |                  |



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Block - DC                   | Fairview Microwave | SD3379 | AMM | 2020-09-21 | 2021-09-21 |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A | AFN | 2021-01-06 | 2022-01-06 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |

#### **TEST DESCRIPTION**

The method of section 5.2.4.5 of ANSI C63.26 was used to make the measurement. The method uses trace averaging across ON and OFF times of EUT transmissions using the spectrum analyzer's RMS detector. Following the measurement a duty cycle correction was applied by adding [10log(1/D)], where D is the duty cycle, to the measured power to compute the PSD during the transmit times.

RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (FXFC) as the original certification test. The FXFC antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 3 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

The total PSD of all antenna ports (at the radio output) were determined per ANSI C63.26-2015 paragraph 6.4.3.2.4.

The EIRP calculations were based upon ANSI C63.26-2015 sections 6.4.3.2.4, section 6.4.6.3, section 6.4.5.3 and section 6.4.5.2

The applicable FCC and ISED regulatory requirement for EIRP are provided below:

#### FCC Requirements: 24.232 Power and antenna height limits.

(a)(2) Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.
 (a)(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see Tables 1 and 2 of this section.

(b)(2) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth greater than 1 MHz are limited to 3280 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

#### ISED Requirements RSS-133 Section 6.4/SRSP-510 section 5.1.1:

SRSP-510 section 5.1 Radiated power and antenna height limits for base stations

For base stations with a channel bandwidth greater than 1 MHz, the maximum e.i.r.p. is limited to 3280 watts/MHz e.i.r.p. (i.e., no more than 3280 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres. Fixed or base stations operating in urban areas are limited to a maximum allowable e.i.r.p. of 1640 watts/MHz e.i.r.p. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table:



01011101

| EUT                           | FXFC (FCC/ISED C2PC)                                      |                                                   |                                     |                    |                        | Work Order                | TbiTx 2019.08.30.0             | XMit 2020.12.30.0 |
|-------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------|------------------------|---------------------------|--------------------------------|-------------------|
| Serial Number:                | 1M152245671                                               |                                                   |                                     |                    |                        | Date:                     | 27-Apr-21                      |                   |
| Customer:<br>Attendees        | Nokia Solutions and Network<br>David Le. John Rattanayong | IS                                                |                                     |                    |                        | Temperature:<br>Humidity: | 22.8 °C<br>49.4% RH            |                   |
| Project:                      | None                                                      |                                                   |                                     |                    |                        | Barometric Pres.:         | 1014 mbar                      |                   |
| Tested by:                    | Brandon Hobbs                                             |                                                   | Power: 54 VDC                       |                    |                        | Job Site:                 | TX05                           |                   |
| FCC 24E:2021                  | 10113                                                     |                                                   | ANSI C63.26:2015                    |                    |                        |                           |                                |                   |
| RSS-133 Issue 6:2             | 013+A1:2018                                               |                                                   | RSS-133 Issue 6:20                  | 13+A1:2018         |                        |                           |                                |                   |
| COMMENTS<br>All measurement p | oath losses were accounted fo                             | r in the reference level offest including any     | attenuators, filters and DC bloc    | ks. Band n2 carri  | ers are enabled at ma  | ximum power (80 watt      | s/carrier). The following is t | he power          |
| spectral density (P           | SD) measurements at the rad                               | io output ports. The PSD was measured for         | a single carrier on port 3. The t   | otal PSD for multi | port (2x2 MIMO & 4x4   | MIMO) operation was       | determinded based upon Al      | NSI 63.26         |
| clause 6.4.3.2.4 (10          | 0 Log Nout). The total PSD for                            | two port operation is single port PSD +3dB        | [i.e. 10 Log(2)]. The total PSD for | or four port opera | tion is single port PS | D +6dB [i.e. 10 Log(4)]   | •                              |                   |
| None                          | WIEST STANDARD                                            |                                                   |                                     |                    |                        |                           |                                |                   |
|                               |                                                           |                                                   | - /1 /                              |                    |                        |                           |                                |                   |
| Configuration #               | 2                                                         | Signature                                         | Jal                                 |                    |                        |                           |                                |                   |
|                               | •                                                         |                                                   | Initial Value                       | Duty Cycle         | Single Port            | Two Port (2x2 MIMO)       | Four Port (4x4 MIMO)           |                   |
| Band n2, 1930 MHz             | z - 1990 MHz. 5G NR                                       |                                                   | dBm/MHz                             | Factor (dB)        | dBm/MHz == PSD         | dBm/MHz == PSD            | dBm/MHz == PSD                 |                   |
| ,                             | Port 3                                                    |                                                   |                                     |                    |                        |                           |                                |                   |
|                               | 5 MHz Bandwdith                                           | K Modulation                                      |                                     |                    |                        |                           |                                |                   |
|                               |                                                           | Low Channel, 1932.5 MHz                           | 42.680                              | 0                  | 42.7                   | 45.7                      | 48.7                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz<br>High Channel, 1987,5 MHz | 42.889                              | 0                  | 42.9<br>42.7           | 45.9<br>45.7              | 48.9<br>48.7                   |                   |
|                               | 16-0                                                      | AM Modulation                                     | 42.000                              | 5                  |                        |                           |                                |                   |
|                               |                                                           | Low Channel, 1932.5 MHz<br>Mid Channel, 1960 MHz  | 42.695<br>42.870                    | 0                  | 42.7<br>42.9           | 45.7<br>45.9              | 48.7<br>48.9                   |                   |
|                               |                                                           | High Channel, 1987.5 MHz                          | 42.626                              | ő                  | 42.6                   | 45.6                      | 48.6                           |                   |
|                               | 64-0                                                      | AM Modulation                                     | 42 776                              | 0                  | 42.8                   | 45.8                      | 48.8                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz                             | 42.956                              | 0                  | 43.0                   | 46.0                      | 49.0                           |                   |
|                               | 256                                                       | High Channel, 1987.5 MHz                          | 42.705                              | 0                  | 42.7                   | 45.7                      | 48.7                           |                   |
|                               | 200                                                       | Low Channel, 1932.5 MHz                           | 42.912                              | 0                  | 42.9                   | 45.9                      | 48.9                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz<br>High Channel, 1987 5 MHz | 43.057                              | 0                  | 43.1                   | 46.1<br>45.8              | 49.1<br>48.8                   |                   |
|                               | 10 MHz Bandwdit                                           | h                                                 | 42.132                              | Ū                  | 42.0                   | 40.0                      | 40.0                           |                   |
|                               | QPS                                                       | K Modulation                                      | 39 582                              | 0                  | 39.6                   | 42.6                      | 45.6                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz                             | 39.744                              | 0                  | 39.7                   | 42.0                      | 45.7                           |                   |
|                               | 16.0                                                      | High Channel, 1985 MHz                            | 39.454                              | 0                  | 39.5                   | 42.5                      | 45.5                           |                   |
|                               | 10-0                                                      | Low Channel, 1935 MHz                             | 40.297                              | 0                  | 40.3                   | 43.3                      | 46.3                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz                             | 40.461                              | 0                  | 40.5                   | 43.5                      | 46.5                           |                   |
|                               | 64-0                                                      | QAM Modulation                                    | 40.132                              | 0                  | 40.1                   | 45.1                      | 40.1                           |                   |
|                               |                                                           | Low Channel, 1935 MHz<br>Mid Channel, 1960 MHz    | 39.688                              | 0                  | 39.7                   | 42.7                      | 45.7                           |                   |
|                               |                                                           | High Channel, 1985 MHz                            | 39.485                              | 0                  | 39.5                   | 42.5                      | 45.5                           |                   |
|                               | 256-                                                      | QAM Modulation                                    | 39 709                              | 0                  | 30.7                   | 42.7                      | 45.7                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz                             | 39.818                              | 0                  | 39.8                   | 42.8                      | 45.8                           |                   |
|                               | 15 MHz Bandwdit                                           | High Channel, 1985 MHz                            | 39.750                              | 0                  | 39.8                   | 42.8                      | 45.8                           |                   |
|                               | QPS                                                       | SK Modulation                                     |                                     |                    |                        |                           |                                |                   |
|                               |                                                           | Low Channel, 1937.5 MHz<br>Mid Channel, 1960 MHz  | 37.844                              | 0                  | 37.8                   | 40.8                      | 43.8                           |                   |
|                               |                                                           | High Channel, 1982.5 MHz                          | 37.815                              | Ő                  | 37.8                   | 40.8                      | 43.8                           |                   |
|                               | 16-0                                                      | DAM Modulation                                    | 30 338                              | 0                  | 30.3                   | 423                       | 45.3                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz                             | 39.408                              | õ                  | 39.4                   | 42.4                      | 45.4                           |                   |
|                               | 64-0                                                      | High Channel, 1982.5 MHz                          | 39.278                              | 0                  | 39.3                   | 42.3                      | 45.3                           |                   |
|                               | 04-0                                                      | Low Channel, 1937.5 MHz                           | 37.957                              | 0                  | 38.0                   | 41.0                      | 44.0                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz<br>High Channel, 1982 5 MHz | 37.983<br>37.765                    | 0                  | 38.0<br>37.8           | 41.0<br>40.8              | 44.0<br>43.8                   |                   |
|                               | 256-                                                      | QAM Modulation                                    | 01.100                              | Ū                  | 07.0                   | 40.0                      | 40.0                           |                   |
|                               |                                                           | Low Channel, 1937.5 MHz<br>Mid Channel, 1960 MHz  | 37.994<br>37.982                    | 0                  | 38.0<br>38.0           | 41.0<br>41.0              | 44.0<br>44.0                   |                   |
|                               |                                                           | High Channel, 1982.5 MHz                          | 37.899                              | Ő                  | 37.9                   | 40.9                      | 43.9                           |                   |
|                               | 20 MHz Bandwdit                                           | h<br>SK Modulation                                |                                     |                    |                        |                           |                                |                   |
|                               |                                                           | Low Channel, 1940 MHz                             | 36.668                              | 0                  | 36.7                   | 39.7                      | 42.7                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz<br>High Channel, 1980 MHz   | 36.782<br>36.688                    | 0                  | 36.8<br>36.7           | 39.8<br>39.7              | 42.8<br>42.7                   |                   |
|                               | 16-0                                                      | AM Modulation                                     | 00.000                              | 5                  | 55.7                   | 55.7                      |                                |                   |
|                               |                                                           | Low Channel, 1940 MHz<br>Mid Channel, 1960 MHz    | 38.300<br>38.356                    | 0                  | 38.3<br>38.4           | 41.3<br>41.4              | 44.3<br>44.4                   |                   |
|                               |                                                           | High Channel, 1980 MHz                            | 38.302                              | 0                  | 38.3                   | 41.3                      | 44.3                           |                   |
|                               | 64-0                                                      | AM Modulation                                     | 36 730                              | 0                  | 36.7                   | 39.7                      | 42.7                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz                             | 36.850                              | Ő                  | 36.9                   | 39.9                      | 42.9                           |                   |
|                               | 256                                                       | High Channel, 1980 MHz<br>QAM Modulation          | 36.668                              | 0                  | 36.7                   | 39.7                      | 42.7                           |                   |
|                               | 200                                                       | Low Channel, 1940 MHz                             | 36.801                              | 0                  | 36.8                   | 39.8                      | 42.8                           |                   |
|                               |                                                           | Mid Channel, 1960 MHz<br>High Channel, 1980 MHz   | 36.860<br>36.735                    | 0                  | 36.9<br>36.7           | 39.9<br>39.7              | 42.9<br>42.7                   |                   |
|                               |                                                           | • · · · ·                                         |                                     |                    |                        |                           |                                |                   |





| #Res BW 1.0 WHZ     | #VBW 3.0 MHz | STATUS | #Swee      | p 601.0 ms (601 pts) |
|---------------------|--------------|--------|------------|----------------------|
| Center 1.960000 GHz |              | *      | # <b>a</b> | Span 10.00 MHz       |
|                     |              |        |            |                      |
| -34.0               |              |        |            |                      |
| -24.0               |              |        |            |                      |
| -14.0               |              |        |            |                      |
|                     |              |        |            |                      |
| -4.00               |              |        |            |                      |
| 6.00                |              |        |            |                      |
| 16.0                |              |        |            | <u> </u>             |
| 26.0                |              |        |            |                      |
| 36.0                |              |        |            |                      |
|                     |              |        |            |                      |
| 46.0                | 11           |        |            |                      |





#VBW 3.0 MHz\*

Span 10.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.932500 GHz #Res BW 1.0 MHz





#VBW 3.0 MHz\*

Span 10.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.987500 GHz #Res BW 1.0 MHz





| Center 1.960000 GHz<br>#Res BW 1.0 MHz | #VBW 3.0 MH | Z* | #Swee | Span 10.00 MHz<br>p 601.0 ms (601 pts) |
|----------------------------------------|-------------|----|-------|----------------------------------------|
| 35.0                                   |             |    |       |                                        |
| 25.0                                   |             |    |       |                                        |
| 15.0                                   |             |    |       |                                        |
| 5.00                                   |             |    |       |                                        |
| 5.00                                   |             |    |       |                                        |
| 25.0                                   |             |    |       |                                        |
| 35.0                                   |             |    |       | 、                                      |
|                                        |             |    |       |                                        |





| Center 1.932500 GHz<br>#Res BW 1.0 MHz | #VBW | 3.0 MHz* | #Swee | Span<br>9 601.0 m | 10.00 MHz<br>is (601 pts) |
|----------------------------------------|------|----------|-------|-------------------|---------------------------|
| -35.0                                  |      |          |       |                   |                           |
| -25.0                                  |      |          |       |                   |                           |
| -15.0                                  |      |          |       | }                 |                           |
| .5.00                                  |      |          |       | $\longrightarrow$ |                           |
| 5.00                                   |      |          |       |                   |                           |
| 15.0                                   |      |          |       |                   |                           |
| 35.0                                   |      |          |       | \                 |                           |
| 25.0                                   |      |          |       |                   |                           |





|                    |                                      | IFGain:Low | #Atten: 30 dB |        |       |                    |                         |
|--------------------|--------------------------------------|------------|---------------|--------|-------|--------------------|-------------------------|
| 0 dB/div           | Ref Offset 42.03 dB<br>Ref 55.00 dBm |            |               |        | M     | (r1 1.987<br>42.   | 400 GHz<br>792 dBm      |
| 5.0                |                                      |            | <u>↓</u> 1    |        |       |                    |                         |
| 5.0                |                                      |            |               |        |       |                    |                         |
| 5.0                |                                      |            |               |        |       | <b>\</b>           |                         |
| 5.0                |                                      |            |               |        |       |                    |                         |
|                    |                                      |            |               |        |       |                    |                         |
|                    | /                                    |            |               |        |       |                    |                         |
| 5.0                |                                      |            |               |        |       | \                  |                         |
|                    |                                      |            |               |        |       |                    |                         |
| i.o                |                                      |            |               |        |       |                    |                         |
| enter 1.<br>Res BW | 987500 GHz<br>1.0 MHz                | #VB        | W 3.0 MHz*    |        | #Swee | Span<br>ep 601.0 m | 10.00 MHz<br>s (601 pts |
| 9                  |                                      |            |               | STATUS |       |                    |                         |





#VBW 3.0 MHz\*

STATUS





#VBW 3.0 MHz\*

Span 20.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.93500 GHz #Res BW 1.0 MHz





#VBW 3.0 MHz\*

Span 20.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.98500 GHz #Res BW 1.0 MHz





STATUS





#VBW 3.0 MHz\*

STATUS

Span 20.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.93500 GHz #Res BW 1.0 MHz





#VBW 3.0 MHz\*





#VBW 3.0 MHz\*

Span 25.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.96000 GHz #Res BW 1.0 MHz





#VBW 3.0 MHz\*

Span 25.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.93750 GHz #Res BW 1.0 MHz





| MSG                                   |               | STATUS                                       |
|---------------------------------------|---------------|----------------------------------------------|
| Center 1.98250 GHz<br>#Res BW 1.0 MHz | #VBW 3.0 MHz* | Span 25.00 MHz<br>#Sweep  601.0 ms (601 pts) |
|                                       |               |                                              |
| -38.0                                 |               |                                              |
| -28.0                                 |               |                                              |
| -18.0                                 |               |                                              |
| -8.00                                 |               |                                              |
|                                       |               |                                              |
| 200                                   |               |                                              |
| 12.0                                  |               |                                              |





#VBW 3.0 MHz\*

Span 25.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.96000 GHz #Res BW 1.0 MHz





#VBW 3.0 MHz\*

Span 25.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.93750 GHz #Res BW 1.0 MHz





#VBW 3.0 MHz\*



|                                                                                           | Initial Value                                                                   | Duty Cycle                                | G NR, Port 3, 20 MH<br>Single Port                                                   | Two Port (2x2                                                              | MIMO) Fou  | r Port (4x4 MIMO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lz |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                           | dBm/MHz                                                                         | Factor (dB)                               | dBm/MHz == PS                                                                        | D dBm/MHz ==                                                               | PSD dE     | Sm/MHz == PSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                           | 36.668                                                                          | 0                                         | 36.67                                                                                | 39.67                                                                      |            | 42.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Kevsight Spectrum                                                                         | Analyzer - Element Materials Te                                                 | hnology                                   |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| X RL RF                                                                                   | - 50 Ω DC                                                                       |                                           | SENSE:INT                                                                            | ALIGN OFF                                                                  | 1:         | 2:13:42 PM Apr 27, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                                                                                           |                                                                                 | PNO: Fast 🔸                               | Trig: Free Run                                                                       | Avg Hold: 100/10                                                           | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                           |                                                                                 | IFGain:Low                                | #Atten: 30 dB                                                                        |                                                                            | Milard 4   | 940 70 CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Ref                                                                                       | Offset 42.03 dB                                                                 |                                           |                                                                                      |                                                                            | WIKE       | 36.668 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                                                                           |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 40.0                                                                                      |                                                                                 |                                           | 1_                                                                                   |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 40.0                                                                                      |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 30.0                                                                                      |                                                                                 |                                           |                                                                                      |                                                                            | <u>}</u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                           |                                                                                 |                                           |                                                                                      |                                                                            | ł,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 20.0                                                                                      |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 10.0                                                                                      |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                           |                                                                                 |                                           |                                                                                      |                                                                            | l l        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 0.00                                                                                      |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 40.0                                                                                      |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| -10.0                                                                                     |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| -20.0                                                                                     |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                           |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| -30.0                                                                                     |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| -40.0                                                                                     |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| -40.0                                                                                     |                                                                                 |                                           |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Center 1 0400                                                                             |                                                                                 |                                           |                                                                                      |                                                                            |            | nan 35.00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| #Res BW 1.0                                                                               | MHz                                                                             | #VB\                                      | W 3.0 MHz*                                                                           |                                                                            | #Sweep 601 | .0 ms (601 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| MSG                                                                                       |                                                                                 |                                           |                                                                                      | STATUS                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                           |                                                                                 | 1 1000 MILL E                             |                                                                                      |                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|                                                                                           | Initial Value                                                                   | 12 - 1990 MHZ, 50<br>Duty Cycle           | Sinale Port                                                                          | Two Port (2x2                                                              | MIMO) Fou  | r Port (4x4 MIMO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IZ |
|                                                                                           | dBm/MHz                                                                         | Factor (dB)                               |                                                                                      |                                                                            |            | · · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| -                                                                                         |                                                                                 |                                           |                                                                                      | D dBm/MHz ==                                                               | PSD dE     | Sm/MHz == PSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                           | 36.782                                                                          | 0                                         | 36.78                                                                                | D dBm/MHz ==<br>39.78                                                      | PSD dE     | <b>8m/MHz == PSD</b><br>42.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| Variabt Spectrum                                                                          | 36.782                                                                          |                                           | 36.78                                                                                | D dBm/MHz ==<br>39.78                                                      | PSD dE     | 3m/MHz == PSD<br>42.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Keysight Spectrum                                                                         | 36.782<br>Analyzer - Element Materials Teo<br>50 Ω DC                           | hnology                                   | 36.78                                                                                | D dBm/MHz ==<br>39.78                                                      | PSD dE     | Im/MHz == PSD           42.78           2:45:22 PM Apr 27, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Keysight Spectrum                                                                         | 36.782<br>Analyzer - Element Materials Teo<br>50 Ω DC                           | 0<br>hnology<br>PNO: Fast ↔→              | 36.78                                                                                | D dBm/MHz ==<br>39.78<br>▲ ALIGN OFF<br>#Avg Type: RMS<br>Avg[Hold: 100/10 | • PSD dE   | Im/MHz == PSD       42.78       2:45:22 PM Apr 27, 2021       TRACE     2:34:56       TRACE     2:34:56       TYPE     2:34:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Keysight Spectrum<br>XI RL RF                                                             | Analyzer - Element Materials Tel<br>50 Ω DC                                     | 0<br>hnology<br>PNO: Fast →<br>IFGain:Low | dbin/mrz == r3       36.78       sense:inti       Trig: Free Run       #Atten: 30 dB | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg[Hold: 100/10   | • PSD dE   | Sm/MHz == PSD           42.78           2:45:22 PM Apr 27, 2021           TRACE         2:3 4 5 0           TPRE         2:3 4 5 0           OPET & AAAAA           OPET & AAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Keysight Spectrum<br>XI RL RF<br>10 dB/div Ref                                            | 36.782                                                                          | PNO: Fast                                 | 36.78       36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB           | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | • PSD dE   | 42.78<br>42.78<br>TRACE 1 2 3 4 5 0<br>TYPE A AMAAA<br>.968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Keysight Spectrum<br>X RL Rf<br>10 dB/div Re                                              | 36.782                                                                          | 0<br>hnology<br>PNO: Fast →<br>IFGain:Low | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78                                                      | • PSD de   | 3m/MHz == PSD<br>42.78<br>245:22 PM Apr 27, 2021<br>TRACE 1, 2, 3, 4, 5, 6<br>DET A AAAAA<br>.968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Keysight Spectrum<br>X RL Rf<br>10 dB/div Re<br>Log<br>40.0                               | 36.782                                                                          | NO: Fast →                                | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | : PSD dE   | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 1 2 34 5 5<br>TYPE 1 2 35 5<br>TYPE 1 2 5 |    |
| Keysight Spectrum<br>X RL Rf<br>10 dB/div Re<br>40.0                                      | 36.782                                                                          | PNO: Fast →                               | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78                                                      | PSD dE     | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 2 2 3 4 5 6<br>TYPE 4 3 6 7 8 2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Keysight Spectrum<br>X RL RF<br>10 dB/div Re<br>40.0<br>30.0                              | Analyzer - Element Materials Tel<br>5 0Ω DC<br>7 Offset 42.03 dB<br>f 50.00 dBm | O<br>hnology<br>PNO: Fast →<br>IFGain:Low | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78                                                      | • PSD dE   | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 2 3 4 5 6<br>TYPE AAAAAA<br>.968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Keysight Spectrum<br>X RL RF<br>10 dB/div Re<br>40.0<br>30.0                              | Analyzer - Element Materials Tele 50 Ω DC 7 Offset 42.03 dB 7 50.00 dBm         | O<br>hnology<br>PNO: Fast →<br>IFGain:Low | 36.78<br>SENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB                                | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | • PSD dE   | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE A AAAAA<br>.968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Keysight Spectrum<br>X RL RF<br>10 dB/div Re<br>40.0<br>30.0                              | Analyzer - Element Materials Tele 50 Ω DC                                       | O<br>PNO: Fast →<br>IFGain:Low            | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | PSD dE     | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE A AAAAA<br>.968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Keysight Spectrum<br>X RL RF<br>10 dB/div Re<br>40.0<br>30.0<br>20.0                      | 36.782                                                                          | O<br>PNO: Fast →<br>IFGain:Low            | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | PSD dE     | 3m/MHz == PSD<br>42.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Keysight Spectrum<br>R RL RF<br>10 dB/div Re<br>40 0<br>30.0<br>10.0                      | 36.782                                                                          | O<br>PNO: Fast →<br>IFGain:Low            | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | PSD dE     | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE A AAAAA<br>.968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Keysight Spectrum           R L         RF           10 dB/div         Ref           40.0 | 36.782                                                                          | PNO: Fast<br>IFGain:Low                   | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | PSD dE     | 3m/MHz == PSD<br>42.78<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE A AAAAA<br>968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Keysight Spectrum           R L         RF           10 dB/div         Ref           30.0 | 36.782                                                                          | PNO: Fast<br>IFGain:Low                   | 36.78       SENSE:INT       Trig: Free Run       #Atten: 30 dB                       | D dBm/MHz ==<br>39.78<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/10   | PSD dE     | 3m/MHz == PSD<br>42.78<br>2:45:22 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE A AAAAA<br>968 28 GHz<br>36.782 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

#VBW 3.0 MHz\*

STATUS

Span 35.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.96000 GHz #Res BW 1.0 MHz



|                                                                                                                     | Initial Value<br>dBm/MHz<br>36.688                                                          | - 1990 MHz, 50<br>Duty Cycle<br>Factor (dB)<br>0     | S NR, Port 3, 20 MHz Ba<br>Single Port<br>dBm/MHz == PSD<br>36.69                  | andwdith, QPSK Modulati<br>Two Port (2x2 MIMO)<br>dBm/MHz == PSD<br>39.69  | on , High Channel, 1980<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keysight Spectrum Analy<br>RL RF                                                                                    | yzer - Element Materials Techn<br>50 Ω DC                                                   | ology<br>S<br>PNO: Fast                              | ENSE:INT A                                                                         | LIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100                            | 01:48:25 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE A WWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref Off                                                                                                             | set 42.03 dB                                                                                | IFGain:Low                                           | #Atten: 30 dB                                                                      | M                                                                          | lkr1 1.972 53 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                     | 0.00 dBm                                                                                    |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 40.0                                                                                                                |                                                                                             | <b>♦</b> <sup>1</sup>                                |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30.0                                                                                                                |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20.0                                                                                                                |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10.0                                                                                                                |                                                                                             |                                                      |                                                                                    |                                                                            | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.00                                                                                                                |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -10.0                                                                                                               |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -20.0                                                                                                               |                                                                                             |                                                      |                                                                                    |                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -30.0                                                                                                               |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40.0                                                                                                               |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Center 1.98000 C<br>#Res BW 1.0 MH                                                                                  | GHz<br>z                                                                                    | #VBV                                                 | V 3.0 MHz*                                                                         | #Swee                                                                      | Span 35.00 MHz<br>ep 601.0 ms (601 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MSG                                                                                                                 |                                                                                             |                                                      |                                                                                    | STATUS                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                     | Band n2, 1930 MHz<br>Initial Value                                                          | - 1990 MHz, 5G<br>Duty Cycle                         | NR, Port 3, 20 MHz Ba<br>Single Port                                               | ndwdith, 16-QAM Modula<br>Two Port (2x2 MIMO)                              | ation, Low Channel, 1940<br>Four Port (4x4 MIMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                     |                                                                                             |                                                      |                                                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                     | <b>dBm/MHz</b><br>38.3                                                                      | Factor (dB)<br>0                                     | <b>dBm/MHz == PSD</b><br>38.30                                                     | <b>dBm/MHz == PSD</b><br>41.30                                             | <b>dBm/MHz == PSD</b><br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Keysight Spectrum Anal                                                                                              | dBm/MHz<br>38.3                                                                             | Factor (dB)<br>0                                     | dBm/MHz == PSD           38.30                                                     | dBm/MHz == PSD<br>41.30                                                    | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 🕅 Keysight Spectrum Analı<br>100 R.L.   RF                                                                          | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC                                | PNO: Fast                                            | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atran: 30 dB             | dBm/MHz == PSD<br>41.30<br>IGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100  | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keysight Spectrum Analy<br>RL RF<br>RE RF                                                                           | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC                                | PNO: Fast →                                          | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB | dBm/MHz == PSD<br>41.30<br>IGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100  | dBm/MHz == PSD<br>44.30<br>12:22:17 PM Apr 27, 202<br>TARCE [] 2 2 4 5<br>TARCE [] 2 3 4<br>TARCE [] 3 4<br>TAR |
| Keysight Spectrum Analy<br>RL RF<br>10 dB/dIV Ref 5                                                                 | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC<br>set 42.03 dB<br>1.00 dBm    | Factor (dB)<br>0<br>ology<br>PNO: Fast<br>IFGain:Low | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | dBm/MHz == PSD<br>41.30<br>IGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100  | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keysight Spectrum Analy<br>R R RF<br>10 dB/div Ref 5                                                                | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC<br>//set 42.03 dB<br>1.00 dBm  | PNO: Fast +++                                        | dBm/MHz == PSD<br>38.30<br>ENSE:INT                                                | dBm/MHz == PSD<br>41.30                                                    | dBm/MHz == PSD<br>44.30<br>12:22:17 PM Apr 27, 2021<br>TRACE    2 3 4 5 6<br>TYPE    2 3 5 7<br>TYPE    2 3 5 7<br>TYPE    2 3 5 7<br>TYPE    2 5 7                                                 |
| I Keysight Spectrum Anal<br>R RL RF<br>IO dB/div Ref Off<br>-09<br>41.0<br>31.0                                     | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC  <br>Seet 42.03 dB<br>1.00 dBm | PNO: Fast<br>IFGain:Low                              | dBm/MHz == PSD<br>38.30<br>ENSE:INT ▲A<br>Trig: Free Run<br>#Atten: 30 dB          | dBm/MHz == PSD<br>41.30                                                    | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keysight Spectrum Analy<br>R RL RF<br>Ref Off<br>10 dB/div Ref 5<br>0<br>41.0<br>31.0<br>21.0                       | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC<br>Fset 42.03 dB<br>1.00 dBm   | Factor (dB)<br>0<br>clogy<br>PNO: Fast<br>IFGain:Low | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | dBm/MHz == PSD<br>41.30<br>LIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100 | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keysight Spectrum Analy<br>RL RF<br>10 dB/div Ref 57<br>41.0<br>31.0<br>21.0<br>11.0                                | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC<br>fset 42.03 dB<br>1.00 dBm   | PNO: Fast<br>IFGain:Low                              | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | dBm/MHz == PSD<br>41.30                                                    | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keysight Spectrum Anal<br>R L RF<br>Code B/div Ref 5<br>41.0<br>31.0<br>21.0                                        | dBm/MHz<br>38.3<br>yzer-Element Materials Techn<br>50 Ω DC<br>Set 42.03 dB<br>1.00 dBm      | Factor (dB)<br>0<br>ology<br>PNO: Fast<br>IFGain:Low | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | dBm/MHz == PSD<br>41.30<br>LIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100 | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Keysight Spectrum Analy           R L         RF           Ref Off           10 dB/div         Ref 5           41.0 | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC<br>set 42.03 dB<br>1.00 dBm    | PRO: Fast<br>PNO: Fast<br>IFGain:Low                 | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | dBm/MHz == PSD<br>41.30<br>LIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100 | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RL RF<br>RL RF                                                                                                      | dBm/MHz<br>38.3<br>yzer - Element Materials Techn<br>50 Ω DC<br>Fset 42.03 dB<br>1.00 dBm   | Factor (dB)<br>0<br>clogy<br>PNO: Fast<br>IFGain:Low | dBm/MHz == PSD<br>38.30<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | dBm/MHz == PSD<br>41.30<br>IGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100  | dBm/MHz == PSD<br>44.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#VBW 3.0 MHz\*

STATUS

Span 35.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.94000 GHz #Res BW 1.0 MHz





| 210<br>110<br>100<br>100<br>100<br>100<br>100<br>100 | MSG          |                           |            |     |            |    | STATUS |       |                    |                          |
|------------------------------------------------------|--------------|---------------------------|------------|-----|------------|----|--------|-------|--------------------|--------------------------|
|                                                      | Cent<br>#Res | ter 1.98000<br>s BW 1.0 M | GHz<br>IHz | #VB | W 3.0 MHz* | t. |        | #Swee | Span<br>ep 601.0 m | 35.00 MHz<br>s (601 pts) |
|                                                      | -39.0        |                           |            |     |            |    |        |       |                    |                          |
|                                                      | -29.0        |                           |            |     |            |    |        |       |                    |                          |
|                                                      | -19.0        |                           |            |     |            |    |        |       |                    |                          |
|                                                      | -9.00        |                           |            |     |            |    |        |       |                    |                          |
|                                                      | 1.00         |                           |            |     |            |    |        |       |                    |                          |
|                                                      | 21.0         |                           | }          |     |            |    |        | }     | \<br>\             |                          |



| Ва                                                                                       | nd n2, 1930 MHz                                                                                                       | : - 1990 MHz, 5G                                                                   | NR, Port 3, 20 MHz B                                                                                                                    | andwalth, 64-QAM Modula                                                                                                                          | ation, Low Channel, 1940 M                                                                                                                                                                   | Hz |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                          | Initial Value<br>dBm/MHz                                                                                              | Duty Cycle<br>Factor (dB)                                                          | Single Port<br>dBm/MHz == PSD                                                                                                           | Two Port (2x2 MIMO)<br>dBm/MHz == PSD                                                                                                            | Four Port (4x4 MIMO)<br>dBm/MHz == PSD                                                                                                                                                       |    |
|                                                                                          | 36.73                                                                                                                 | 0                                                                                  | 36.73                                                                                                                                   | 39.73                                                                                                                                            | 42.73                                                                                                                                                                                        |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| Keysight Spectrum Analyzer                                                               | - Element Materials Tech                                                                                              | nology                                                                             |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| CKIRL RF                                                                                 | 50 Ω DC                                                                                                               | S                                                                                  | ENSE:INT                                                                                                                                | #Avg Type: RMS                                                                                                                                   | 12:29:59 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6                                                                                                                                                |    |
|                                                                                          |                                                                                                                       | PNO: Fast                                                                          | Trig: Free Run<br>#Atten: 30 dB                                                                                                         | Avg Hold: 100/100                                                                                                                                | DET A A A A A A                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       | IFGall.Low                                                                         | Witten: 00 db                                                                                                                           | N                                                                                                                                                | kr1 1 9/6 59 CHz                                                                                                                                                                             |    |
| Ref Offsei<br>10 dB/div Ref 49 f                                                         | t 42.03 dB<br>10 dBm                                                                                                  |                                                                                    |                                                                                                                                         |                                                                                                                                                  | 36.730 dBm                                                                                                                                                                                   |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         | <b>1</b>                                                                                                                                         |                                                                                                                                                                                              |    |
| 39.0                                                                                     |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| 29.0                                                                                     |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| 19.0                                                                                     |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| 9.00                                                                                     | السول المع                                                                                                            |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| -1.00                                                                                    |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| -11.0                                                                                    |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  | L                                                                                                                                                                                            |    |
| -21.0                                                                                    |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| -31.0                                                                                    |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| 01.0                                                                                     |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| -41.0                                                                                    |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
|                                                                                          |                                                                                                                       |                                                                                    |                                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                              |    |
| Cepter 1 94000 GH                                                                        | 7                                                                                                                     |                                                                                    |                                                                                                                                         |                                                                                                                                                  | Spap 35.00 MHz                                                                                                                                                                               |    |
|                                                                                          | 2                                                                                                                     |                                                                                    |                                                                                                                                         |                                                                                                                                                  | 601.0 mg (601 nto)                                                                                                                                                                           |    |
| #Res BW 1.0 MHz                                                                          |                                                                                                                       | #VBV                                                                               | V 3.0 MHz*                                                                                                                              | #Swee                                                                                                                                            | ep 001.0 ms (001 pts)                                                                                                                                                                        |    |
| #Res BW 1.0 MHz                                                                          |                                                                                                                       | #VBV                                                                               | V 3.0 MHz*                                                                                                                              | #Swee                                                                                                                                            | ep 801.0 ms (801 pts)                                                                                                                                                                        |    |
| #Res BW 1.0 MHz                                                                          |                                                                                                                       | #VBV                                                                               | V 3.0 MHz*                                                                                                                              | #Swee                                                                                                                                            |                                                                                                                                                                                              |    |
| #Res BW 1.0 MHz                                                                          | nd n2, 1930 MHz                                                                                                       | #VBV                                                                               | V 3.0 MHz*<br>NR, Port 3, 20 MHz B                                                                                                      | #Swee<br>status<br>andwdith, 64-QAM Modula                                                                                                       | ation, Mid Channel, 1960 MH                                                                                                                                                                  | łz |
| #Res BW 1.0 MHz                                                                          | nd n2, 1930 MHz<br>Initial Value                                                                                      | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle                                               | NR, Port 3, 20 MHz B<br>Single Port                                                                                                     | #SWed<br>status<br>andwdith, 64-QAM Modula<br>Two Port (222 MIMO                                                                                 | ation, Mid Channel, 1960 Mł<br>Four Port (4x4 MIMO)                                                                                                                                          | łz |
| Here SW 1.0 MHz                                                                          | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>26 95                                                                  | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle<br>Factor (dB)                                | NR, Port 3, 20 MHz<br>Single Port<br>dBm/MHz == PSD                                                                                     | #Swer                                                                                                                                            | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD                                                                                                                        | iz |
| #Res BW 1.0 MHz                                                                          | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85                                                                  | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle<br>Factor (dB)<br>0                           | NR, Port 3, 20 MHz*<br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85                                                   | #Swee<br>status<br>andwdith, 64-QAM Modula<br>Two Port (2x2 MIMO)<br>dBm/MHz == PSD<br>39.85                                                     | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85                                                                                                               | łz |
| #Res BW 1.0 MHz                                                                          | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85                                                                  | #VBV                                                                               | V 3.0 MH2*<br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85                                                            | #Swee<br>status<br>andwdith, 64-QAM Modula<br>Two Port (2x2 MIMO)<br>dBm/MHz == PSD<br>39.85                                                     | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85                                                                                                               | łz |
| #Res BW 1.0 MHz MSG Ba Ba Keysight Spectrum Analyzer N RL RP 1                           | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech                                      | #VBV                                                                               | V 3.0 MHZ*<br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT                                                | #Swee                                                                                                                                            | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85                                                                                                               | łz |
| #Res BW 1.0 MHz MSG Ba Ba Keysight Spectrum Analyzer X RL RF 1                           | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>30 R DC                           | #VBV                                                                               | V 3.0 MHZ* NR, Port 3, 20 MHz B Single Port dBm/MHz == PSD 36.85 ENSE:INT Trig: Free Run                                                | #Swec<br>status<br>andwdith, 64-QAM Modula<br>Two Port (2x2 MIMO)<br>dBm/MHz == PSD<br>39.85<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Type: RMS     | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85                                                                                                               | łz |
| #Res BW 1.0 MHz MBG BI Keyright Spectrum Analyzer X RL RF :                              | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech                                      | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle<br>Factor (dB)<br>0<br>nology<br>PNO: Fast →→ | V 3.0 MHZ*<br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | #Swee<br>status<br>andwdith, 64-QAM Modula<br>Two Port (2x2 MIMO)<br>dBm/MHz == PSD<br>39.85<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100 | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85                                                                                                               | łz |
| #Res BW 1.0 MHz<br>Msg<br>Bit Keysight Spectrum Analyzer<br>Of RL RP 1<br>Ref Offset     | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>• Element Materials Tech<br>50 Ω DC                           | #VBV                                                                               | NR, Port 3, 20 MHz*<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB                            | #Swee                                                                                                                                            | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE 2 3 4 5<br>TYPE A AAAAA<br>DET AAAAAA                                    | łz |
| #Res BW 1.0 MHz Msg Ba                               | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 Q DC  <br>242.03 dB<br>10 dBm  | #VBV                                                                               | NR, Port 3, 20 MHz<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB                             | #Swee<br>status<br>andwdith, 64-QAM Modula<br>Two Port (2x2 MIMO)<br>dBm/MHz == PSD<br>39.85<br>ALIGN OFF<br>#Avg Type: RMS<br>Avg Hold: 100/100 | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE 2 34 3<br>TAPE A AAAAA<br>DET AAAAAA<br>Ikr1 1.968 34 GHz<br>36.850 dBm  | łz |
| #Res BW 1.0 MHz Msg Ba                               | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 Ω DC  <br>c 42.03 dB<br>0 dBm  | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle<br>Factor (dB)<br>0<br>nology<br>PNO: Fast →  | NR, Port 3, 20 MHz*<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB                            | #Swec                                                                                                                                            | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE 12:34.35<br>TYPE A MAAAAA<br>Ikr1 1.968 34 GHz<br>36.850 dBm             | łz |
| #Res BW 1.0 MHz<br>Msg Ba                            | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 Ω DC  <br>t 42.03 dB<br>0 dBm  | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle<br>Factor (dB)<br>0<br>nology<br>PNO: Fast →  | V 3.0 MHZ <sup>±</sup><br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB | #Swer                                                                                                                                            | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE 12 34 55<br>TYPE AAAAAA<br>kr1 1.968 34 GHz<br>36.850 dBm                | łz |
| #Res BW 1.0 MHz Msg Ba                               | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 Ω DC  <br>t 42.03 dB<br>00 dBm | #VBV<br>- 1990 MHz, 5G<br>Duty Cycle<br>Factor (dB)<br>0<br>nology<br>PNO: Fast →  | NR, Port 3, 20 MHZ*<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT ▲<br>Trig: Free Run<br>#Atten: 30 dB                          | #SWed                                                                                                                                            | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr/27, 2021<br>TRACE II 23 43 5<br>TYPE A AAAAA<br>Ikr1 1.968 34 GHz<br>36.850 dBm            | łz |
| #Res BW 1.0 MHz MSG Ba                               | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50                                | #¥VBV                                                                              | V 3.0 MHZ*<br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT ▲<br>Trig: Free Run<br>#Atten: 30 dB           | #SWet                                                                                                                                            | ation, Mid Channel, 1960 MF<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE II 23 43 00<br>TYPE A VANAWA<br>DET A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | łz |
| #Res BW 1.0 MHz MSG Ba                               | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 2 DC<br>t 42.03 dB<br>00 dBm   | #¥VBV                                                                              | NR, Port 3, 20 MHz 8<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB                           | #Swer                                                                                                                                            | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE 12.34 So<br>DET AAAAAA<br>kr1 1.968 34 GHz<br>36.850 dBm                 | łz |
| #Res BW 1.0 MHz MSG Ba Ba Keysight Spectrum Analyzer Ref Offse Cog 40 0 30 0 20 0        | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 Q DC<br>t 42.03 dB<br>00 dBm   | #¥VBV                                                                              | NR, Port 3, 20 MHz 8<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB                           | #Swer                                                                                                                                            | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr27, 2021<br>TRACE 0 2 34 50<br>DET AAAAAA<br>Ikr1 1.968 34 GHz<br>36.850 dBm                | łz |
| #Res BW 1.0 MHz Msg BI Keyright Spectrum Analyzer Ref Offse 10 dB/div Ref 50.0 30 0 20 0 | nd n2, 1930 MHz<br>Initial Value<br>dBm/MHz<br>36.85<br>- Element Materials Tech<br>50 Ω DC<br>t 42.03 dB<br>00 dBm   | #¥VBV                                                                              | V 3.0 MHZ*<br>NR, Port 3, 20 MHz B<br>Single Port<br>dBm/MHz == PSD<br>36.85<br>ENSE:INT<br>Trig: Free Run<br>#Atten: 30 dB             | #Swer                                                                                                                                            | ation, Mid Channel, 1960 Mk<br>Four Port (4x4 MIMO)<br>dBm/MHz == PSD<br>42.85<br>01:30:23 PM Apr 27, 2021<br>TRACE 2 2 3 4 50<br>DET A A A A A A<br>Ikr1 1.968 34 GHz<br>36.850 dBm         | łz |

#VBW 3.0 MHz\*

STATUS

Span 35.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.96000 GHz #Res BW 1.0 MHz



|                                                | Band n2, 1930 MHz                 | - 1990 MHz, 5G              | NR, Port 3, 20 MHz Ba           | ndwdith, 64-QAM Modula                | ation, High Channel, 1980                     |
|------------------------------------------------|-----------------------------------|-----------------------------|---------------------------------|---------------------------------------|-----------------------------------------------|
|                                                | Initial Value<br>dBm/MHz          | Duty Cycle<br>Factor (dB)   | Single Port<br>dBm/MHz == PSD   | Two Port (2x2 MIMO)<br>dBm/MHz == PSD | Four Port (4x4 MIMO<br>dBm/MHz == PSD         |
|                                                | 36.668                            | 0                           | 36.67                           | 39.67                                 | 42.67                                         |
| Kevsight Spectrum Ar                           | nalvzer - Element Materials Techn | ology                       |                                 |                                       |                                               |
| CXI RL RF                                      | 50 Ω DC                           | S                           | ENSE:INT                        |                                       | 02:07:42 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6 |
|                                                |                                   | PNO: Fast +++               | Trig: Free Run<br>#Atten: 30 dB | Avg Hold: 100/100                     | DET A A A A A A                               |
| Ref                                            | Offset 42.03 dB                   |                             |                                 | Ν                                     | lkr1 1.975 74 GHz                             |
| 10 dB/div Ref                                  | 49.00 dBm                         |                             |                                 |                                       | 36.668 dBm                                    |
| 20.0                                           |                                   | <b>1</b>                    |                                 |                                       |                                               |
| 39.0                                           |                                   |                             |                                 |                                       |                                               |
| 29.0                                           | /                                 |                             |                                 |                                       |                                               |
| 19.0                                           | /                                 |                             |                                 |                                       |                                               |
|                                                |                                   |                             |                                 |                                       |                                               |
| 9.00                                           | 1                                 |                             |                                 |                                       |                                               |
| -1.00                                          |                                   |                             |                                 |                                       |                                               |
| 11.0                                           | {                                 |                             |                                 |                                       |                                               |
| -11.0                                          | /                                 |                             |                                 |                                       |                                               |
| -21.0                                          |                                   |                             |                                 |                                       |                                               |
| -31.0                                          |                                   |                             |                                 |                                       |                                               |
|                                                |                                   |                             |                                 |                                       |                                               |
| -41.0                                          |                                   |                             |                                 |                                       |                                               |
| Center 1.98000                                 | ) GHz                             |                             |                                 |                                       | Span 35.00 MHz                                |
| #Res BW 1.0 M                                  | 1Hz                               | #VB\                        | N 3.0 MHz*                      | #Swe                                  | ep 601.0 ms (601 pts)                         |
| MSG                                            |                                   |                             |                                 | STATUS                                |                                               |
|                                                | Band n2, 1930 MHz -               | 1990 MHz, 5G                | NR, Port 3, 20 MHz Ba           | ndwdith, 256-QAM Modu                 | ation, Low Channel, 1940                      |
|                                                | dBm/MHz                           | Factor (dB)                 | dBm/MHz == PSD                  | dBm/MHz == PSD                        | dBm/MHz == PSD                                |
|                                                | 36.801                            | 0                           | 36.80                           | 39.80                                 | 42.80                                         |
| 🗾 Keysight Spectrum Ar                         | nalyzer - Element Materials Techn | ology                       |                                 |                                       |                                               |
| KARL RF                                        | 50 Ω DC                           | 5                           | ENSE:INT                        | LIGN OFF<br>#Avg Type: RMS            | 12:39:07 PM Apr 27, 2021<br>TRACE 1 2 3 4 5 6 |
|                                                |                                   | PNO: Fast +++<br>IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Hold: 100/100                     |                                               |
| Ref (                                          | Offset 42.03 dB                   |                             |                                 | N                                     | lkr1 1.942 04 GHz                             |
| 10 dB/div Ref                                  | 49.00 dBm                         |                             |                                 |                                       | 36.801 dBm                                    |
|                                                |                                   |                             |                                 |                                       |                                               |
| 39.0                                           |                                   |                             | <u>_</u> 1                      |                                       |                                               |
| 39.0                                           |                                   |                             | <b>↓</b> 1                      |                                       |                                               |
| 39.0<br>29.0                                   |                                   |                             | ∮ <sup>1</sup>                  |                                       |                                               |
| 39.0<br>29.0<br>19.0                           |                                   |                             | ∳ <sup>1</sup>                  |                                       |                                               |
| 39.0<br>29.0<br>19.0                           |                                   |                             | <b>∳</b> 1                      |                                       |                                               |
| 39.0<br>29.0<br>9.00                           |                                   |                             |                                 |                                       |                                               |
| 39.0<br>29.0<br>19.0<br>                       |                                   |                             |                                 |                                       |                                               |
| 39 0<br>29 0<br>19 0<br>9 00<br>-1.00          |                                   |                             | 1<br>                           |                                       |                                               |
| 39.0<br>29.0<br>19.0<br>9.00<br>-1.00<br>-11.0 |                                   |                             | 1<br>                           |                                       |                                               |

#VBW 3.0 MHz\*

STATUS

Span 35.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.94000 GHz #Res BW 1.0 MHz



| Ba                                    | nd n2, 1930 MHz - 1                  | 990 MHz, 5G                | NR, Port 3, 20 M                | Hz Bandwdith, 2              | 256-QAM Modul                    | ation, Mid C             | Channel, 1960 N                | MHz |
|---------------------------------------|--------------------------------------|----------------------------|---------------------------------|------------------------------|----------------------------------|--------------------------|--------------------------------|-----|
|                                       | Initial Value<br>dBm/MHz             | Duty Cycle<br>Factor (dB)  | Single Po<br>dBm/MHz ==         | rt Two Po<br>PSD dBm         | ort (2x2 MIMO)<br>/MHz == PSD    | Four Po<br>dBm/N         | rt (4x4 MIMO)<br>MHz == PSD    |     |
|                                       | 36.86                                | 0                          | 36.86                           |                              | 39.86                            |                          | 42.86                          |     |
| 🗱 Keysight Spectrum Analyze           | er - Element Materials Technolo      | ogy                        |                                 |                              |                                  |                          |                                |     |
| KAIRL RF                              | 50 Ω DC                              | s                          | ENSE:INT                        | ALIGN OFF<br>#Avg Ty         | /pe: RMS                         | 01:36:3<br>T             | RACE 1 2 3 4 5 6               |     |
|                                       |                                      | PNO: Fast +++<br>FGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Ho                       | d: 100/100                       |                          |                                |     |
| Ref Offse<br>10 dB/div Ref 49.        | et 42.03 dB<br>00 dBm                |                            |                                 |                              | Μ                                | lkr1 1.96<br>36          | 62 04 GHz<br>.860 dBm          |     |
| Log                                   |                                      |                            |                                 | . 1                          |                                  |                          |                                |     |
| 39.0                                  |                                      |                            |                                 | <u>•</u>                     |                                  |                          |                                |     |
| 29.0                                  | /                                    |                            |                                 |                              |                                  |                          |                                |     |
| 40.0                                  | /                                    |                            |                                 |                              | 1                                |                          |                                |     |
|                                       |                                      |                            |                                 |                              |                                  |                          |                                |     |
| 9.00                                  |                                      |                            |                                 |                              |                                  |                          |                                |     |
| -1.00                                 |                                      |                            |                                 |                              |                                  |                          |                                |     |
| 44.0                                  |                                      |                            |                                 |                              |                                  | ł                        |                                |     |
| -11.0                                 | /                                    |                            |                                 |                              |                                  | ł                        |                                |     |
| -21.0                                 |                                      |                            |                                 |                              |                                  |                          |                                |     |
| -31.0                                 |                                      |                            |                                 |                              |                                  |                          |                                |     |
| 41.0                                  |                                      |                            |                                 |                              |                                  |                          |                                |     |
| -41.0                                 |                                      |                            |                                 |                              |                                  |                          |                                |     |
| Center 1.96000 GH                     | łz                                   |                            |                                 |                              |                                  | Spar                     | 1 35.00 MHz                    |     |
| #Res BW 1.0 MHz                       |                                      | #VBV                       | V 3.0 MHz*                      | STATUS                       | #Swee                            | ep 601.0 r               | ns (601 pts)                   |     |
|                                       |                                      |                            |                                 |                              |                                  |                          |                                |     |
| Bai                                   | nd n2, 1930 MHz - 1<br>Initial Value | 990 MHz, 5G<br>Duty Cycle  | NR, Port 3, 20 M<br>Single Po   | Hz Bandwdith, 2<br>rt Two Po | 256-QAM Modula<br>ort (2x2 MIMO) | ation, High (<br>Four Po | Channel, 1980<br>rt (4x4 MIMO) | MHz |
| · · · · · · · · · · · · · · · · · · · | dBm/MHz                              | Factor (dB)                | dBm/MHz ==                      | PSD dBm                      | /MHz == PSD                      | dBm/N                    | MHz == PSD                     |     |
| I                                     | 30.733                               | U                          | 30.74                           | I                            | 39.14                            | 1                        | 42./4                          | 1   |
| Keysight Spectrum Analyze             | r - Element Materials Technolo       | ogy                        | ENSE-INT                        |                              |                                  | 02-15-2                  | 5 PM Apr 27, 2021              |     |
|                                       | 50 x 00                              | PNO: Fast                  | Trig: Free Run                  | #Avg Ty<br>Avg Ho            | /pe: RMS<br>ld: 100/100          | T                        |                                |     |
| Ref Offse                             | et 42.03 dB                          | r-Gain:Low                 | #Atten. 30 ab                   |                              | M                                | lkr1 <u>1.9</u> 8        | 32 04 GHz                      |     |
| 10 dB/div Ref 49.                     | 00 dBm                               |                            |                                 |                              |                                  | 36                       | .735 dBm                       |     |
|                                       |                                      |                            |                                 | <u>1</u>                     |                                  |                          |                                |     |
| 39.0                                  |                                      |                            |                                 |                              |                                  |                          |                                |     |
| 29.0                                  |                                      |                            |                                 |                              |                                  |                          |                                |     |
| 19.0                                  | /                                    |                            |                                 |                              |                                  |                          |                                |     |
|                                       |                                      |                            |                                 |                              |                                  |                          |                                |     |
| 9.00                                  |                                      |                            |                                 |                              |                                  | 1                        |                                |     |

#VBW 3.0 MHz\*

STATUS

Span 35.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.98000 GHz #Res BW 1.0 MHz



#### **EIRP Calculations for Four Port MIMO Operations**

EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements. Each cell site installation needs to consider the power measurements in the radio certification report as well as site specific regulatory requirements (such as antenna height, population density, etc.), site installation parameters (line loss between antenna and radio, antenna parameters, etc.) and base station operational parameters (MIMO operational setup, carrier power level, channel bandwidth, modulation type, etc.) to optimize performance. Transmitter output power may be reduced (from maximum) by base station setup parameters. Base station antennas are selected by the customer.

Kathrein antenna assembly model "80011867(Y2)" has a gain (dBi) of 17.3  $\pm$ 0.3dB (maximum gain of 17.6dBi was used for the EIRP calculation) for Band n2 was used for this calculation. This antenna assembly has a pair of  $\pm$ 45° cross-polarized radiators used for Band n2. The four antenna RF inputs (used for Band n2) on the antenna assembly are as follows: Y1+ L5 (+45°), Y1- L6 (-45°), Y2+ R7 (+45°) and Y2- R8 (-45°). Four FXFC transmitter outputs are connected to the antenna assembly RF inputs.

Equivalent Isotropically Radiated Power (EIRP) is calculated (as specified in ANSI C63.26-2015 section 6.4 for a system of correlated output signals) from the results of power measurements (highest measured PSD for each channel bandwidth type). The maximum antenna gain was used for this calculation. The cable loss between the antenna and transmitter is site dependent (will not be 0 dB) but for this worst case EIRP calculation 0 dB was used. Calculations of worst-case EIRP for four port MIMO are as follows:

| Parameter                                         | 5 MHz Ch BW    | 10 MHz Ch BW   | 15 MHz Ch BW   | 20 MHz Ch BW   |
|---------------------------------------------------|----------------|----------------|----------------|----------------|
| Worst Case PSD/Antenna Port                       | 43.1 dBm/MHz   | 40.5 dBm/MHz   | 39.4 dBm/MHz   | 38.4 dBm/MHz   |
| Cable Loss (site dependent)                       | 0 dB           | 0 dB           | 0 dB           | 0 dB           |
| Maximum Antenna Gain (G <sub>Ant</sub> )          | 17.6 dBi       | 17.6 dBi       | 17.6 dBi       | 17.6 dBi       |
| Directional Gain = G <sub>Ant</sub> + 10Log (2)   | 20.6 dBi       | 20.6 dBi       | 20.6 dBi       | 20.6 dBi       |
| See Note 1                                        |                |                |                |                |
| EIRP for Antenna Y1 +45*<br>EIRP for Ant Y1 +45*= | 63.7 dBm/MHz   | 61.1 dBm/MHz   | 60 dBm/MHz     | 59 dBm/MHz     |
| PSD/ant port - Cable Loss + Dir Gain              |                |                |                |                |
| EIRP for Antenna Y1 -45*                          | 63.7 dBm/MHz   | 61.1 dBm/MHz   | 60 dBm/MHz     | 59 dBm/MHz     |
| EIRP subtotal for                                 | 63.7 dBm/MHz   | 61.1 dBm/MHz   | 60 dBm/MHz     | 59 dBm/MHz     |
| Y1 +45°and Y1 -45*                                | or             | or             | or             | or             |
| See Note 2                                        | 2340 Watts/MHz | 1288 Watts/MHz | 1000 Watts/MHz | 794 Watts/MHz  |
| EIRP for Antenna Y2 +45*                          | 63.7 dBm/MHz   | 61.1 dBm/MHz   | 60 dBm/MHz     | 59 dBm/MHz     |
| EIRP for Antenna Y2 -45*                          | 63.7 dBm/MHz   | 61.1 dBm/MHz   | 60 dBm/MHz     | 59 dBm/MHz     |
| EIRP subtotal for                                 | 63.7 dBm/MHz   | 61.1 dBm/MHz   | 60 dBm/MHz     | 59 dBm/MHz     |
| Y2 +45° and Y2 -45*                               | or             | or             | or             | or             |
| See Note 2                                        | 2340 Watts/MHz | 1288 Watts/MHz | 1000 Watts/MHz | 794 Watts/MHz  |
| EIRP Total =                                      | 4680 Watts/MHz | 2576 Watts/MHz | 2000 Watts/MHz | 1588 Watts/MHz |
| Y1 +45°and Y2 +45°                                | or             | or             | or             | or             |
| See Note 3                                        | 66.7 dBm/MHz   | 64.1 dBm/MHz   | 63 dBm/MHz     | 62 dBm/MHz     |

Note 1: The directional gain was calculated for two antennas since there are a pair of cross-polarized radiators. See ANSI C63.26 sections 6.4.5.3.3a) & 6.4.5.3.1a), and KDB 662911D01v02r01 paragraphs F)2)c)(i) & F)2)a)(i) for guidance.

Note 2: The EIRP per antenna polarity is required to be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b)2) and KDB 662911 D02v01 page 3 example (2) since the two transmitter outputs to each antenna are 90 degree-phase shifted relative to each other (cross-polarized radiators).

Note 3: Antenna Y1 an Y2 are correlated - the EIRPs are required to be summed and be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b)3) and KDB 662911 D02v01 page 3 example (3).

#### **Calculation Summary**

The worst case FXFC four port MIMO EIRP levels using antenna assembly model "80011867(Y2)" are:

- (1) Less than the FCC and ISED (3280 W/MHz or 65.16 dBm/MHz) EIRP Regulatory Limits for 10, 15 & 20MHz channel bandwidths
- (2) Over the FCC/ISED (3280 W/MHz or 65.16 dBm/MHz) EIRP Regulatory Limits by 1.54 dB for the 5MHz channel bandwidth. EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements as noted above.

(3) Less than the FCC and ISED (1640 W/MHz or 62.15 dBm/MHz) EIRP Regulatory Limits for the 20MHz channel bandwidth

(4) Over the FCC/ISED (1640 W/MHz or 62.15 dBm/MHz) EIRP Regulatory Limits by 0.85 dB for the 15MHz channel bandwidth, by 1.95 dB for the 10MHz channel bandwidth, and by 4.55 dB for the 5MHz channel bandwidth. EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements as noted above.



End of Test Report