

Nemko Test Report: 33241RUS1 Applicant: Nokia Siemens Networks 6000 Connection Drive Irving, TX 75039 USA **Equipment Under Test: EXPB** (E.U.T.) FCC ID: **VBNEXPB-01** CFR 47, Part 24, Subpart E In Accordance With: **Broadband PCS Base Stations Tested By:** Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-3136 **TESTED BY:** DATE: 06 October 2009 David Light, Senior Wireless Engineer 6 November 2009 **APPROVED BY:** DATE: Tom Tidwell, Telecom Direct

Number of Pages: 53

EQUIPMENT: **EXPB**

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 33241RUS1

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	General Equipment Specification	5
Section 3.	RF Power Output	6
Section 4.	Occupied Bandwidth	8
Section 5.	Spurious Emissions at Antenna Terminals	11
Section 6.	Field Strength of Spurious	40
Section 7.	Frequency Stability	41
Section 8.	Test Equipment List	43
ANNEX A -	TEST DETAILS	44
ANNEX B -	TEST DIAGRAMS	50

EQUIPMENT: EXPB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: 33241RUS1

Section 1. Summary of Test Results

Manufacturer: Nokia Siemens Networks

Model No.: EXPB

abla

Serial No.: L9093200297

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24, Subpart E.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: EXPB

Summary Of Test Data

NAME OF TEST	PARA.	SPEC.	RESULT
	NO.		
RF Power Output	24.232	1640 W	Complies
Occupied Bandwidth	24.238		Complies
Spurious Emissions at	24.238(a)	-13 dBm	Complies
Antenna Terminals	, ,	10. 15	•
Field Strength of Spurious	24.238(a)	-13 dBm	Complies
Emissions	2 1.200(a)	E.I.R.P.	Compileo
Frequency Stability	24.235	Must stay in block	Complies

Footnotes For N/A's:

Section 2. General Equipment Specification

Supply Voltage Input:	-48 Vdc nominal	
Frequency Band:	1930 to 1990 MHz	
Type of Modulation and Designator:	GSM EDGE 300KGXW 300KG7W	
Maximum No. of Carriers:	1	
Output Impedance:	50 ohms	
RF Output (Rated):	50.0 W GMSK: Combiner Bypass 89.0 W GMSK: Double Combining 31.6 W 8PSK: Combiner Bypass 56.2 W 8PSK: Double Combining	
Band Selection:	Software Duplexer Fullband	

System Description

The EXPB is an 1900 MHz Base Station Transceiver. The configurations tested consisted of 3 modules: System Module, Dual Duplex filter module, Dual Transceiver module, and Wideband combiner module (needed for double power). Two types of RF outputs were measured: Combiner Bypass and Double Power Combining. Combiner Bypass consisted of a single carrier and Double Power Combining consisted of two carriers on the same channel combined with phase adjustment in order to increase the transmitted RF output power.

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: **33241RUS1**

EQUIPMENT: **EXPB**

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

TESTED BY: David Light DATE: 02 October 2009

Test Results: Complies.

Measurement Data: Refer to table on next page.

Equipment Used: 1036-1082-1055-1064-1065

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

EQUIPMENT: EXPB PROJECT NO.: 33241RUS1

Test Data – RF Power Output

Double Power Combining Mode

Modulation Type	Frequency	Measured Output Power	Measured Output Power
	(MHz)	(dBm)	(W)
GMSK	1930.2	32.9	1.9
GMSK	1930.4	49.1	81.3
GMSK	1960.0	49.5	<mark>89.0</mark>
GMSK	1989.6	34.0	2.5
GMSK	1989.8	48.6	72.4
8PSK	1930.2	39.6	9.1
8PSK	1930.4	47.5	56.2
8PSK	1960.0	47.5	<mark>56.2</mark>
8PSK	1989.6	37.3	5.6
8PSK	1989.8	47.4	55.0

Combiner Bypass Mode

Modulation Type	Frequency	Measured Output Power	Measured Output Power
	(MHz)	(dBm)	(W)
GMSK	1930.2	33.6	2.5
GMSK	1930.4	45.8	38.0
GMSK	1960.0	47.0	<mark>50.0</mark>
GMSK	1989.6	32.8	1.9
GMSK	1989.8	44.9	30.9
8PSK	1930.2	37.4	5.5
8PSK	1930.4	45.0	31.6
8PSK	1960.0	45.0	<mark>31.6</mark>
8PSK	1989.6	36.1	4.1
8PSK	1989.8	45.0	31.6

Note: The peak power needs to be lowered at the lowest and highest frequencies per above to ensure compliance at the band edges. Refer to plots in section 5.

Supply voltage was varied +/- 15%. No fluctuation in output power resulted.

EQUIPMENT: **EXPB**

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: **33241RUS1**

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

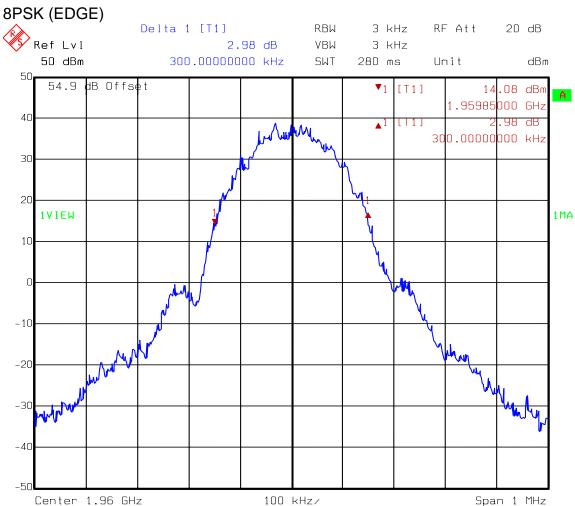
TESTED BY: David Light DATE: 02 October 2009

Test Results: Complies.

Test Data: See attached plot(s).

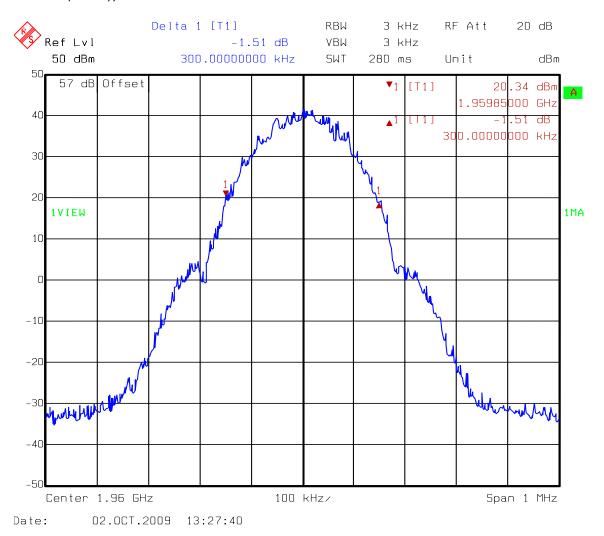
Equipment Used: 1036-1055-1082-1065-1064

Measurement Uncertainty: +/- 1.6 dB


Temperature: 22 °C

Relative Humidity: 35 %

Date:


02.0CT.2009 14:16:03

Test Data - Occupied Bandwidth

Test Data – Occupied Bandwidth

GMSK (GSM))

EQUIPMENT: EXPB

CFR 47, PART 24, SUBPART E BROADBAND PCS BASE STATIONS PROJECT NO.: **33241RUS1**

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna PARA. NO.: 2.1051

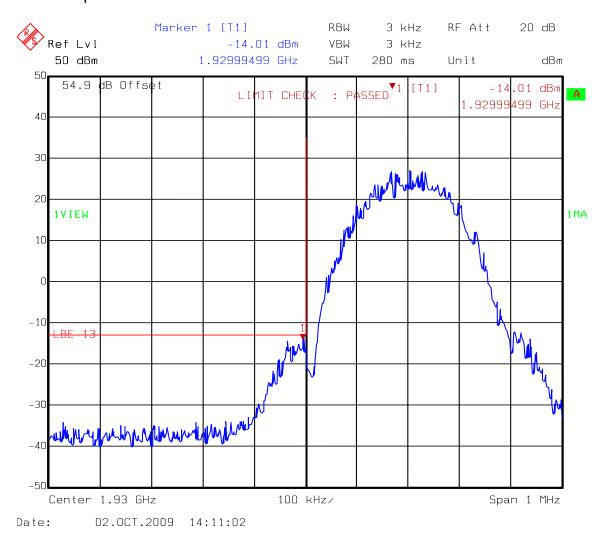
Terminals

TESTED BY: David Light DATE: 02 October 2009

Test Results: Complies.

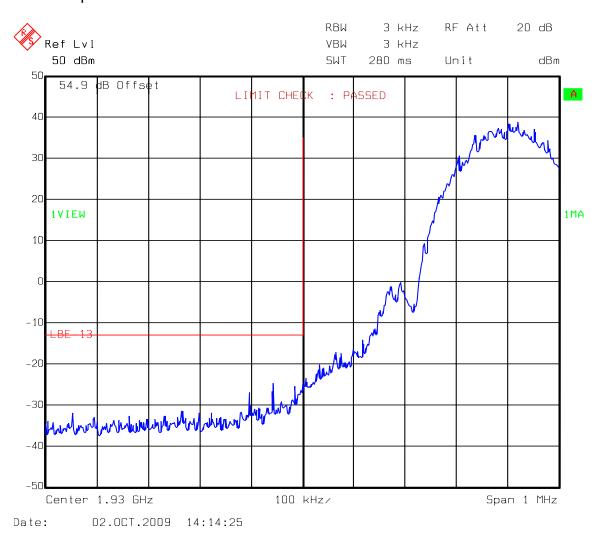
Test Data: Refer to plots below

Equipment Used: 1036-1082-1064-1065-1055-1054-1058


Measurement Uncertainty: +/- 1.7 dB

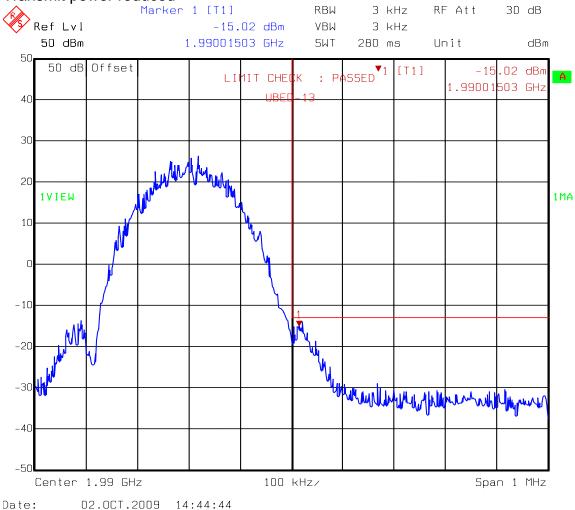
Temperature: 22 °C

Relative Humidity: 35 %


Test Data – Spurious Emissions

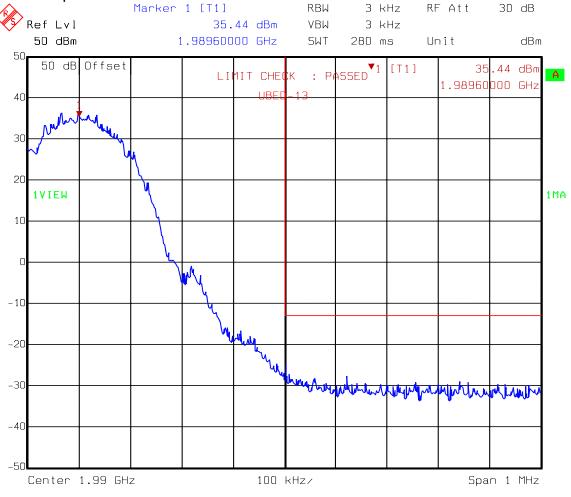
Low Band Edge 8PSK (EDGE) Double Power Combining Mode 1930.2 MHz Transmit power reduced

Test Data – Spurious Emissions


Low Band Edge 8PSK (EDGE) Double Power Combining Mode 1930.4 MHz Transmit power maximum

Test Data – Spurious Emissions

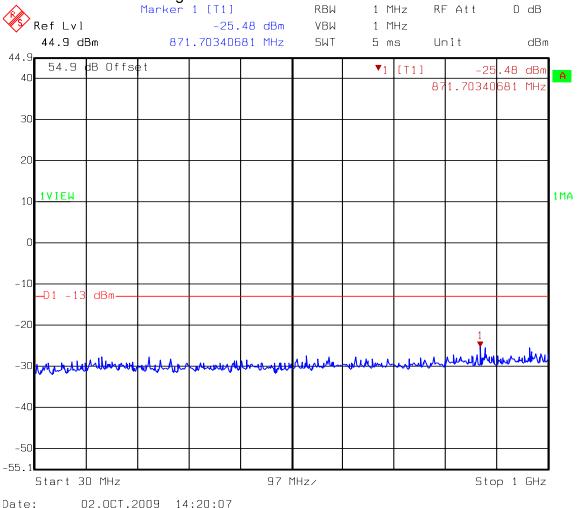
Upper Band Edge 8PSK (EDGE) Double Power Combining Mode 1989.8 MHz


Transmit power reduced

Test Data - Spurious Emissions

Upper Band Edge 8PSK (EDGE) Double Power Combining Mode 1989.6 MHz

Transmit power maximum

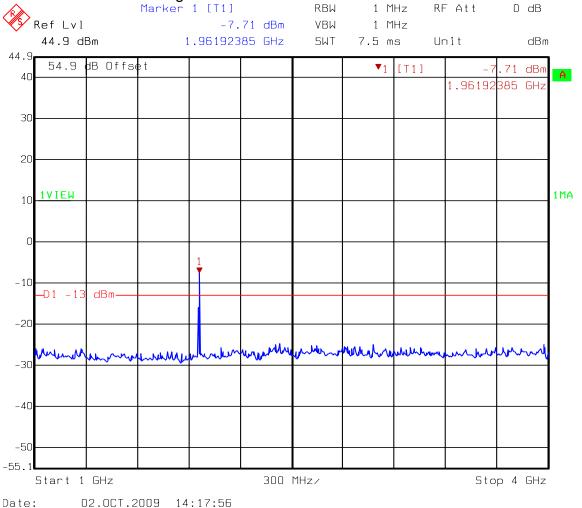


Test Data - Spurious Emissions

8PSK (EDGE)

Spurs

Double Power Combining Mode

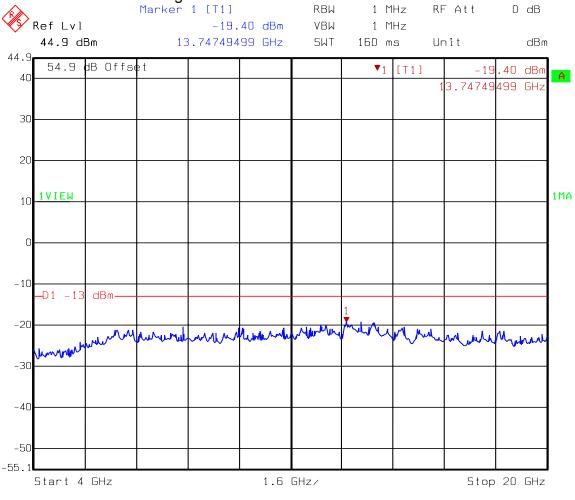


Test Data - Spurious Emissions

8PSK (EDGE)

Spurs

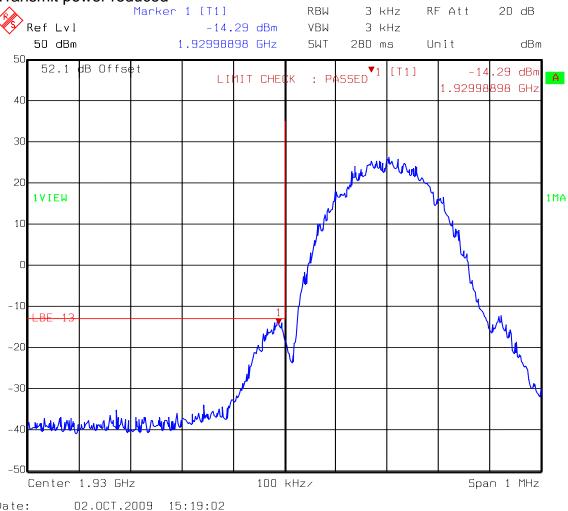
Double Power Combining Mode



Test Data - Spurious Emissions

8PSK (EDGE)

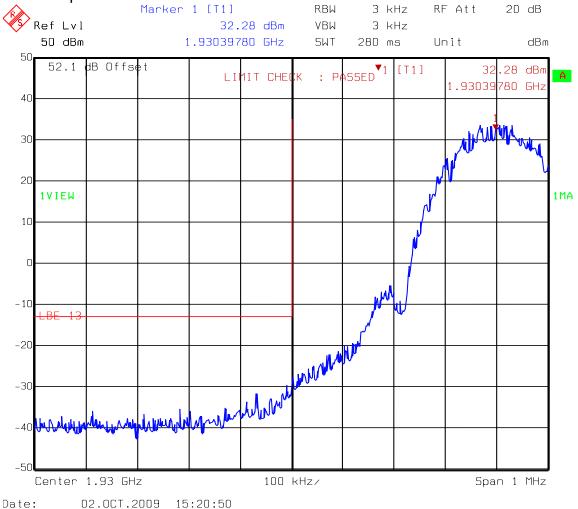
Spurs


Double Power Combining Mode

Test Data – Spurious Emissions

8PSK (EDGE) Combiner Bypass Mode Lower Band Edge 1930.2 MHz

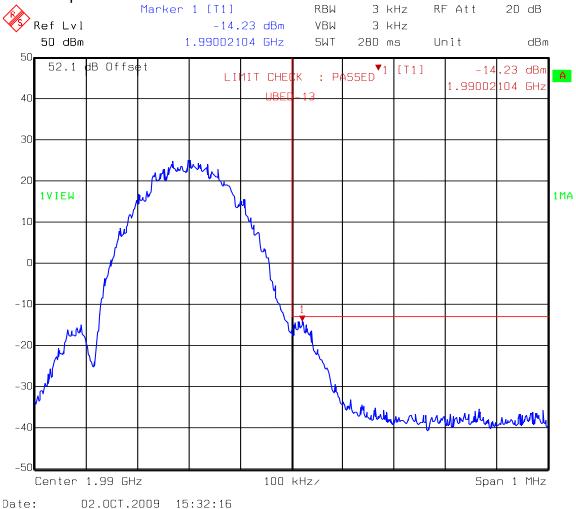
Transmit power reduced



Date:

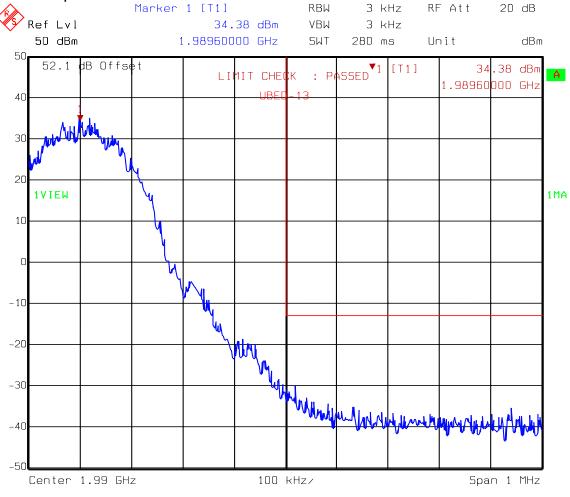
Test Data - Spurious Emissions

8PSK (EDGE) Combiner Bypass Mode Lower Band Edge 1930.4 MHz

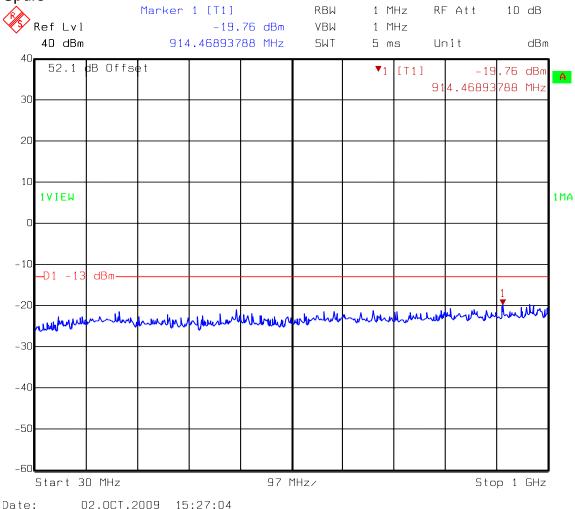

Transmit power maximum

Test Data - Spurious Emissions

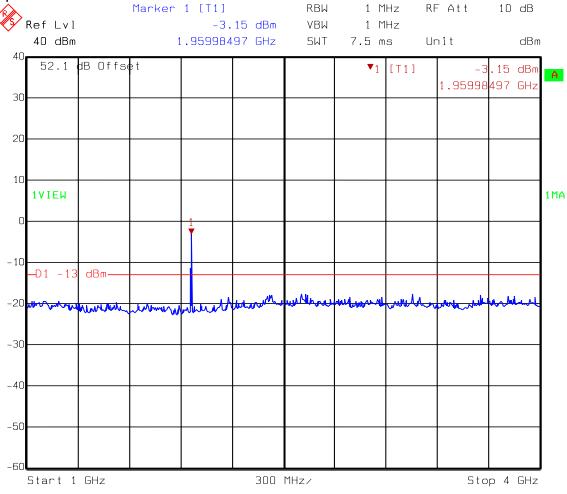
8PSK (EDGE) Combiner Bypass Mode Upper Band Edge 1989.8 MHz


Transmit power reduced

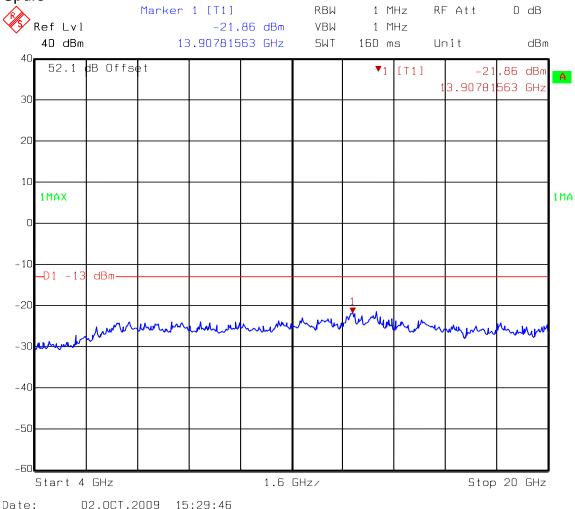
Test Data – Spurious Emissions


8PSK (EDGE) Combiner Bypass Mode Upper Band Edge 1989.6 MHz

Transmit power maximum

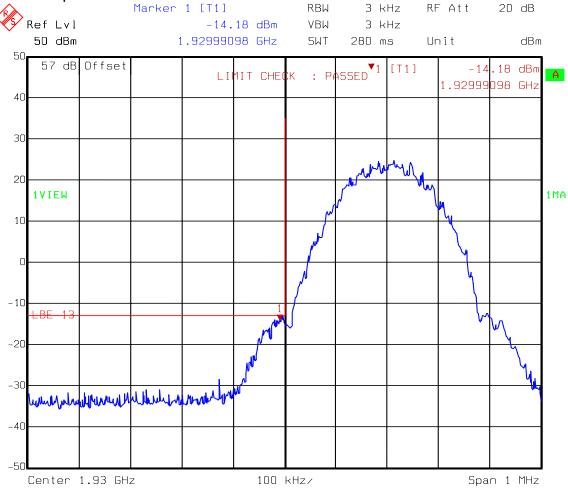

Test Data - Spurious Emissions

8PSK (EDGE) Combiner Bypass Mode Spurs


Test Data – Spurious Emissions

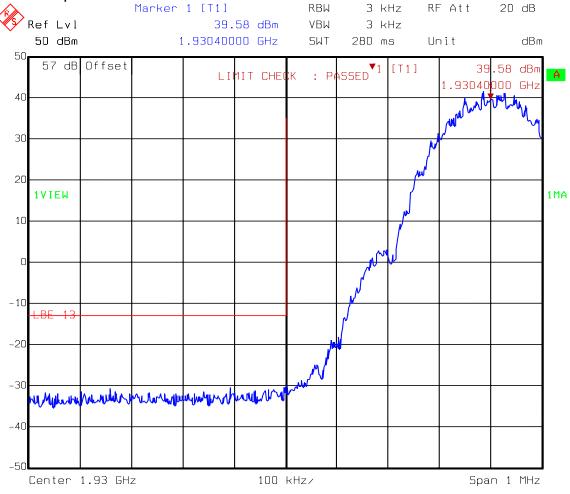
8PSK (EDGE) Combiner Bypass Mode Spurs

Test Data - Spurious Emissions


8PSK (EDGE) Combiner Bypass Mode Spurs

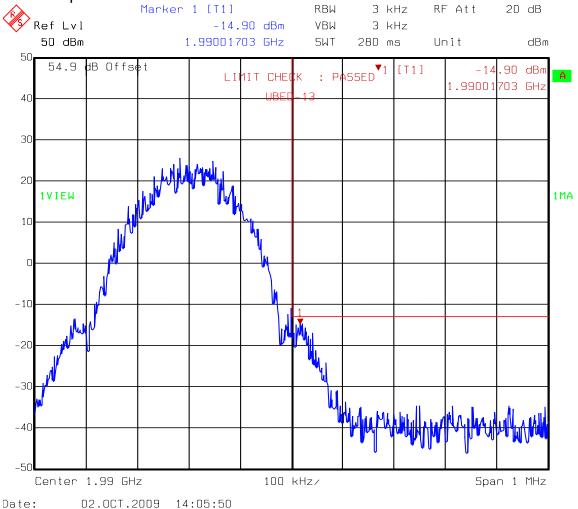
Test Data – Spurious Emissions

GMSK (GSM) Double Power Combining Mode Lower Band Edge 1932.2 MHz


Transmit power reduced

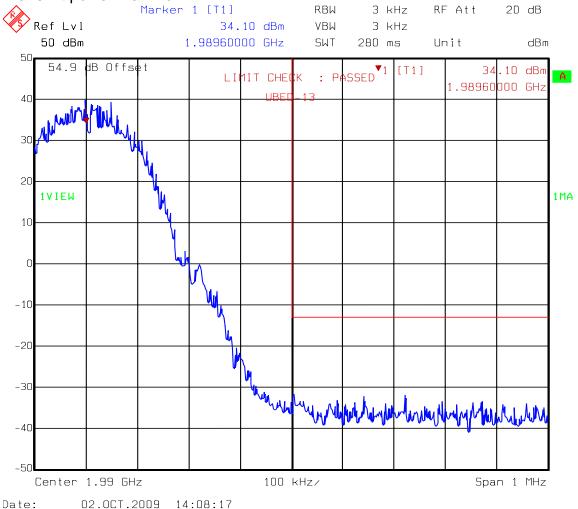
Test Data - Spurious Emissions

GMSK (GSM) Double Power Combining Mode Lower Band Edge 1930.4 MHz

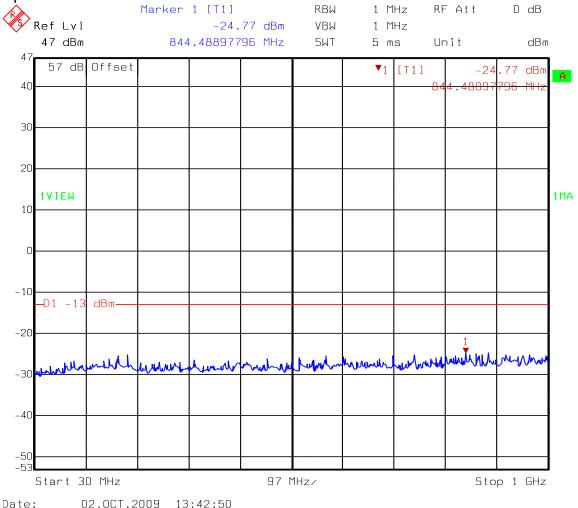

Transmit power maximum

Test Data – Spurious Emissions

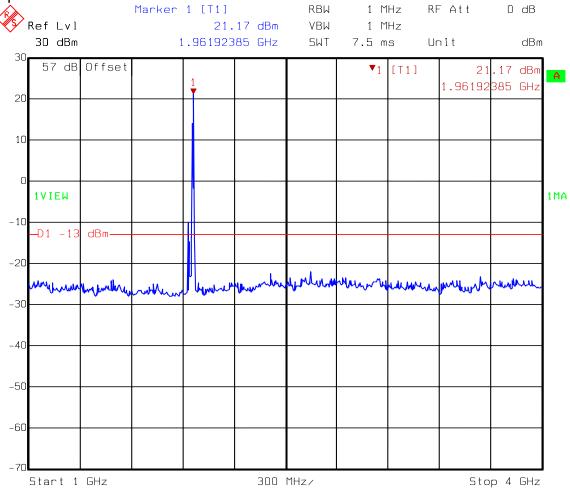
GMSK (GSM) Double Power Combining Mode Upper Band Edge 1989.8 MHz


Transmit power reduced

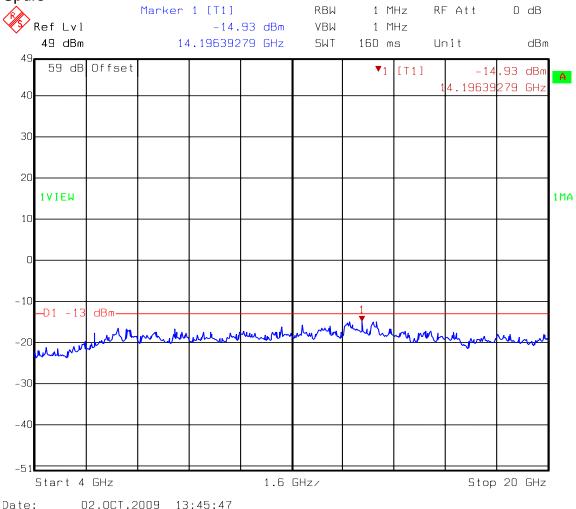
Test Data – Spurious Emissions


GMSK (GSM) Double Power Combining Mode 1989.6 MHz

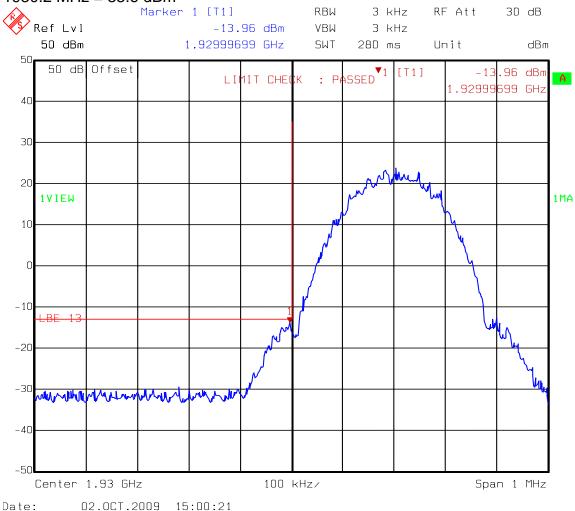
Transmit power maximum


Test Data - Spurious Emissions

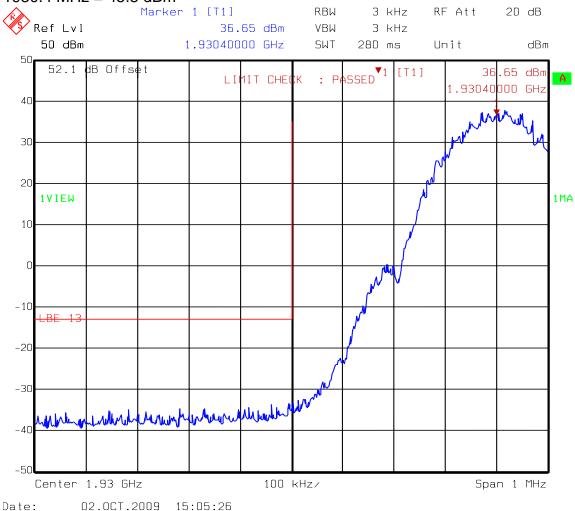
GMSK (GSM) Double Power Combining Mode Spurs


Test Data – Spurious Emissions

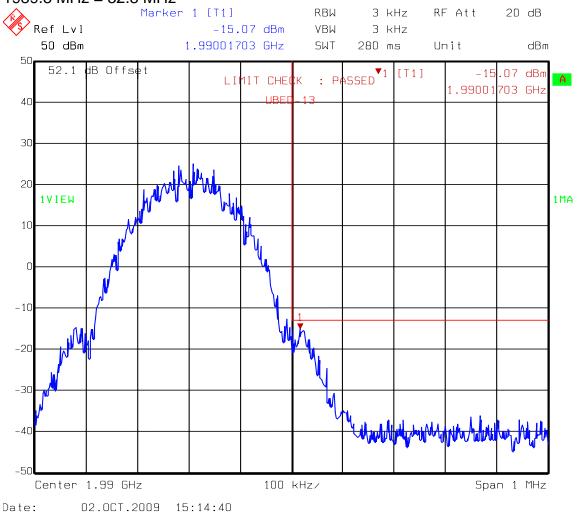
GMSK (GSM) Double Power Combining Mode Spurious


Test Data – Spurious Emissions

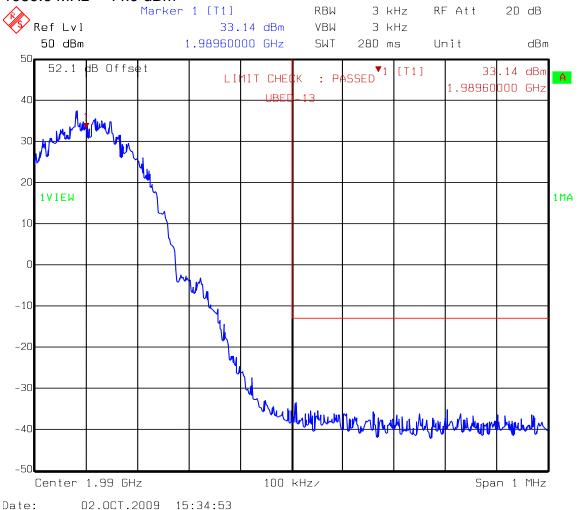
GMSK (GSM) Double Power Combining Mode Spurs


Test Data – Spurious Emissions

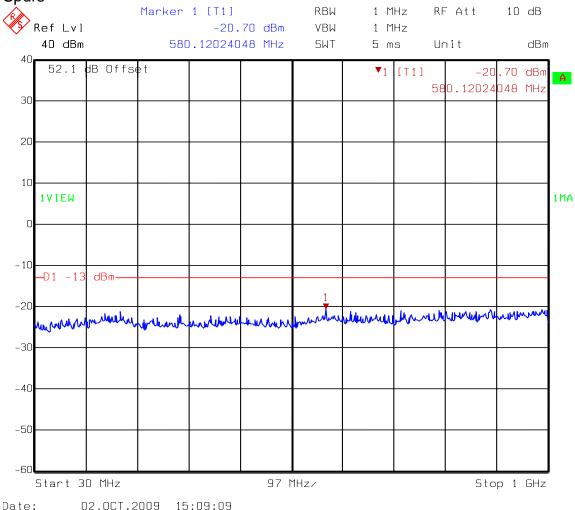
GMSK (GSM) Combiner Bypass Mode Lower band Edge 1930.2 MHz = 33.6 dBm


Test Data – Spurious Emissions

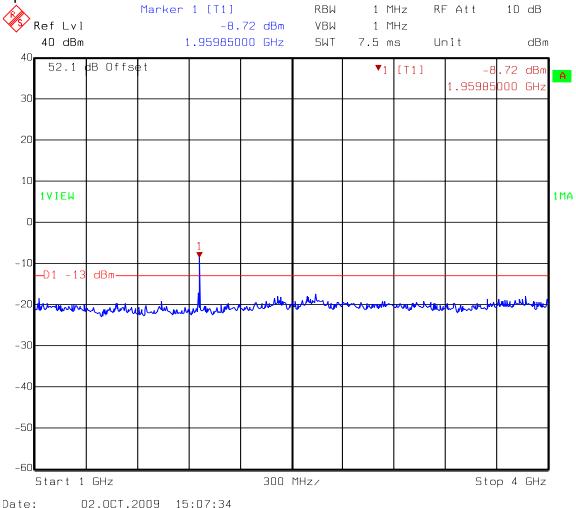
GMSK (GSM) Combiner Bypass Mode Lower Band Edge 1930.4 MHz = 45.8 dBm


Test Data - Spurious Emissions

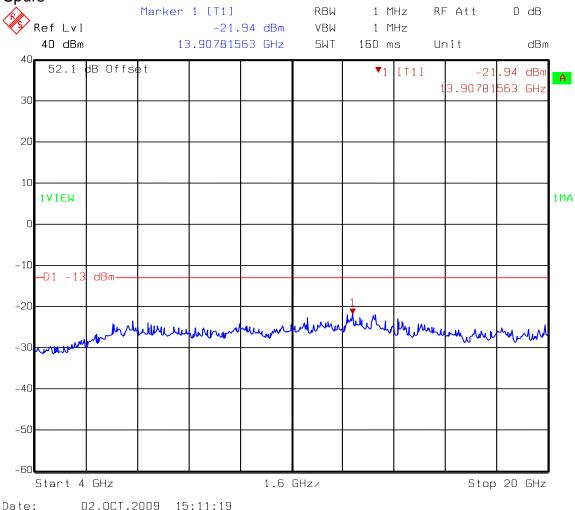
GMSK (GSM) Combiner Bypass Mode Upper Band Edge 1989.8 MHz = 32.8 MHz


Test Data - Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Upper Band Edge 1989.6 MHz = 44.9 dBm


Test Data – Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Spurs


Test Data – Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Spurs

Test Data - Spurious Emissions

GMSK (GSM) Combiner Bypass Mode Spurs

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: EXPB

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 2.1051

TESTED BY: David Light DATE: 05 October 2009

Test Results: Complies.

Test Data: The spectrum was searched from 30 MHz to the tenth

harmonic of the carrier. There were no emissions detected above the noise floor which was at least 20

dB below the specification limit.

RBW/VBW=100 kHz < 1000 MHz RBW/VBW=1 MHz > 1000 MHz

Detector = Peak Sweep Time = Auto

.

Equipment Used: 1783-1763-791-1016-993-1767

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: **EXPB**

Section 7. Frequency Stability

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

TESTED BY: David Light DATE: 05 October 2009

Test Results: Complies

Measurement Data: Standard Test Frequency: 1960 MHz

Standard Test Voltage: -48 Vdc

Equipment Used: 1036-1082-1064-1065-283

Measurement Uncertainty: +/- 1.7 dB

Temperature: 23 °C

Relative Humidity: 40 %

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: EXPB

Test Data - Frequency Stability

Incertaint	ent y:	1x10 ⁻⁷ ppm	Standard Test Frequency 1960.067665					MHz
Гетр	(°C)	Measured Frequency (MHz)		Test Voltage	Frequency Error (Hz)	Limit (+/-Hz)	Error (ppm)	Comment
20		1960.067665		-48	0	NA	0.0	
20		1960.067665		-40.8	0	NA	0.0	
20		1960.067665		-55.2	0	NA	0.0	
50		1960.067695		-48	30	NA	0.0	
40		1960.067665		-48	0	NA	0.0	
30		1960.067695		-48	30	NA	0.0	
10		1960.067665		-48.0	0	NA	0.0	
0		1960.067665		-48.0	0	NA	0.0	
-10)	1960.067695	•	-48.0	30	NA	0.0	
-20)	1960.067675	•	-48	10	NA	0.0	
-30)	1960.067695		-48	30	NA	0.0	
N	lotes:		·	·	·		•	

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: **EXPB**

Section 8. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	01/19/09	01/20/11
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
1064	ATTENUATOR	NARDA 776B-20	NONE	CBU	N/A
1065	ATTENUATOR	NARDA 776B-10	NONE	CBU	N/A
1054	DUAL DIRECTIONAL COUPLER	NARDA 3020A	34366	CBU	N/A
1055	DUAL DIRECTIONAL COUPLER	NARDA 3022	73393	CBU	N/A
1058	DUAL DIRECTIONAL COUPLER	HEWLETT PACKARD 11692D	1212A03366	CBU	N/A
1783	Cable	Nemko? 0	0	10/02/09	10/02/10
1763	Bilog Antenna	Schaffner CBL 6111D	22926	11/04/08	11/04/09
791	PREAMP, 25dB	Nemko USA, Inc. LNA25	398	05/28/09	05/28/10
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	06/23/09	06/23/10
993	Horn antenna	A.H. Systems SAS-200/571	XXX	09/09/09	09/09/11
1767	MI Test Receiver 20Hz - 26.5 GHz - 150 - +30 dBm LC	ROHDE & SCHWARZ ESIB26	837491/0002	10/20/07	10/20/09
283	Environmental Chamber with controller # 1189006	ENVIROTRONICS SH27 & 2030-22844	129010083	06/07/09	06/07/10

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: **EXPB**

ANNEX A - TEST DETAILS

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Base stations are limited to 1640 watts

peak E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base

station transmitter exceed 100 watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: EXPB

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as

the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at

least 26 dB.

Method Of Measurement:

CDMA Per ANSI/J-STD-014

Spectrum analyzer settings:

RBW: 30 kHz VBW: ≥ RBW Span: 5 MHz Sweep: Auto

GSM Per ANSI/J-STD-010

RBW: 3 kHz VBW: ≥ RBW Span: 2 MHz Sweep: Auto

NADC Per IS-136

RBW: 1 kHz VBW: ≥ RBW Span: 1 MHz Sweep: Auto

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: **EXPB**

NAME OF TEST: Spurious Emission at Antenna PARA. NO.: 2.1051

Terminals

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

CDMA Per ANSI/J-STD-014 GSM Per ANSI/J-STD-010

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

NADC Per IS-136

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 kHz (< 1 MHz from Band Edge)

VBW: ≥ RBW Sweep: Auto

Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Calculation Of Field Strength Limit

An example of attenuation requirement of 43 + 10 Log P is equivalent to -13 dBm (5 x 10^{-5} Watts) at the antenna terminal. We determine the field strength limit by using the plane wave relation.

$$GP/4\pi R^2 = E^2/120\pi$$

For emissions \leq 1 GHz:

G = 1.64 (Dipole Gain)

P = 10⁻⁵ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = \frac{\sqrt{30GP}}{R}$$

$$E = \frac{\sqrt{30 \times 1.64 \times 5 \times 10^{-5}}}{3} = 0.016533 \text{ V / m} = 84.4 \text{ dB}\mu\text{V / m}$$

For emissions > 1 GHz:

G = 1 (Isotropic Gain)

 $P = 1 \times 10^{-5}$ Watts (Maximum spurious output power)

R = 3m (Measurement Distance)

$$E = 84.4 - 20 Log \sqrt{1.64} = 82.3 dB \mu V / m@3m$$

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

EQUIPMENT: EXPB

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient

to ensure that the fundamental emission stays within the

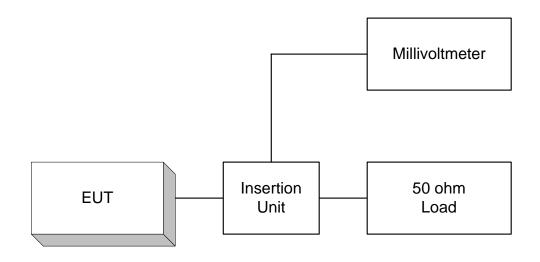
authorized frequency block.

Method Of Measurement:

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

Frequency Stability With Temperature Variation

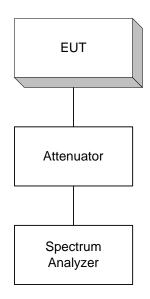

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

CFR 47, PART 24, SUBPART E
BROADBAND PCS BASE STATIONS
PROJECT NO.: 33241RUS1

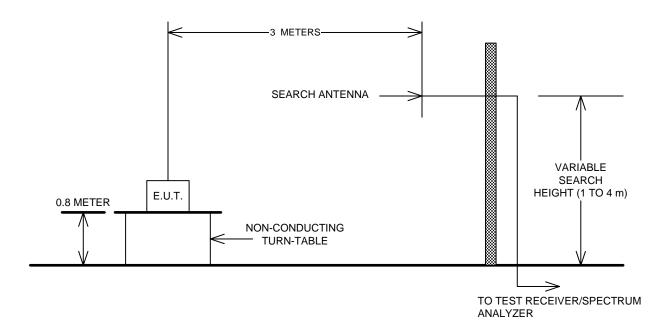
EQUIPMENT: **EXPB**

ANNEX B - TEST DIAGRAMS

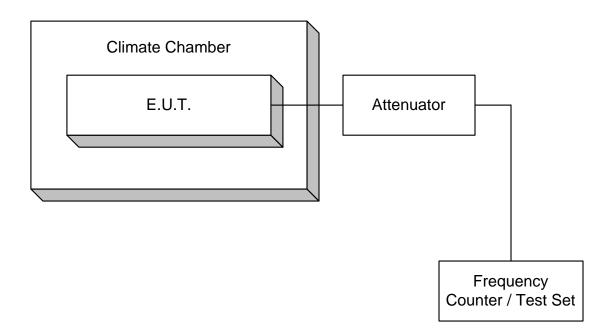
Para. No. 2.985 - R.F. Power Output



Para. No. 2.989 - Occupied Bandwidth



EQUIPMENT: EXPB PROJECT NO.: 33241RUS1


Para. No. 2.991 Spurious Emissions at Antenna Terminals

Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

