

Certification Test Report

CFR 47 FCC Part 2 and Part 24, Subpart C

Model: X45 EXPA

FCC ID NO .: VBNEXPA-01

Project Code: W7058-2

Revision: 1

Prepared for:	Nokia 6000 Connection Drive Building 4 Irving, Texas 75039
Author:	Tom Tidwell, Manager of Wireless Services
Issued:	20 June, 2007

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Report Summary

NTS Plano

Accreditation Numbers:	FCC: IC:	101741 46405-4319	File # IC-4319A
Applicant:	Buildin	Connection Drive g 4 Texas 75039	

Customer Representative: Steve Mitchell

EUT Description:

EUT Description	Manufacturer	Model	Revision	Serial Number
The Equipment Under Test (EUT) is a wireless base station transceiver operating in the PCS 1900 band using GSM technology	Nokia	X45 EXPA	0	9063800436

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Test Summary

ndix	Test/Requirement	Devia	tions fr	om:	Pass / Fail	Applicable Rule Parts
Appendix	Description	Base Standard	Test Basis	NTS Procedure	Fass/Faii	
А	RF Power Output	No	No	No	PASS	CFR 47, Part 2, Para. 2.1046 CFR 47, Part 24, Para.24.232
В	Modulation Characteristics	No	No	No	PASS	CFR 47, Part 2, Para. 2.1047
С	Occupied Bandwidth	No	No	No		CFR 47, Part 2, Para. 2.1049 CFR 47, Part 24, Para. 24.238
D	Spurious Emissions at Antenna Terminals	No	No	No	PASS	CFR 47, Part 2, Para. 2.1051 CFR 47, Part 24, Para. 24.238
Е	Field Strength of Spurious Radiation	No	No	No		CFR 47, Part 2, Para. 2.1053 CFR 47, Part 24, Para. 24.238
F	Frequency Stability	No	No	No		CFR 47, Part 2, Para. 2.1055 CFR 47, Part 24, Para. 24.235

Test Result: The product presented for testing complied with test requirements as shown above.

This is to certify that the preceding report is true and correct to the best of my knowledge.

levens

Robert Stevens, Quality Assurance Manager

Tóm Tidwell, ⁽ Wireless Test Engineer

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Table of Contents

	T SUMMARY	
TEST S	UMMARY	3
REGIST	ER OF REVISIONS	5
INTROD	DUCTION	6
1.1 2.0	PURPOSE	
2.1 2.1.1 2.2 2.3 3.0	CONFIGURATION EUT POWER EUT CABLES MODE OF OPERATION DURING TESTS SUPPORT EQUIPMENT	6 7 7
3.1 3.2 APPENI	CONFIGURATION TEST BED/PERIPHERAL CABLES DICES	8
APPEN	DIX A: 2.1046 RF POWER OUTPUT	.10
	DIX B: 2.1047 MODULATION CHARACTERISTICS	
APPEN	DIX C: 2.10.49 OCCUPIED BANDWIDTH	.15
APPEN	DIX D: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	.30
APPEN	DIX E: 2.1053 FIELD STRENGTH OF SPURIOUS RADIATION	.76
APPEN	DIX F: 2.1055 FREQUENCY STABILITY	.80
APPEN	DIX G: TEST EQUIPMENT LIST	.84
END OF	DOCUMENT	.85

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Register of revisions

Revision	Reason for Revision	Release Date
0	Original	20 March, 2007
1	Added power meter and power sensor to equipment list	20 June, 2007

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

INTRODUCTION

1.1 **PURPOSE**

The purpose of this document is to describe the tests applied by NTS Plano to demonstrate compliance to FCC Part 24 for Broadband Personal Communication Service in accordance with the certification requirements of CFR 47, Part 2.

2.0 EUT DESCRIPTION

2.1 CONFIGURATION

Description of EUT

	Name		Mode	el 🛛	Revis	sion	Serial Number
EUT	X45 EXPA Base	Station	X45 EX	PA	0		9063800436
RF Exposure Classification	Fixed. The anter	nna is m	ounted on	a fixed	d outdoor	structure	
Channels/Frequency Range	1930 – 1990 MH	z band (Operates f	rom 19	930.2 – 19	989.8 M⊢	lz)
RF Power	Rated RF power at antenna port on channels 5Carrier ModeModulation ModeRated PowerCombined8PSK80Single8PSK31CombinedGMSK100SingleGMSK71Rated RF power at antenna port on channels 5Carrier ModeModulation ModeCombined8PSK17Single8PSK14CombinedGMSK9SingleGMSK9			d Power 80 31 100 71 annels 51 d Power 17 14 9		10	
Emission Designator	270KGXW: GMSK(GSM) 270KG7W: 8PSK(EDGE)						
TX antenna details	Antenna is specified at time of licensing						
Functional Description	The EUT is used as a base station transceiver in a GSM network.						

2.1.1 EUT POWER

Voltage	208 Vac, 60 Hz (27 Vdc and 48 Vdc supplied by DC supplies in EUT rack)
Number of Feeds	2 phase (X and Y)

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

2.2 EUT CABLES

lantity	Model/Type	Routin	g	Shielded /	Description	Cable	
Quai	Model/Type	From	То	Unshielded	Description	Length (m)	
1	None	EUT	AC power main	Unshielded	Power cord	1.25	
1	Gore	EUT	50 ohm load	Shielded (coaxial)	Coaxial cable	2	

2.3 MODE OF OPERATION DURING TESTS

The device was tested in the following operating modes:

- GSM mode (GMSK modulation) with a single carrier
- EDGE mode (8PSK modulation) with a single carrier
- GSM mode (GMSK modulation) with combined carrier
- EDGE mode (8PSK modulation) with combined carrier

In combined carrier mode two transmitted carriers **on the same channel** are combined with phase adjustment in order to increase the transmitted rf power output.

Rated RF power at antenna port on channels 513 - 809

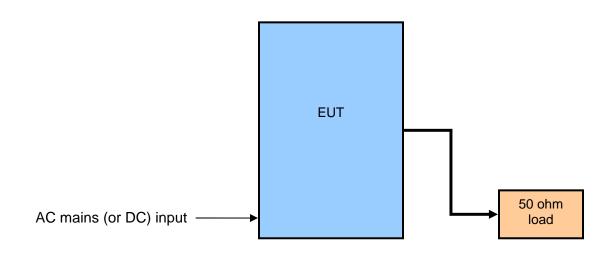
F - · · · · · · · · · · · · · · ·		
Carrier Mode	Modulation Mode	Rated Power
Combined	8PSK	80
Single	8PSK	31
Combined	GMSK	100
Single	GMSK	71

Rated RF power at antenna port on channels 512 and 810

Carrier Mode	Modulation Mode	Rated Power
Combined	8PSK	17
Single	8PSK	14
Combined	GMSK	9
Single	GMSK	9

Note that power is reduced when operating on the lowest and highest channels.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

The radio was activated using customer-supplied test software. The software allowed the test engineer to change modulation modes and data rates as well as transmit channel.

3.2 TEST BED/PERIPHERAL CABLES

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

APPENDICES

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

APPENDIX A: 2.1046 RF POWER OUTPUT

A.1. Base Standard & Test Basis

Base Standard	FCC PART 2.1046
Test Basis	TIA 603-C, 2004
Test Method	TIA 603-C, 2004

A.2. Specifications

24.232 Power and antenna height limits.

(a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph 24.232(b).

(b) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, are limited to 3280 watts peak equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

Applicable RF Power Limit from Above: 1640 watts EIRP

A.3. Deviations

Deviation	Time &	Description and	Deviation Reference			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
None						

A.4. Test Procedure

TIA 603-C, 2004 and 24.232(d)

A.5. Test Results

The EUT is in compliance with the limits as specified above. The maximum rf output power at the antenna terminals is 100 watts.

A.6. Operating Mode During Test

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

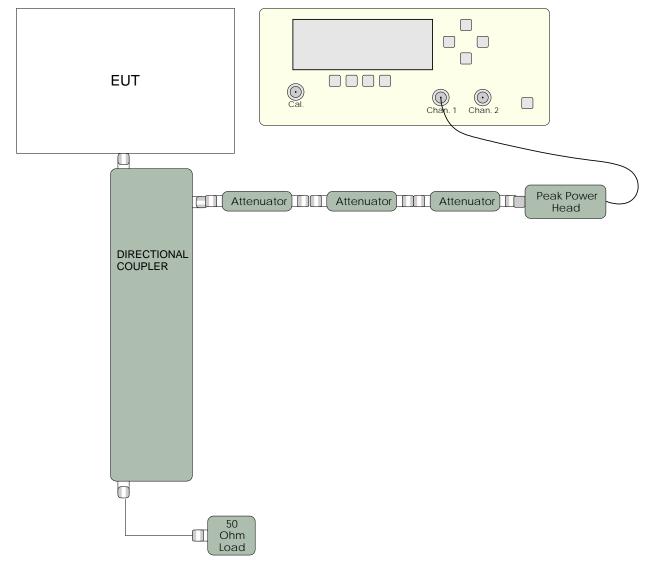
The transmitter was tested while in a continuous transmit mode. The EUT was tuned to a low, middle, and high channel.

A.7. Sample Calculation

Rf power(watts) = $10^{(rf \text{ power(dBm)/10})} \times 1000$

A.8. Test Data

Band	Channel	Carrier Mode	Modulation Mode	RF Power Output at Antenna Terminals (dBm)	RF Power Output at Antenna Terminals (W)
GSM1900	Low	Combined	GMSK	39.70	9.33
GSM1900	Mid	Combined	GMSK	50.00	100.00
GSM1900	High	Combined	GMSK	39.30	8.51
GSM1900	Low	Combined	8PSK	42.29	16.94
GSM1900	Mid	Combined	8PSK	49.00	79.43
GSM1900	High	Combined	8PSK	42.10	16.22
GSM1900	Low	Single	GMSK	39.29	8.49
GSM1900	Mid	Single	GMSK	48.53	71.29
GSM1900	High	Single	GMSK	39.83	9.62
GSM1900	Low	Single	8PSK	41.64	14.59
GSM1900	Mid	Single	8PSK	44.85	30.55
GSM1900	High	Single	8PSK	41.08	12.82


Note: RF power output was measured using a peak rf power meter designed to quantify the true peak power using a high number of samples.

Test Date: 27 - 28 Feb., 2007

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

A.9. Test Diagram

A.10. Tested By

Name:	Tom Tidwell,
Function:	Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

APPENDIX B: 2.1047 MODULATION CHARACTERISTICS

B.1. Base Standard & Test Basis

Base Standard FCC 2.1047	
Test Basis	FCC 2.1047 Modulation Characteristics
Test Method	TIA 603-C, 2004

B.2. Specifications

2.1047 – Modulation Characteristics

(a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

(b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

(c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

B.3. Deviations

Deviation	Time &	Time & Description and	Deviation Reference				
	Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
	none						

B.4. Test Method

This device is digitally modulated and does not provide for analogue or voice modulation.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or impliced, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

B.5. Test Results

The device under test uses digital modulation techniques only. The two modes used by the device are GMSK and 8PSK.

Test Data Summary

Emission Designators

270KG7W 270KGXW

B.6. Test Diagram

N/A

B.7. Tested By

Name:Tom TidwellFunction:Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

APPENDIX C: 2.10.49 OCCUPIED BANDWIDTH

C.1. Base Standard & Test Basis

Base Standard	FCC 2.1049
Test Basis	FCC 2.1049 Occupied Bandwidth
Test Method	TIA 603-C, 2004

C.2. Specifications

24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

(b) *Measurement procedure.* Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

C.3. Deviations

Deviation Number	Time & Date	Description and Justification of Deviation	De			
			Base Standard	Test Basis	NTS Procedure	Approval
none						

C.4. Test Method

TIA 603-C, 2004 and 24.238(b)

C.5. Test Results

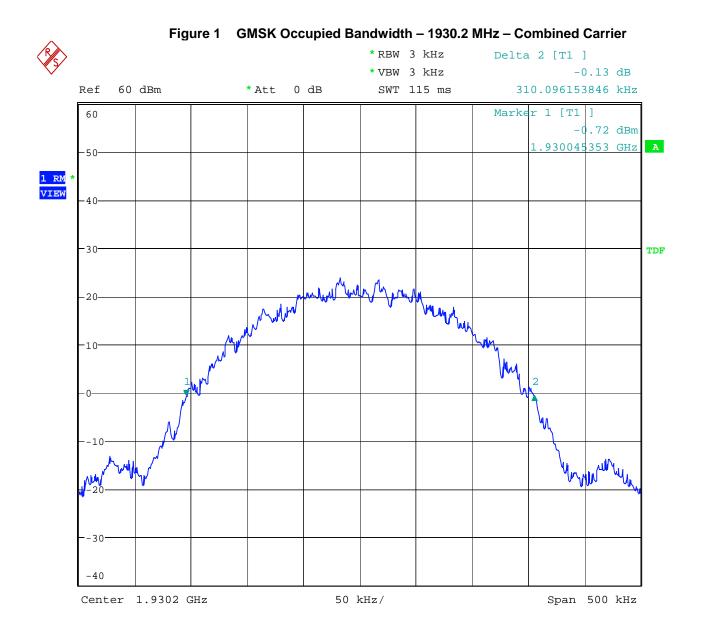
Compliant. The 26 dB bandwidth plots are presented in this annex.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

C.6. Deviations from Normal Operating Mode During Test

None.

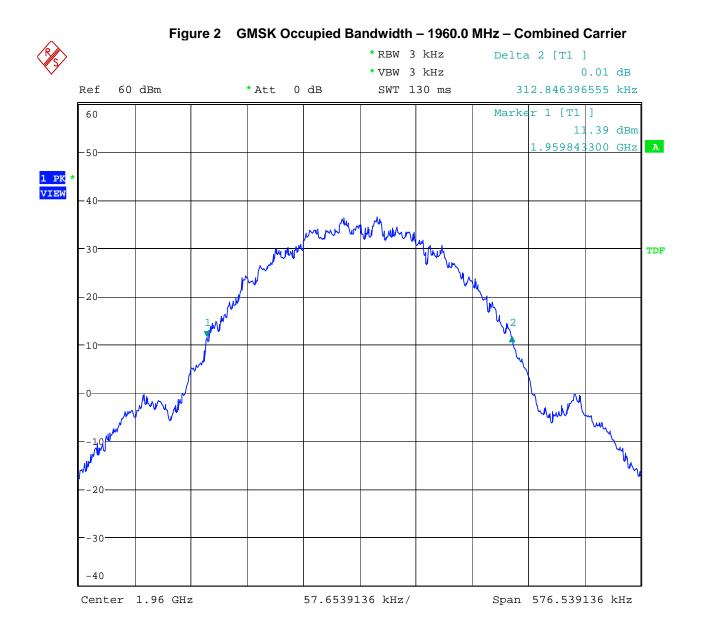
C.7. Sample Calculation


None.

C.8. Test Data

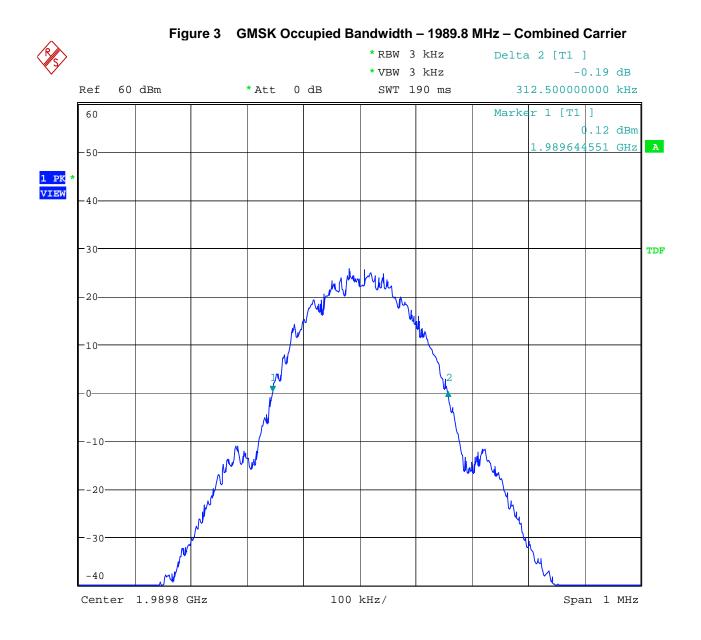
See plots following.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



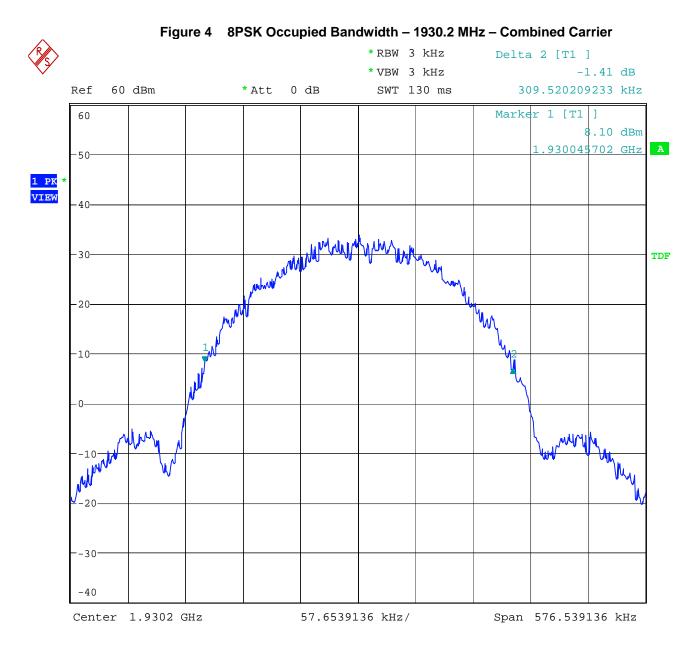
Date: 28.FEB.2007 22:11:07

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



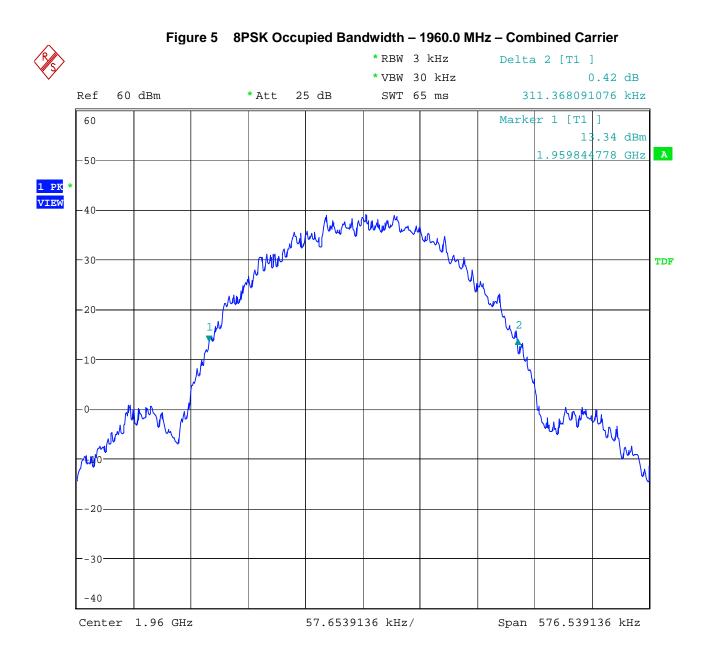
Date: 28.FEB.2007 22:41:01

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



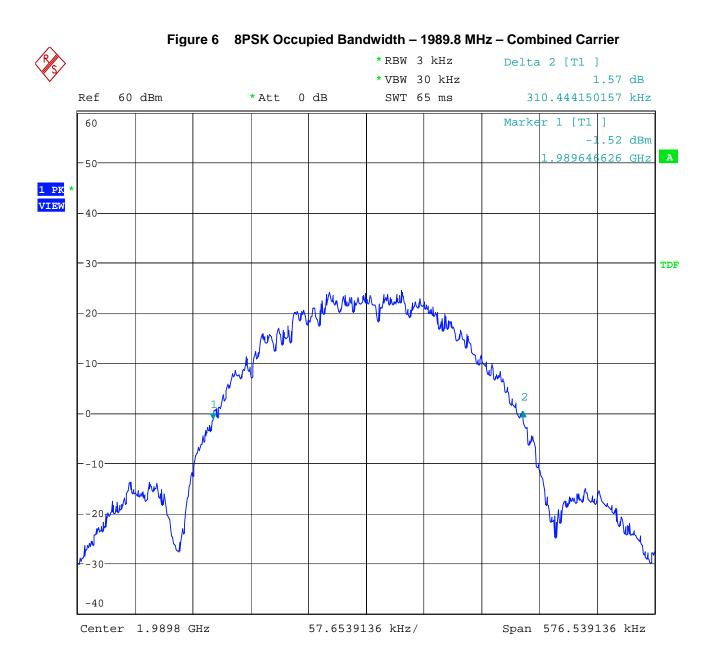
Date: 28.FEB.2007 23:07:31

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



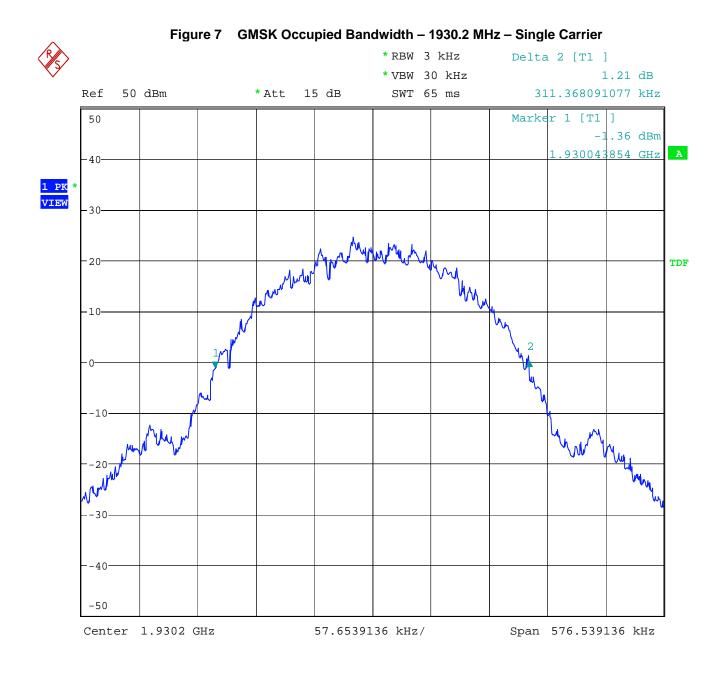
Date: 28.FEB.2007 23:25:49

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



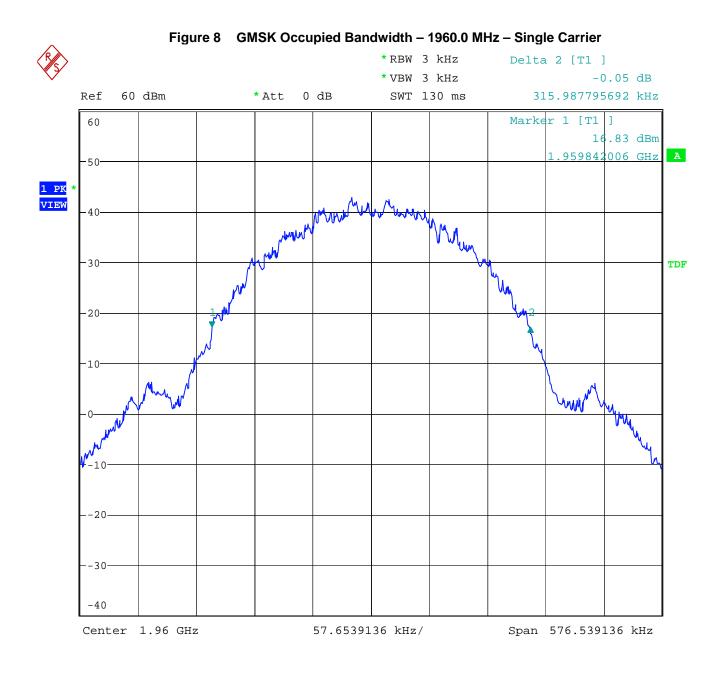
Date: 28.FEB.2007 23:49:24

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



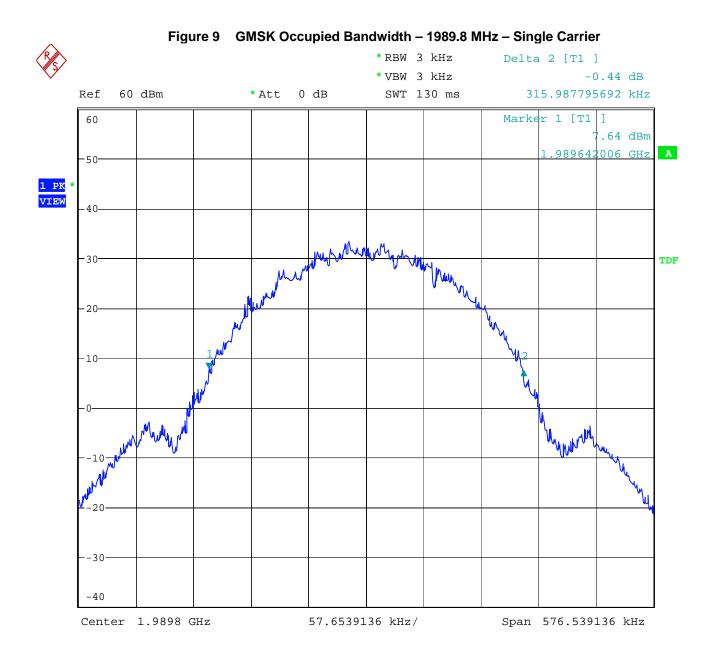
Date: 1.MAR.2007 00:03:57

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



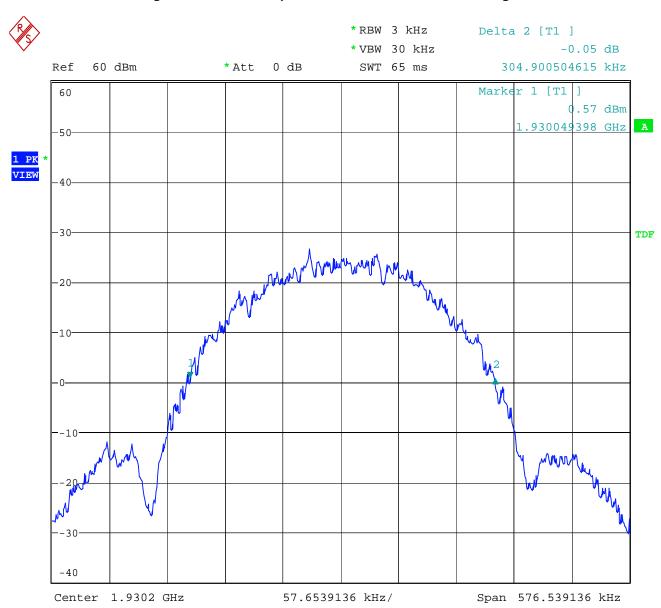
Date: 1.MAR.2007 15:51:55

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



Date: 1.MAR.2007 16:18:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



Date: 1.MAR.2007 16:23:44

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Date: 1.MAR.2007 16:44:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

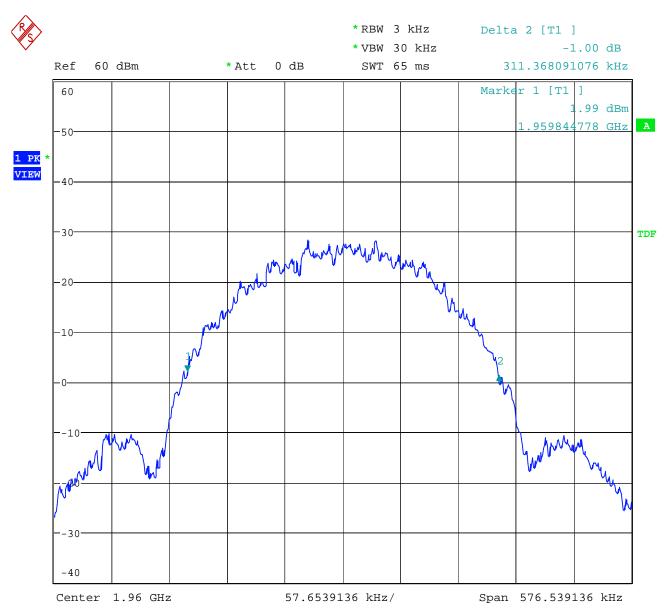
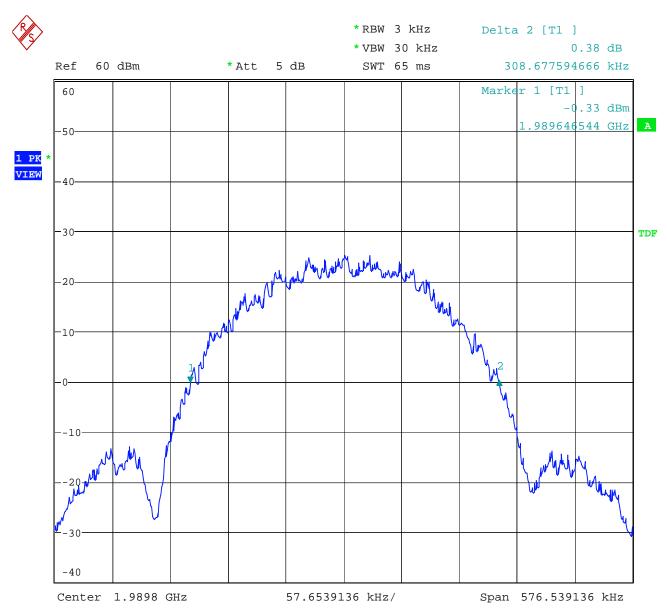
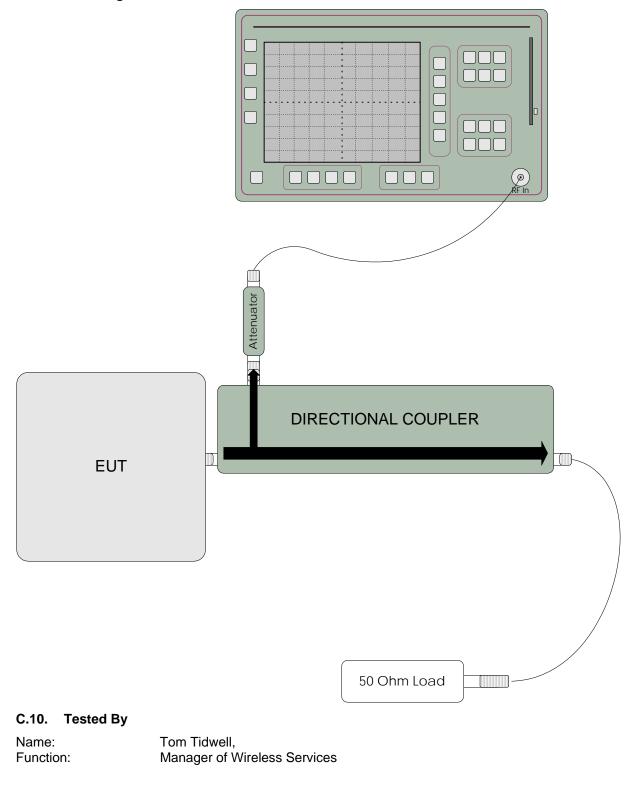


Figure 11 8PSK Occupied Bandwidth – 1960.0 MHz – Single Carrier

Date: 1.MAR.2007 17:14:25

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




Figure 12 8PSK Occupied Bandwidth – 1989.8 MHz – Single Carrier

Date: 1.MAR.2007 17:29:14

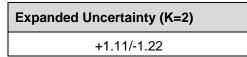
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

C.9. Test Diagram

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

APPENDIX D: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

D.1. Base Standard & Test Basis


Base Standard	FCC 2.1051
Test Basis	FCC 2.1051 Spurious Emissions at Antenna Terminals
Test Method	TIA 603-C, 2004

D.2. Specifications

24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

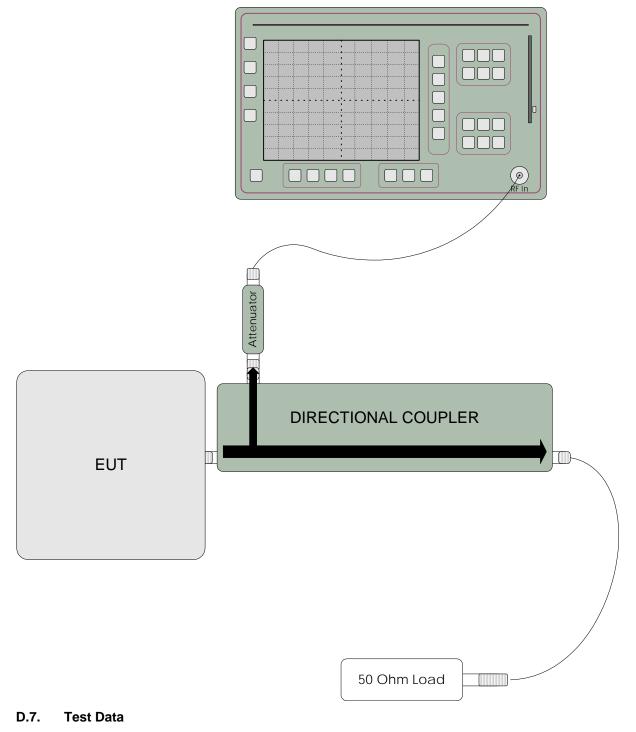
D.3. Measurement Uncertainty

D.4. Deviations

Deviation	Time &	Description and Justification of Deviation	Deviation Reference			
Number	Date		Base Standard	Test Basis	NTS Procedure	Approval
none						

D.5. Test Results

Complies. All emissions meet the out of band limits.


Out-of-Band Emissions limit is 43 + 10 log(P) which relates to -13 dBm absolute power.

Attenuation limit = $43 + 10 \log(100) = 63 dB$

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

D.6. Test Diagram

See following pages.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

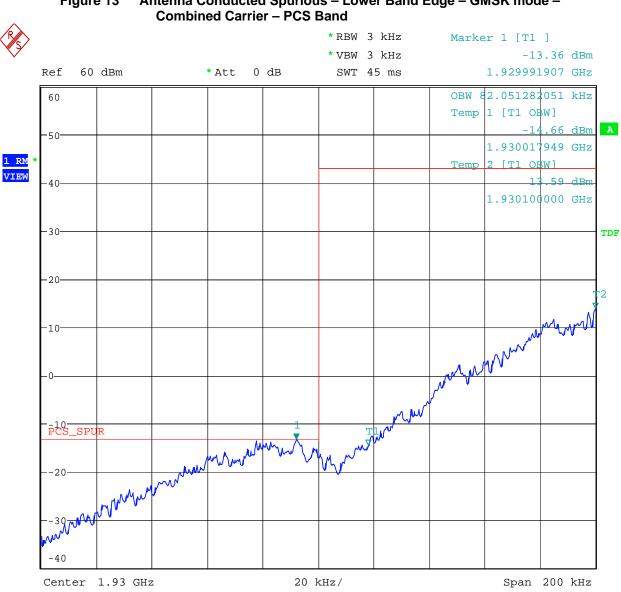


Figure 13 Antenna Conducted Spurious - Lower Band Edge - GMSK mode -

Date: 28.FEB.2007 21:51:34

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

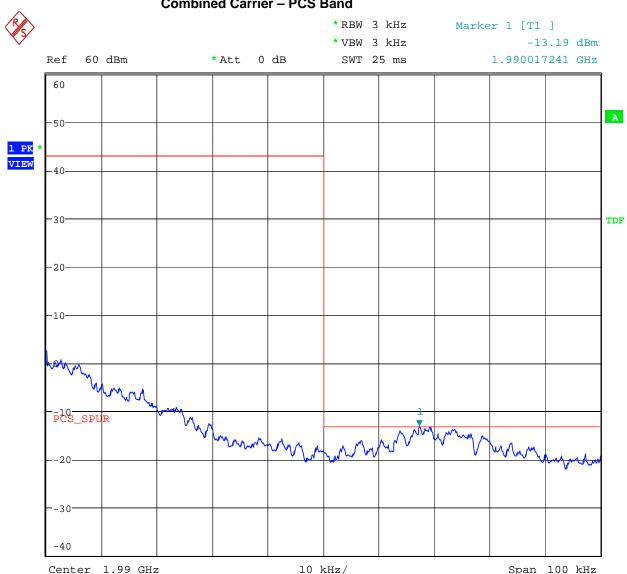


Figure 14 Antenna Conducted Spurious – Upper Band Edge – GMSK mode – Combined Carrier – PCS Band

Date: 28.FEB.2007 23:05:14

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Antenna Conducted Spurious – Lower Band Edge – 8PSK mode – Combined Figure 15

Date: 28.FEB.2007 23:30:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

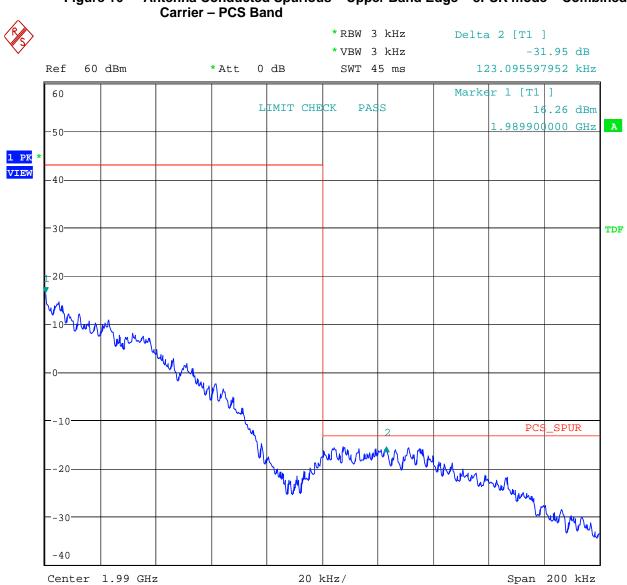


Figure 16 Antenna Conducted Spurious – Upper Band Edge – 8PSK mode – Combined

Date: 1.MAR.2007 00:06:09

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

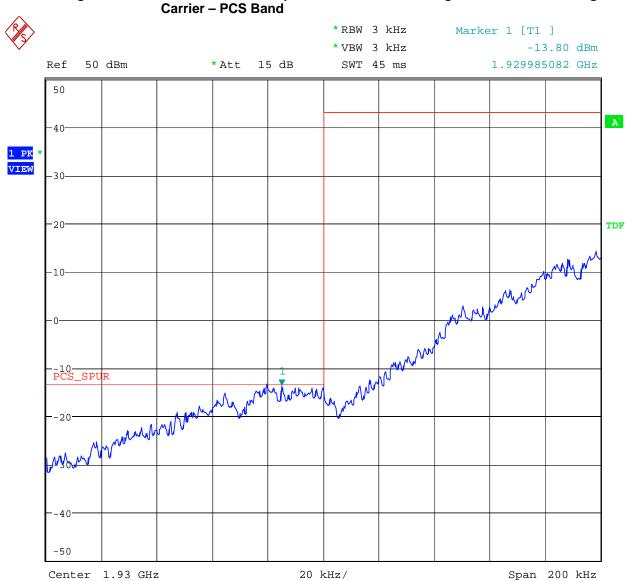


Figure 17 Antenna Conducted Spurious – Lower Band Edge – GMSK mode – Single

Date: 1.MAR.2007 15:45:56

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

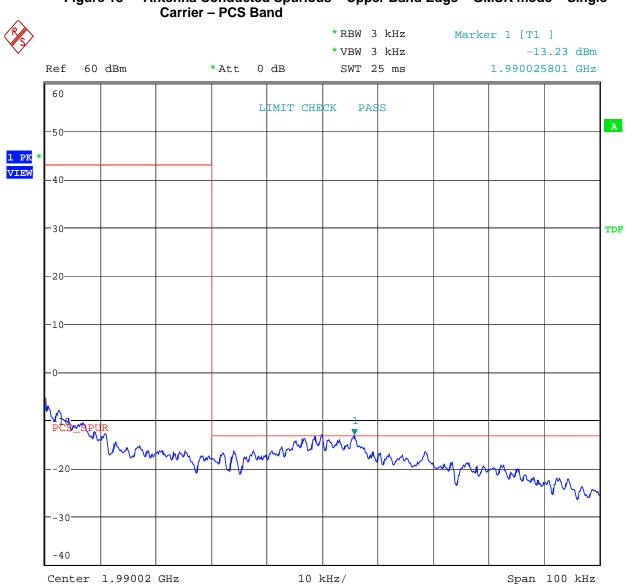


Figure 18 Antenna Conducted Spurious – Upper Band Edge – GMSK mode – Single

Date: 1.MAR.2007 16:29:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

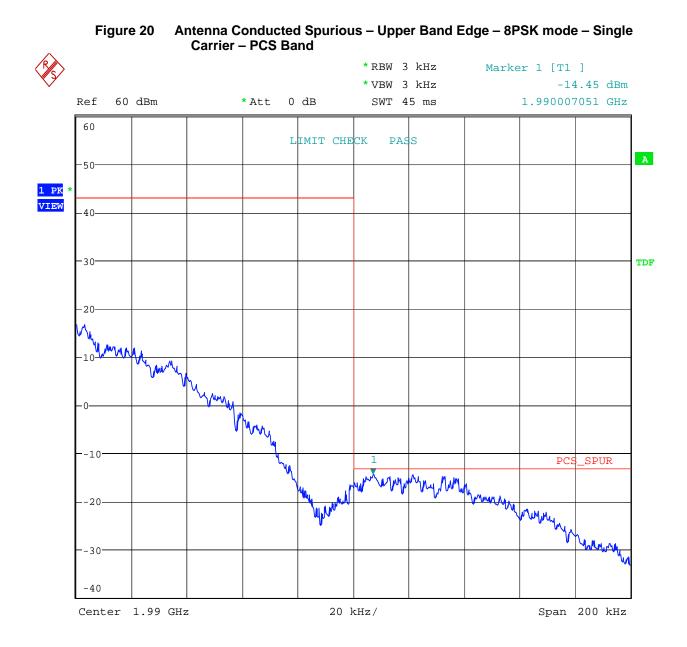
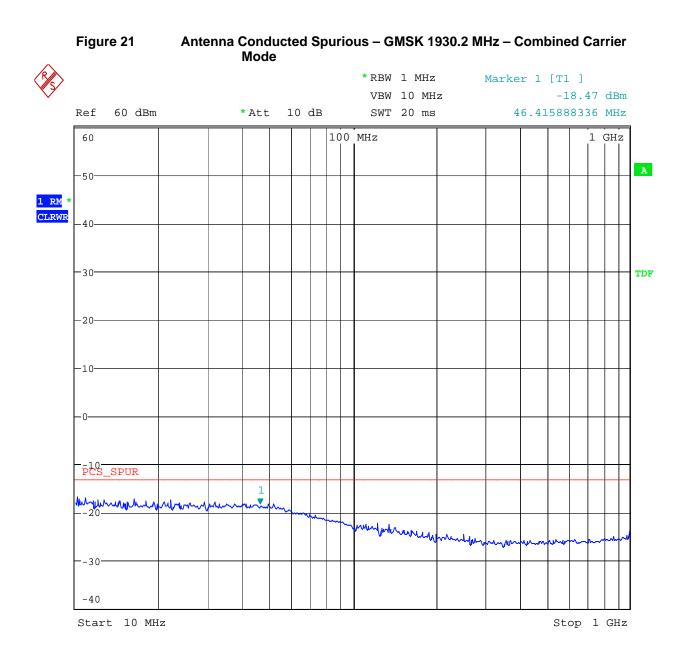



Figure 19 Antenna Conducted Spurious – Lower Band Edge – 8PSK mode – Single

Date: 1.MAR.2007 16:40:59

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



Date: 1.MAR.2007 17:24:51

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Date: 28.FEB.2007 22:17:08

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

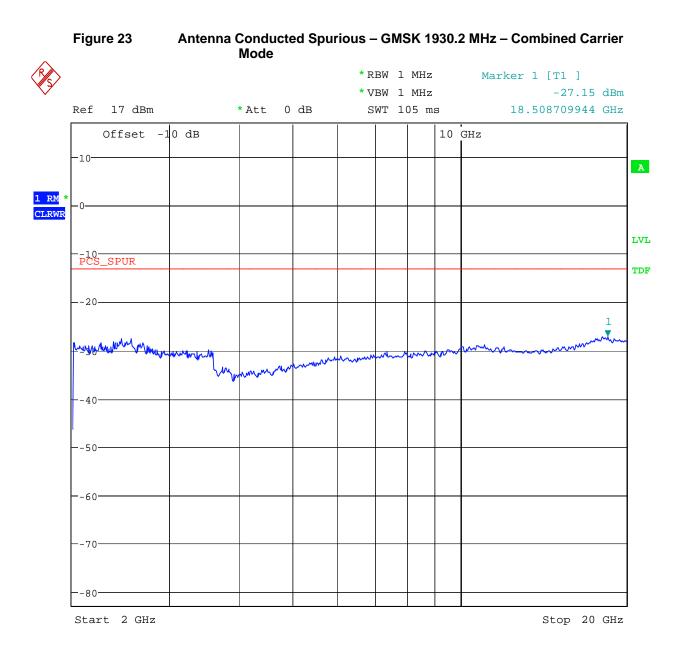


Figure 22	Antenna Conducted Spur Mode	rious – GMSK 1930.2 I	/Hz – Combined Carrier
>		*RBW 1 MHz *VBW 1 MHz	Marker 1 [T1] -27.12 dBm
Ref 30 dBm	*Att 10 dB	SWT 2.5 ms	2.00000000 GHz
30			
-20			
4 *			
-10			
-0			
-ĀMPSDLSE			
20			
			and an an and and man
- 39 mm mm	un un minister martin martine martine martine and	where we	Warden and a second and a secon
40			
50			
60			
-70			
Start 1 GHz		0 MHz/	Stop 2 GHz

Date: 28.FEB.2007 22:20:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Date: 28.FEB.2007 22:23:06

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

,						* RBW	1 MHz	1	Marke	er 1	[T1]		
								Iz					4 dB	
Ref	60 dBm	* Att	10	dB		SWT	20 ms	3		10.60	0818	3553	1 MH	Iz
60					100) MHz						1	GH	z
-50-														
*														
-40														
-30														
-20														
-10														
-0														
														L
	_SPUR													╞
20-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 	~+-	+								+		
30-									~~~~			~-+		F
-40														

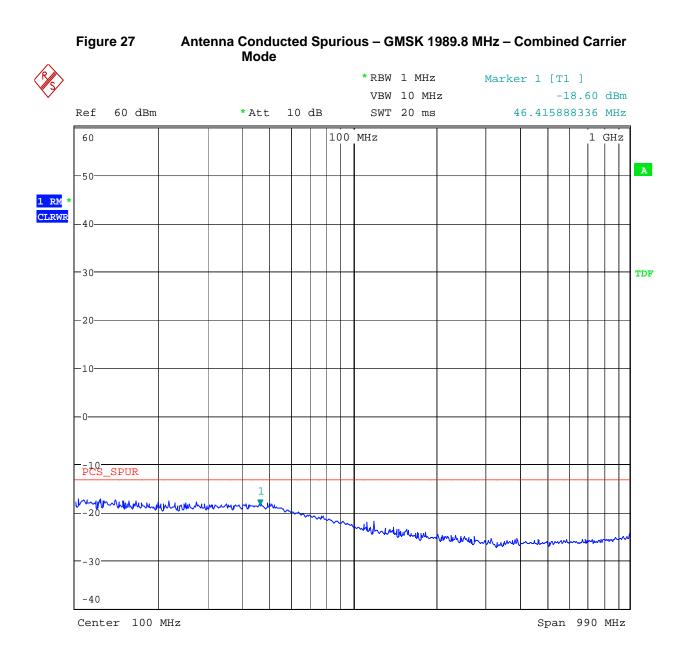
Date: 28.FEB.2007 22:50:01

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Figure	e 25	Antenna	Conduc Mode	cted Spuri	ous – GN	ISK 1960.	0 MHz –	Combine	d Carrier
>						1 MHz 1 MHz		er 1 [T1 -20] 6.97 dBm
Ref	30 dBm		* Att	10 dB		2.5 ms			4103 GHz
30									
-20									
[™] * −10									
10									
-0									
ĀMPS	DLSE								
20									
www.	white which have	www.	William	mound	white white	And Marker and Marker	and the state of the second	here was a second	and water a
-40-									
50									
60-									
-70									

Date: 28.FEB.2007 22:47:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



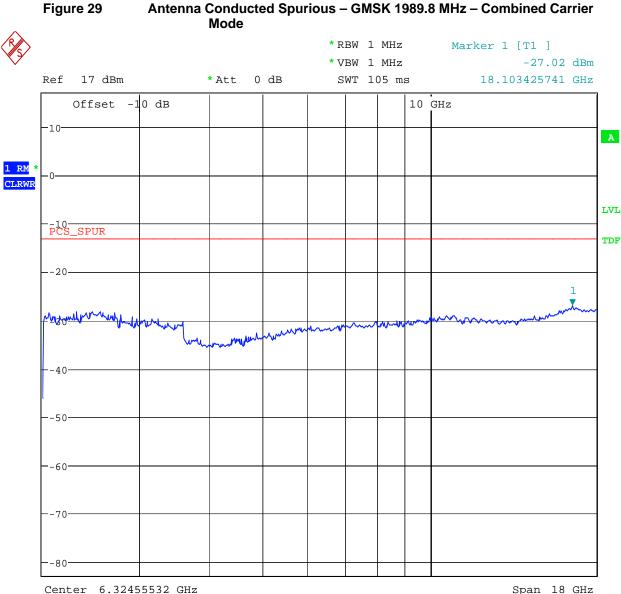
>								Marker 1 [T1] -27.39 dB
Re	f 17 dBm		*Att () dB				18.036746472 GH:
	Offset -	-10 dB					10	GHz
-10)							
*								
VR Ŭ								
 P	LO							
2	20							1
my	Bomp with men	-10 11 - 11 - 1						hannen
		- Incommunities	monnon	man	hnn	mm		
	10							
ţ	50							
	50							
Ì								
	70							
	30						 -	

Date: 28.FEB.2007 22:48:36

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Date: 28.FEB.2007 23:11:02

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



			Mode						
•						1 MHz		er 1 [T1	
						1 MHz			5.93 dBm
F	Ref 3	0 dBm	 * Att	10 dB	SWT 2	2.5 ms		1.99198	7179 GHz
	30								
	20								
*									
╞	10								
	-0	_							
	0								
	ĀMPSDI	LSE							
┢	-20								
	-30	1 ha 1 ht.		when more	the source		the more that	here and the second	www.w
ſ									
	-40								
	-40								
	-50								
┝	-60	-	 		+				+
	-70								

Date: 28.FEB.2007 23:13:07

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

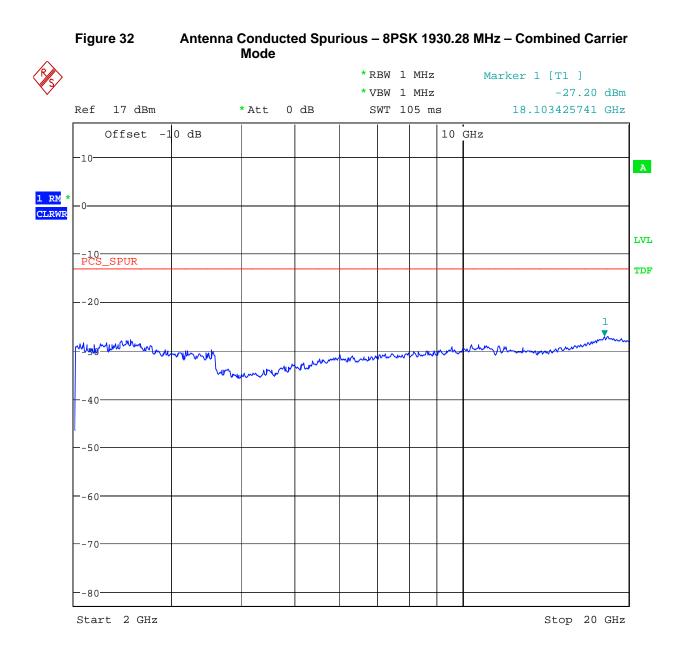
Date: 28.FEB.2007 23:14:03

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

									* RBW	1 MHz	2	Marke	er 1	[T1]	
											Iz					l dBi
Ref	60 dBm		*	Att	1	0 d	lB		SWT	20 ms	3	4	6.41	5888	3336	5 MH
60							1	00	MHz						1	GHz
-50																_
* 40																
-30																
-20																
-10																
-0																
- <u>-10</u> PCS_	_SPUR			1												
M/////////////////////////////////////	upmpnum	www.qu	mm	1	~~~	· · · ·	~~~~									
									unuder	vhum.	million	www	-	m	~~~	mm
-30-																

Date: 28.FEB.2007 23:34:21

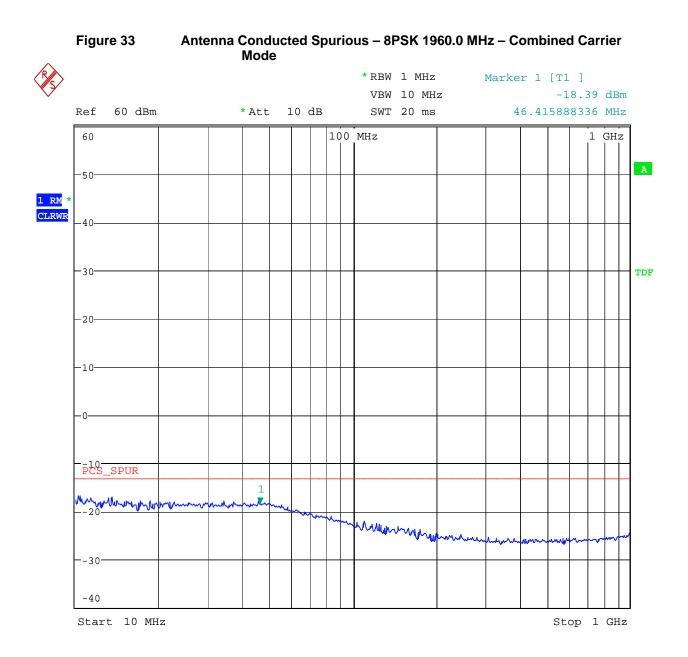
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



					*RBW 1	L MHz	Marke	er 1 [T1]
					* VBW 1	L MHz		-27	7.70 dBm
Ref	30 dBm		* Att	10 dB	SWT 2	2.5 ms		1.955200	0000 GHz
30									
-20									
* _10—									
-0									
ĀMPS	SDLSE								
20-									1
<u></u>	manyun	ener man	un hunner harres	man manutan	munder	-turner	www.c	And the state	mulum
-40-									
50-									
-60-									

Date: 28.FEB.2007 23:36:16

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



Date: 28.FEB.2007 23:37:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

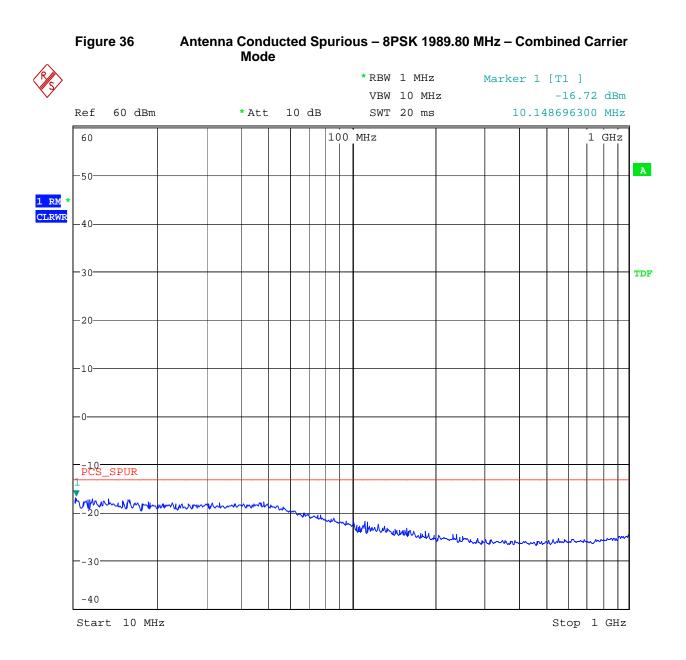
Date: 28.FEB.2007 23:45:46

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

					*RBW	1 MHz	Mark	er 1 [T1]
					* VBW	1 MHz		-2	6.78 dBm
Ref	30 dBm		* Att	10 dB	SWT 2	2.5 ms		2.00000	0000 GHz
30									
-20									
*									
- 0									
	SDLSE								
20-									
2.0								t - D t	mult
W , 34,7	annin m	munu	w w www.ww	up way		www.orany	and the second second	- Winceret	
40-									
50-									
60-									
-00-									

Date: 28.FEB.2007 23:44:59

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



>			1 MHz 1 MHz	Marker 1 [T1] -27.39 dBm
Ref 17 dBm	*Att 0 d	lb SWT	105 ms	18.508709944 GHz
Offset -10 dB -10			10	GHz
* -0				
- <u>10</u> PCS_SPUR				
Where we wanted				1
	mypermining	houmand	Marchart	
40				
50				
60				
-70				

Date: 28.FEB.2007 23:43:04

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

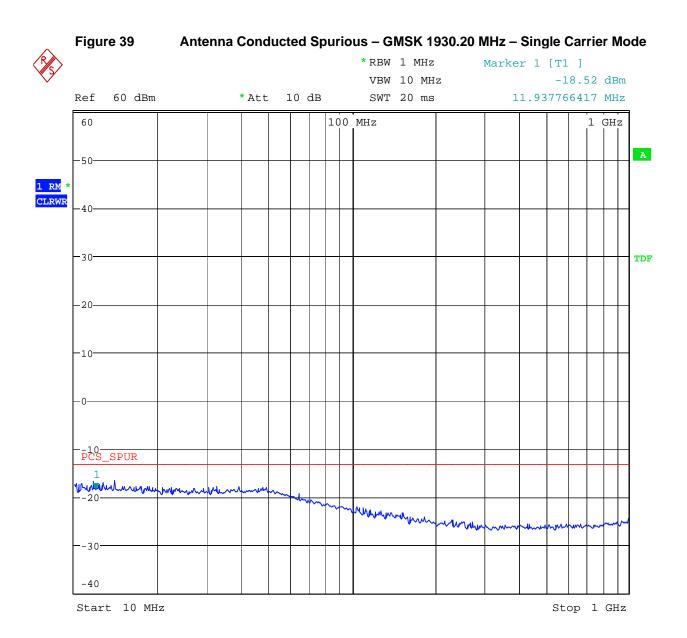
Date: 1.MAR.2007 00:09:44

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

					* RBW 1	l MHz	Marke	er 1 [T1]
					* VBW 1	l MHz		-2	7.49 dBn
Ref	30 dBm		*Att 1	10 dB	SWT 2	2.5 ms		1.99198	7179 GHz
30									
-20									
*									
10									
-0									
	SDLSE								
AMP	3011312								
20-									
<u>.</u> 30-	M Hermin he man was a	Jak na Manaha	the how have	un	www.	-	www.www	monte	mound
-40-									
50-									
-60-									
-70									

Date: 1.MAR.2007 00:08:40

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



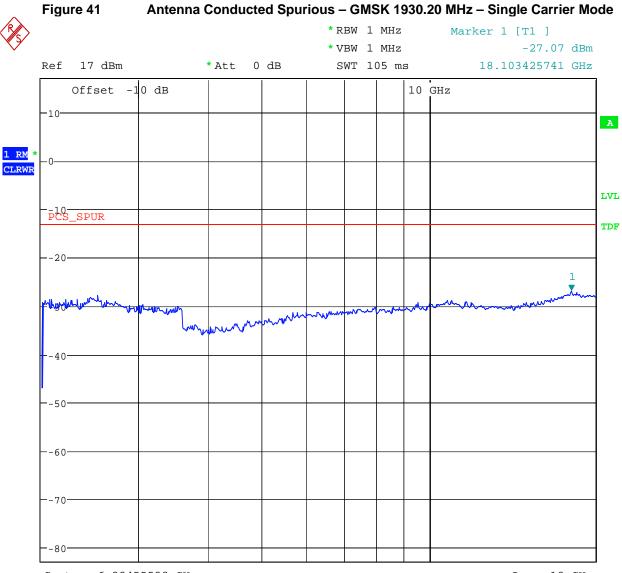
>								rker 1		3 dBm
Re	f 17 dBr	n	*Att () dB					0342574	
	Offset	-10 dB				10	GHz			
-10)									
*-0-										
	0									
P	0 CS_SPUR		-							
2	20									
<u></u>								M		1
	50	- The second sec	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		 	 			-	
	10									
Ę	50									
	50									
7	70									
	30									

Date: 1.MAR.2007 00:11:04

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Date: 1.MAR.2007 16:14:05

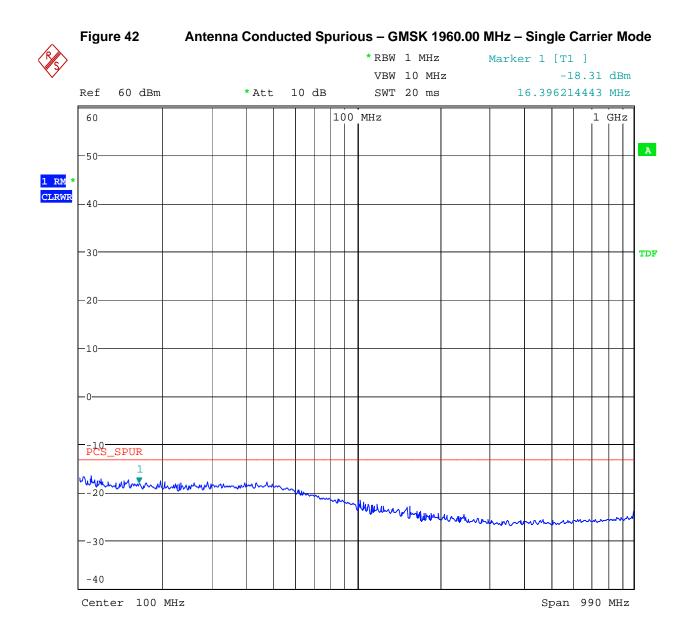
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



\rangle								* RBW	1	MHz	Marke	er 1 [T1]
								* VBW	1	MHz		-26	5.66 dBm
	Ref	30	dBm		* Att	10) dB	SWT	2.	.5 ms		2.000000	0000 GHz
	30												
	-20												
*													
	-10								_				
	-0												
	_10												
	10 AMPS	SDLS	Е										
	-20-												
													1 au anni
	-30-	m	mmm	monthle	Minha	m	whent	Whenthe with the state of the s	w	Man Mar	And Marghan	how we have	within
	40-								_				
	50-												
	60-												
	-00												
	-70												

Date: 1.MAR.2007 16:10:58

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.


Center 6.32455532 GHz

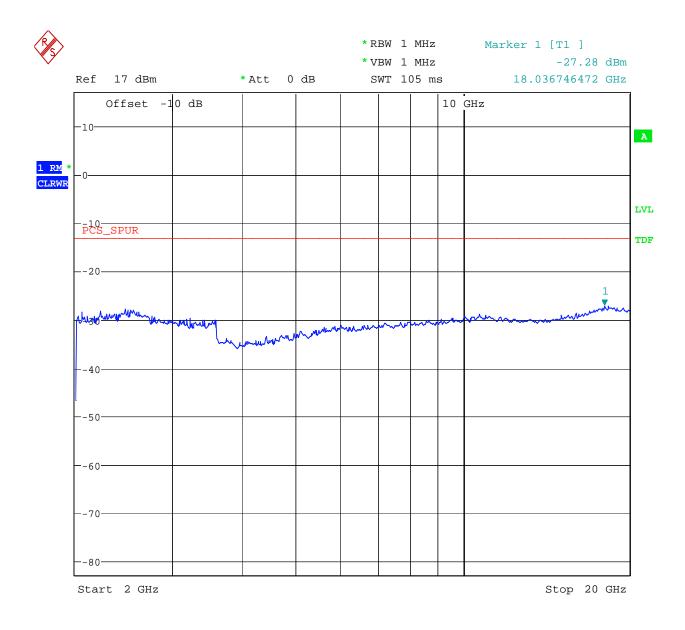
Span 18 GHz

Date: 1.MAR.2007 16:12:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Date: 1.MAR.2007 16:30:34

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.


f 30						l MHz	Marke	-	-
f 30					* VBW 1	l MHz		-27	7.45 dBm
	dBm		*Att	10 dB	SWT 2	2.5 ms		1.996794	872 GHz
0									
0									
0									
0									
10									
MPSDLS	3E								
20									
30	MILMUL	h month	mentreme	manim	horaldhand	un man	www.www.	umman M	moun
4.0									
									ĺ
50									
60									
70									
	0 MPSDLS 20 30 40 50 60 70	0 MPSDLSE 20 30 40 50 60 	0						

Date: 1.MAR.2007 16:32:30

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Figure 44 Antenna Conducted Spurious – GMSK 1960.00 MHz – Single Carrier Mode

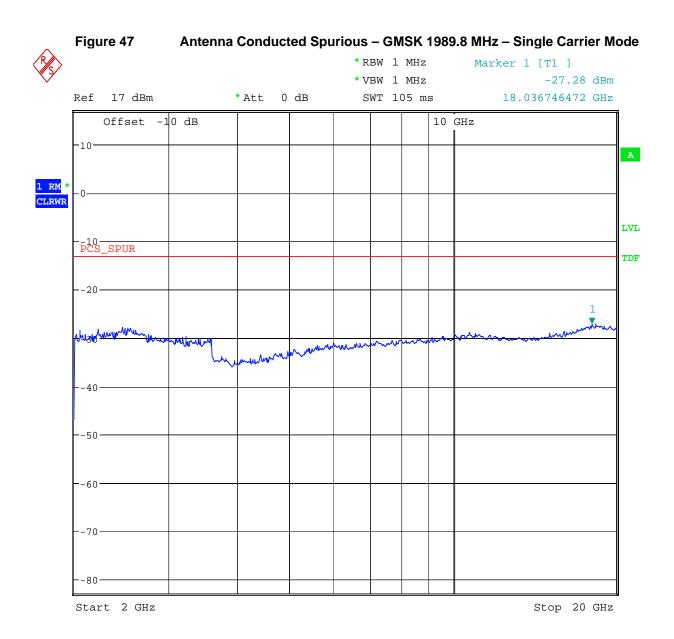
Date: 1.MAR.2007 16:34:50

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

									* RBW 1 MH			er 1		1	
Ref 60 dBm	VBW 10 MHz *Att 10 dB SWT 20 ms								16.39	8.32 4443					
60									MHz					GH	_
-50															_
40															
-30															-
-20															
-10															
-0															1
-10 PCS_SPUR															
1 Muhukmanthummanthum -20	hun hun	um en	m	~~~	A#										
						~~~	ver	~	Marian Julian	unohin	mm	<b>u</b> m	 		~
-30														_	
-40															ļ

Date: 1.MAR.2007 16:30:34

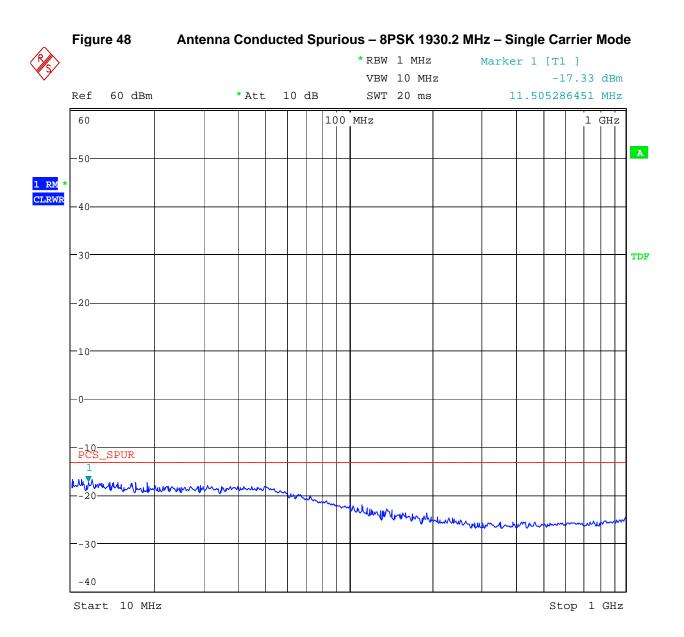
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




$\rangle$					* RBW 1	MHz	Marke	er 1 [T1	]
					* VBW 1	MHz		-27	7.45 dBm
Ref 3	0 dBm		* Att	10 dB	SWT 2	2.5 ms		1.996794	4872 GHz
30									
-20									
<b>a</b> *									
-10									
10									
-0									
ĀMPSDI	0r								-
Aire SD1									
-20									
	mpun	monum	mont	man	Mar Mar and Mar and	ummum	www.	W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mound
		ľ.							
50									
60					-				
-70									

Date: 1.MAR.2007 16:32:30

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 1.MAR.2007 16:34:50

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





Date: 1.MAR.2007 17:02:33

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



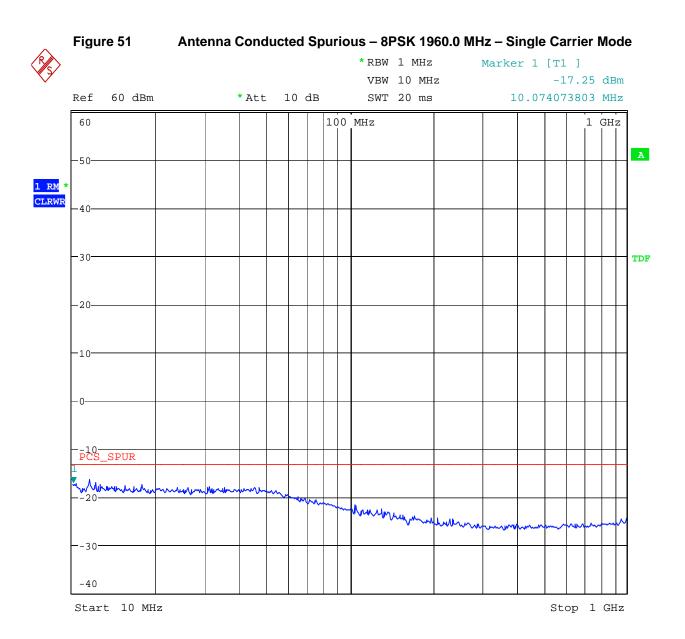
				* RBW	1 MHz	Marke	er 1 [T1	]
				* VBW	1 MHz		-26	5.75 dBm
Ref 30 dBm	* A	tt 10	dB	SWT	2.5 ms		2.000000	0000 GHz
30								
-20								
*								
-10								
-0								
AMPSDLSE								
AMPSDISE								
20								
	- moule warman	mount	Mullin	Monnella	-	monthem	Mana Mar	mbur
60								
-70								

Date: 1.MAR.2007 17:04:04

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



•				* RBV	1 1	MHz		Marker 1 [T1 ]	
				* VBV	11	MHz		-27.11 d	dBm
Ref 17 dBm		* Att	0 dB	SWI	5 10	05 ms	3	18.103425741 (	GHz
Offset -3	10 dB						10 GH:	Z	
-10									
*									
R									
-10- PCS_SPUR									
FCS_SPUR									
								1 	~~~
my statem my hanness	horny		mann	m.m.m.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	um	www.	Mandra Marine	
	Jerrey-	man							
-70									
-80									


Start 2 GHz

Stop 20 GHz

Date: 1.MAR.2007 17:05:06

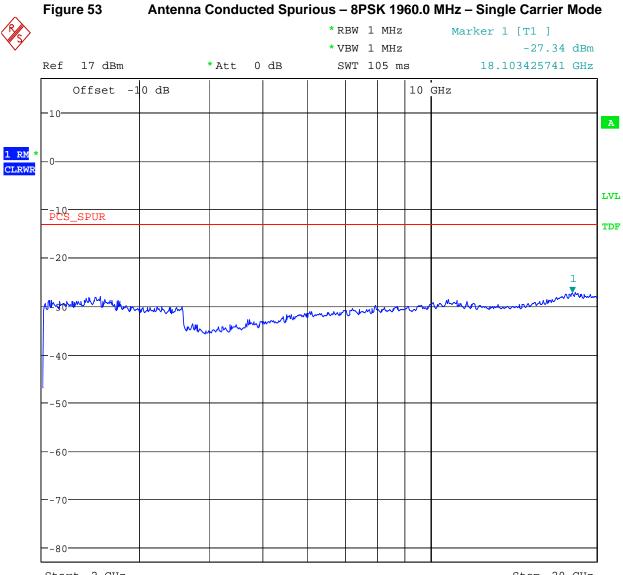
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





Date: 1.MAR.2007 17:19:18

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



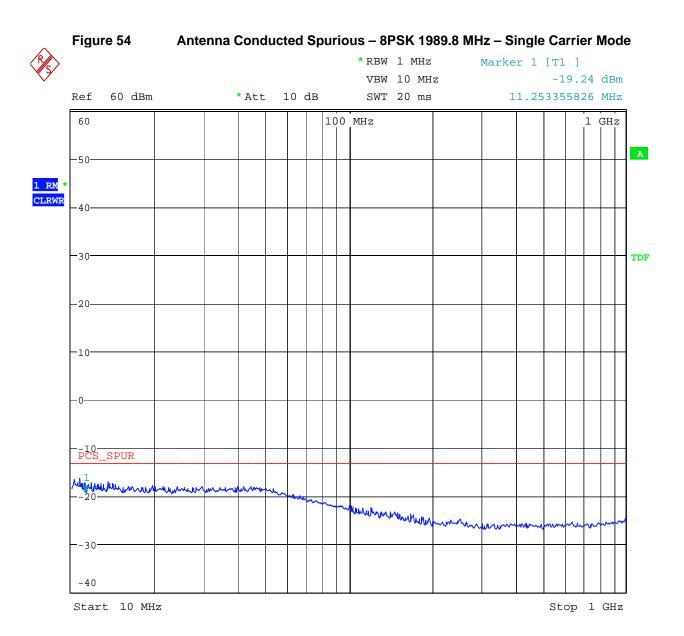

				* RBW 1	MHz	Marke	er 1 [T1	]
				* VBW 1	MHz			5.43 dBm
Ref 30 dBm	* 7	ltt 10	) dB	SWT 2	2.5 ms		2.00000	000 GHz
30								
-20								
*								
-10								
-0								
AMPSDLSE								
-20								
								. In
this worth who we	-mar mar mar	www	n market	Munin	monor	mlummutu	www.	whenter
40								
5.0								
50								
-70								

Date: 1.MAR.2007 17:18:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Start 2 GHz

Stop 20 GHz

Date: 1.MAR.2007 17:21:05

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





Date: 1.MAR.2007 17:34:51

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



>					*RBW 1	1 MHz	Marke	er 1 [T1	]
					* VBW	1 MHz		-27	7.12 dBm
	Ref 30 dBm		* Att	10 dB	SWT 2	2.5 ms		2.00000	0000 GHz
Ī	30								
ŀ	-20								
*									
ł	-10								
	-0								
	10								
	AMPSDLSE								
ľ	-20								
									mm
	with more and the second	mmmm	muyhme	monum	www.	monu	Mar Marine	<b>humballwork</b>	mound
ł	40								
	50								
	60								
	-70								

Date: 1.MAR.2007 17:32:08

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



>				* RI	3W 1	MHz		Ма	rker 1 [T1	]
				* VI	3W 1	MHz			-27	.37 dBm
Ref 17 dBm		*Att (	) dB	SI	VT 1	05 m	s		18.304946	218 GHz
Offset -1	0 dB						10	GHz		
-10										
*										
-10 PCS_SPUR										
										1
Muzigen Jarle Mar Mar with	un mun			A. A. alk	m	mm	wa	m	Armonic and a second	Mr. West
	line	umme	wwww	~~~~						
-70										
-80										

Start 2 GHz

Stop 20 GHz

Date: 1.MAR.2007 17:33:36

#### D.8. Tested By

Name: Tom Tidwell, Function: Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# APPENDIX E: 2.1053 FIELD STRENGTH OF SPURIOUS RADIATION

#### E.1. Base Standard & Test Basis

Base Standard	FCC 2.1053
Test Basis	FCC 2.1053 Field Strength of Spurious Radiation
Test Method	TIA 603-C, 2004 Substitution Antenna Method

#### E.2. Limits

24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

#### E.3. Test Results

Compliant. The worst-case spurious emission level was -33.6 dBm at 19600 MHz. This level is 29.1 dB below the specification limit of -13 dBm. The spectrum was searched up to 10 GHz with the device operating on lower, mid, and upper channels.

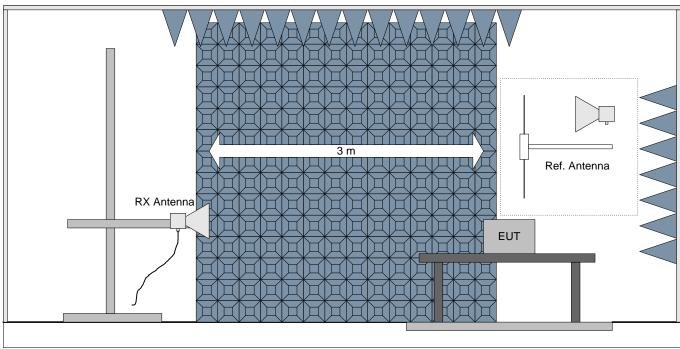
#### E.4. Deviations from Normal Operating Mode During Test

None.

E.5. Sample Calculation

Final measured value (dBm) = Substitution level (dBm) + Antenna Gain (dBi)

Minimum attenuation limit (dB) = 43 + 10 log(P) where P = Peak power of the carrier in watts.


Min. Atten. Limit (dB) = 43 + 10 * log( 100 watts) = 43 + 10 * 2 = 43 + 20 = 63 dB

+50 dBm – 63 dB = -13 dBm

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### E.6. Test Diagram



Note: The EUT is set to repeat a signal at maximum rf output power into a coaxial load for this testing.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### E.7. Test Data

	Project No: Model: Comments:	W7058-2 EXPA-01 Operated in	n combinec	l carrier mod	e (maximum p	ower) at low	mid and high (	channels			
Distance:	3 m	Standard: CFR 47, Part 2			2	RBW: (unless <1GHz = 120kHz >1GHz = noted) 1MHz			VBW: (unless Peak = RBW noted) Avg. = 10 Hz		
Notes	Polarization	Frequency	Measured	Substitution Level	Substitution Antenna Gain	Final Mea	sured Value	Peak Ca	arrier Power	Limit	Margin
	(V/H)	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(watts)	(dBm)	(watts)	(dBm)	(dB)
	Н	3860.4	-68.8	-51.3	9.2	-42.1	6.16595E-08	48.57	72	-13	29.10
	V	3860.4	-74.7	-56.7	9.2	-47.5	1.77828E-08	48.57	72	-13	34.50
	Н	3920	-69.3	-52.1	9.2	-42.9	5.12861E-08	48.57	72	-13	29.90
	V	3920	-88.2	-63.4	9.2	-54.2	3.80189E-09	48.57	72	-13	41.20
	Н	3979.6	-70.7	-52.6	9.2	-43.4	4.57088E-08	48.57	72	-13	30.40
	V	3979.6	-93.3	-61	9.2	-51.8	6.60693E-09	48.57	72	-13	38.80
Noise Floor	Н	5790.6	-100.5	-46	10.8	-35.2	3.01995E-07	48.57	72	-13	22.20
Noise Floor	V	5790.6	-100.5	-46	10.8	-35.2	3.01995E-07	48.57	72	-13	22.20
Noise Floor	Н	5880	-100.5	-46	10.8	-35.2	3.01995E-07	48.57	72	-13	22.20
Noise Floor	V	5880	-100.5	-46	10.8	-35.2	3.01995E-07	48.57	72	-13	22.20
Noise Floor	Н	5969.4	-100.5	-46	10.8	-35.2	3.01995E-07	48.57	72	-13	22.20
Noise Floor	V	5969.4	-100.5	-46	10.8	-35.2	3.01995E-07	48.57	72	-13	22.20
Noise Floor	Н	19600	-94.8	-45	11.4	-33.6	4.36516E-07	48.57	72	-13	20.60
Noise Floor	V	19600	-94.8	-45	11.4	-33.6	4.36516E-07	48.57	72	-13	20.60

NOTE: The spectrum was searched up to 20 GHz.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### E.8. Test Photo



# E.9. Tested By

Name: Function: Tom Tidwell, Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# APPENDIX F: 2.1055 FREQUENCY STABILITY

#### F.1. Base Standard & Test Basis

Base Standard	FCC 2.1055
Test Method	TIA 603-C, 2004

#### Specifications

24.235 Frequency Stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### F.2. Deviations

Deviation	Time &	Description and	De			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

#### F.3. Test Results

#### Compliant.

The maximum frequency drift was 0.0357 ppm (70 Hz). This is sufficient to ensure that the emission stays wholly within its assigned frequency block based on band edge spurious emission measurements included in this report.

#### F.4. Observations

None

#### F.5. Deviations from Normal Operating Mode During Test

None.

#### F.6. Sample Calculation

Frequency drift (ppm) = Frequency Drift (Hz)/Authorized frequency (MHz)

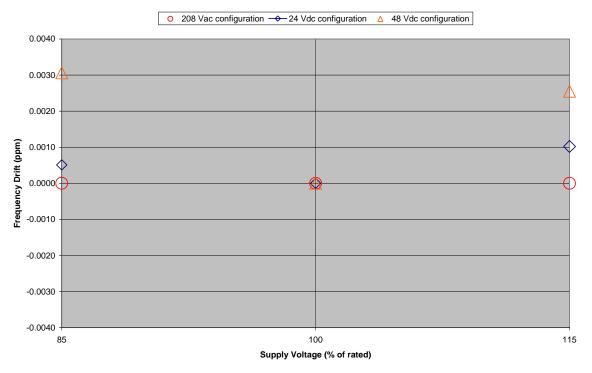
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



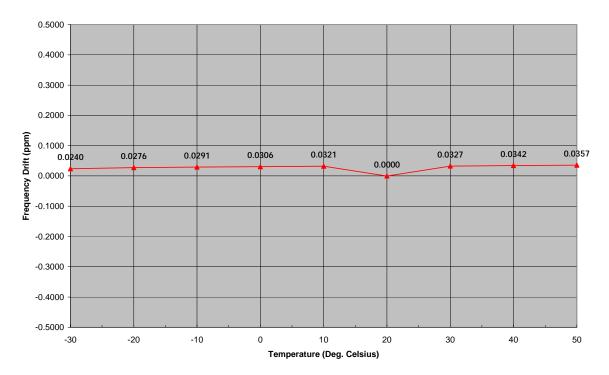
#### F.7. Test Data

#### Frequency Stability vs. Temperature

Supply Voltage % of	Ambient temperature	Reference Transmit Frequency	Measured Frequency	Frequency Drift	Frequency Drift
rated	Deg. Celsius	MHz	MHz	(Hz)	(ppm)
100	-30	1960.067569	1960.067616	47	0.0240
100	-20	1960.067569	1960.067623	54	0.0276
100	-10	1960.067569	1960.067626	57	0.0291
100	0	1960.067569	1960.067629	60	0.0306
100	10	1960.067569	1960.067632	63	0.0321
100	20	1960.067569	1960.067569	0	0.0000
100	30	1960.067569	1960.067633	64	0.0327
100	40	1960.067569	1960.067636	67	0.0342
100	50	1960.067569	1960.067639	70	0.0357


### Frequency Drift vs. Supply Voltage Variation

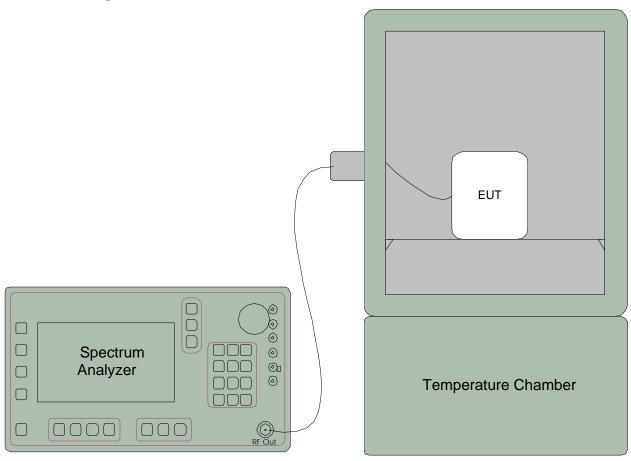
Supply Voltage	Ambient temperature Deg. Celsius	Reference Transmit Frequency MHz	Measured Frequency MHz	Frequency Drift (Hz)	Frequency Drift (ppm)
176.8 Vac	20	1960.067657	1960.067657	0	0.0000
208 Vac	20	1960.067657	1960.067657	0	0.0000
239.2 Vac	20	1960.067657	1960.067657	0	0.0000
20.4 Vdc	20	1960.067655	1960.067656	1	0.0005
24 Vdc	20	1960.067655	1960.067655	0	0.0000
27.6 Vdc	20	1960.067655	1960.067657	2	0.0010
				-	
40.8 Vdc	20	1960.067655	1960.067661	6	0.0031
48 Vdc	20	1960.067659	1960.067659	0	0.0000
55.2 Vdc	20	1960.067655	1960.067660	5	0.0026


This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### Frequency Drift with Supply Voltage Variation








This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor integration or any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### F.8. Test Diagram



#### F.9. Tested By

Name:Tom Tidwell,Function:Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

# APPENDIX G: TEST EQUIPMENT LIST

#### **NTS Control** Calibration Cal Due Description Manufacturer Type/Model Frequency No. **3m ANECHOIC CHAMBER** RX Bilog Antenna ETS 3142C 12 Months 8/17/07 E1288P ETS 3115 E1019P Ref. Horn Antenna 12 Months 11/1/07 RX Horn Antenna ETS 3115 12 Months E1022P TM26-3135-High Frequency - Cable 1 MegaPhase 12 Months 8/23/07 W1010P 144 3121 Dipole Reference Antenna ETS 12 months 8/8/07 S/N. 274 Set **CONTROL ROOM** Test Receiver Rohde & Schwarz **FSQ 26** 12 Months 9/21/07 W1020P High Frequency - Cable 2 MegaPhase NA 12 Months 8/23/07 W1011P Amplifier HP 8449B 12 Months 5/4/07 E1010P

### G.1. Field Strength of Spurious Emissions 30 MHz – 26.5 GHz Measurement Equipment

#### G.2. Antenna Conducted Emissions Measurement Equipment

		Model	Calibration	Calibration
Instrument	Manufacturer		Frequency	Due
	ANTENNA CONDUCTE	ED EMISSIONS		
Spectrum Analyzer	Rohde & Schwarz	FSQ 26	12 Months	9/21/07
High Frequency - Cable 1	MegaPhase	TM26-3135- 144	12 Months	8/23/07
Power Meter	Boonton	4531	12 Months	9/1/07
Peak Power Sensor	Boonton	57340		9/1/07
Directional Coupler	Narda	3020A	12 Months	8/28/07
Directional Coupler	Narda	4242-10	12 Months	8/28/07
50 ohm loads	Amphenol	50R	12 Months	8/28/07
I/Q Signal Generator	Rohde & Schwarz	SMIQ 03	12 Months	8/25/07
I/Q Modulation Generator	Rohde & Schwarz	AMIQ	12 Months	8/28/07
Combiner	Mini-Circuits	ZFSC-2-2500	N/A	N/A*
IS-95 CDMA BTS simulator	Rohde & Schwarz	CMD80	N/A	N/A*

* This device was not used for calibrated measurements.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# END OF DOCUMENT

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.