

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2021-06-24 | 2022-06-24 |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A | AFL | 2021-03-11 | 2022-03-11 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The spectrum analyzer settings were as follows:

- RBW is 1% 5% of the occupied bandwidth
- VBW is ≥ 3x the RBW
- Peak Detector was used
- Trace max hold was used

RF conducted emissions testing was performed only on one port. The AZHL antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown during output power testing on 8 ports) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i, and 6.4.

The 99% bandwidth was measured utilizing the analyzer's peak detector and measuring the carrier's 26 dB occupied bandwidth based on the peak output power level measured. A plot was taken to show the occupied bandwidth is contained within the allowable transmit band. FCC 27.53(m)(6) defines the emission bandwidth to be used as 26dB down.

The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets.

Band 41 (2496 MHz to 2690 MHz) Emission Designators derived from the measurement results:

| FCC En         | nission Desig   | nators for B     | and 41 (249     | 6MHz to 269 | 0MHz)    |
|----------------|-----------------|------------------|-----------------|-------------|----------|
| Chan           | Radio           | 4G-LTE:          | 4G-LTE :        | 4G-LTE :    | 4G-LTE : |
| BW             | Channel         | QPSK             | 16QAM           | 64QAM       | 256QAM   |
|                | Low             |                  |                 |             | 14M1F9W  |
| 15MHz          | Mid             | 14M3F9W          | 14M3F9W         | 14M1F9W     | 14M1F9W  |
|                | High            |                  |                 |             | 14M2F9W  |
|                | Low             |                  |                 |             | 18M8F9W  |
| 20MHz          | Mid             | 18M6F9W          | 18M9F9W         | 18M9F9W     | 18M8F9W  |
|                | High            |                  |                 |             | 18M7F9W  |
| Note: FCC emis | sion designator | s are based on 2 | 26dB emission b | andwidth.   |          |



|                                                    |                                               |                                                   |                                 |                            |                      | TbtTx 2021.03.19.1    | XMit 2020.12.30.0 |
|----------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------|----------------------------|----------------------|-----------------------|-------------------|
| EUT: AZH                                           | IL (C2PC LTE/5G NR B41)                       |                                                   |                                 |                            | Work Order:          | NOKI0035              |                   |
| Serial Number: YK2                                 | 203400025                                     |                                                   |                                 |                            | Date:                | 13-Oct-21             |                   |
| Customer: Nok                                      | ia Solutions and Networks                     |                                                   |                                 |                            | Temperature:         | 23 °C                 |                   |
| Attendees: Dav                                     | id Le, John Rattanavong                       |                                                   |                                 |                            | Humidity:            | 52.5% RH              |                   |
| Project: Nor                                       | le                                            |                                                   |                                 |                            | Barometric Pres.:    | 1011 mbar             |                   |
| Tested by: Bra                                     | ndon Hobbs                                    | Powe                                              | er: 54 VDC                      |                            | Job Site:            | TX09                  |                   |
| TEST SPECIFICATIONS                                | 1                                             |                                                   | Test Method                     |                            |                      |                       |                   |
| FCC 27:2021                                        |                                               |                                                   | ANSI C63.26:2015                |                            |                      |                       |                   |
|                                                    |                                               |                                                   |                                 |                            |                      |                       |                   |
| COMMENTS                                           |                                               |                                                   |                                 |                            |                      |                       |                   |
| All losses in the measu<br>5.044ms and a gate leng | rement path were accounted<br>gth = 6.8061ms. | for: attenuators, cables, DC block and filter whe | en in use. Band n41 carriers ar | nd enabled at maximum powe | er. External 1 gatin | g was set using a tri | g delay =         |
| DEVIATIONS FROM TES                                | ST STANDARD                                   |                                                   |                                 |                            |                      |                       |                   |
| None                                               |                                               |                                                   |                                 |                            |                      |                       |                   |
| Configuration #                                    | 2                                             | Signature                                         | J-1                             |                            |                      |                       |                   |
|                                                    |                                               |                                                   |                                 | Value<br>99% (MHz)         | Value<br>26dB (MHz)  | Limit                 | Result            |
| 4G LTE, Band 41, 2496 N                            | 1Hz - 2690 MHz                                |                                                   |                                 |                            |                      |                       |                   |
| Port                                               | :1                                            |                                                   |                                 |                            |                      |                       |                   |
|                                                    | LTE15 (15MHz)                                 |                                                   |                                 |                            |                      |                       |                   |
|                                                    | QFSK                                          | Mid Channel 2502 Mills                            |                                 | 12.4                       | 14.2                 | Within Dand           | Deee              |
|                                                    | 160 4 14                                      | Wild Chariner 2595 WHZ                            |                                 | 15.4                       | 14.5                 | Within Danu           | F d55             |
|                                                    | TOQAN                                         | Mid Chappel 2502 MHz                              |                                 | 12.4                       | 14.2                 | Within Rond           | Page              |
|                                                    | 64000                                         | Mid Channel 2595 MHz                              |                                 | 13.4                       | 14.3                 | Within Banu           | F d55             |
|                                                    | 04QAIV                                        | Mid Chappel 2593 MHz                              |                                 | 13.4                       | 14.1                 | Within Band           | Pass              |
|                                                    | 25604                                         |                                                   |                                 | 13.4                       | 14.1                 | within Dand           | 1 833             |
|                                                    | 2000                                          | Low Channel 2503 5 MHz                            |                                 | 13.4                       | 14 1                 | Within Band           | Pass              |
|                                                    |                                               | Mid Channel 2593 MHz                              |                                 | 13.4                       | 14.1                 | Within Band           | Pass              |
|                                                    |                                               | High Channel 2682 5 MHz                           |                                 | 13.4                       | 14.2                 | Within Band           | Pass              |
|                                                    | LTE20 (20MHz)                                 |                                                   |                                 | 10.1                       |                      | Than Bana             | 1 400             |
|                                                    | OPSK                                          |                                                   |                                 |                            |                      |                       |                   |
|                                                    | di oli                                        | Mid Channel 2593 MHz                              |                                 | 17.9                       | 18.6                 | Within Band           | Pass              |
|                                                    | 16QAM                                         |                                                   |                                 |                            |                      |                       |                   |
|                                                    |                                               | Mid Channel 2593 MHz                              |                                 | 17.9                       | 18.9                 | Within Band           | Pass              |
|                                                    | 64QAM                                         |                                                   |                                 |                            | . 2.0                | Dund                  |                   |
|                                                    |                                               | Mid Channel 2593 MHz                              |                                 | 17.9                       | 18.9                 | Within Band           | Pass              |
|                                                    | 256QA                                         | И                                                 |                                 |                            |                      |                       |                   |
|                                                    |                                               | Low Channel 2506 MHz                              |                                 | 17.9                       | 18.8                 | Within Band           | Pass              |
|                                                    |                                               | Mid Channel 2593 MHz                              |                                 | 17.9                       | 18.8                 | Within Band           | Pass              |
|                                                    |                                               | High Channel 2680 MHz                             |                                 | 17.9                       | 18.7                 | Within Band           | Pass              |

















| Keysight Spectr | rum Analyzer - Eleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Materials Technolo | gy - Points: 3000, D | Detector: Peak    |                                                                                                                |                   |       |                         |                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-------------------|-------|-------------------------|-------------------|
| LXI RL          | RF 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DC                    |                      | SENSE:EXT         | \Lambda ALIGN                                                                                                  | AUTO/NO RF        |       | 12:20:16                | 5 PM Oct 13, 2021 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      | Center Fre        | q: 2.682500000<br>Run                                                                                          | ) GHz<br>AvaiHold | 50/50 | Radio Std: N            | lone              |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #1                    | FGain:Low            | #Atten: 30        | dB                                                                                                             |                   |       | Radio Devic             | e: BTS            |
|                 | Bof Offerst 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 dP                 |                      |                   |                                                                                                                |                   |       |                         |                   |
| 10 dB/div       | Ref 36.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBm                   |                      |                   |                                                                                                                |                   |       |                         |                   |
| Log             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | AMILLANDAA . M       | Ad a strategy     | the C. L. to part at love                                                                                      | No Availa & so. 6 |       |                         |                   |
| 26.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | And the state of the | an Alda, Anda, I. | an a start a s |                   |       |                         |                   |
| 16.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   | l     |                         |                   |
| 6.00            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   | 1     |                         |                   |
| -4.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
| -14.0 marthal   | and the second states of the s | www.wshipmy.          |                      |                   |                                                                                                                |                   | Unsom | Anna marine and a south | the more haven    |
| -24.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
| -34.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
| -44.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
| -54.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
| Center 2.68     | 250 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                      |                   |                                                                                                                |                   | 1     | Snan                    | 35.00 MHz         |
| #Res BW 2       | 240 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                      | #VE               | 3W 750 kHz                                                                                                     | z                 |       | Swe                     | ep 1.2 ms         |
| Occupi          | ed Bandw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vidth                 |                      | Total P           | ower                                                                                                           | 44.0 d            | Bm    |                         |                   |
| Coodpi          | ballan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42 444                |                      |                   |                                                                                                                |                   |       |                         |                   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.444                |                      |                   |                                                                                                                |                   |       |                         |                   |
| Transm          | it Freq Erro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r -15.9               | 50 kHz               | % of O            | BW Power                                                                                                       | 99.0              | 0 %   |                         |                   |
| x dB Ba         | ndwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.2                  | 2 MHz                | x dB              |                                                                                                                | -26.00            | dB    |                         |                   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |
| MSG             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                | STATUS            |       |                         |                   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |                   |                                                                                                                |                   |       |                         |                   |





|                                    | latenais recimology - Folints 5000, | SENSE:EXT ALIG                 | N AUTO/NO RE    | 02:19:53 PM Oct 13, 2021    |
|------------------------------------|-------------------------------------|--------------------------------|-----------------|-----------------------------|
|                                    |                                     | Center Freq: 2.59300000        | 0 GHz           | Radio Std: None             |
|                                    |                                     | 🛶 Trig: Free Run               | Avg Hold: 50/50 |                             |
|                                    | #IFGain:Low                         | #Atten: 30 dB                  |                 | Radio Device: BTS           |
| Bat Offerst 40.40                  |                                     |                                |                 |                             |
| 10 dBidiy Ref 39 00 dB             | im sub                              |                                |                 |                             |
|                                    |                                     |                                |                 |                             |
| 29.0                               | North Marchen                       | the man and the man the second | Month Manual L  |                             |
| 19.0                               |                                     |                                |                 |                             |
| 0.00                               |                                     |                                |                 |                             |
| 9.00                               |                                     |                                | 1               |                             |
| -1.00                              | <mark>/</mark>                      |                                |                 |                             |
| -11.0                              |                                     |                                |                 |                             |
| -21.0 margher worth manuful damary | (Margarow MAN)                      |                                | - Loning Mar    | moundalimber warman by some |
| 21.0                               |                                     |                                |                 |                             |
| 31.0                               |                                     |                                |                 |                             |
| -41.0                              |                                     |                                |                 |                             |
| -51.0                              |                                     |                                |                 |                             |
|                                    |                                     |                                |                 |                             |
| Center 2.59300 GHz                 |                                     |                                |                 | Span 45.00 MHz              |
| #Res BW 300 KHz                    |                                     | #VBW 910 KH                    | Z               | Sweep 1.2 ms                |
|                                    |                                     | Total Bausar                   | 45.0 dDm        |                             |
| Occupied Bandwid                   | ith                                 | Total Fower                    | 45.0 UBIII      |                             |
| 1                                  | 7 940 MHz                           |                                |                 |                             |
|                                    |                                     |                                |                 |                             |
| Transmit Freq Error                | 24.945 kHz                          | % of OBW Powe                  | r 99.00 %       |                             |
| y dB Bondwidth                     | 40.00 MU-                           | x dB                           | 26.00 dB        |                             |
|                                    |                                     | хuв                            | -20.00 aB       |                             |
|                                    |                                     |                                |                 |                             |
|                                    |                                     |                                |                 |                             |
|                                    |                                     |                                |                 |                             |
| MSC                                |                                     |                                | STATUS          |                             |
| MSG                                |                                     |                                | STATUS          |                             |









|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000 1                     | Valu           | e(0          | Value           |                  | 000                   |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|--------------|-----------------|------------------|-----------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 99% (N         | Hz)          | 26dB (MHz)      | Limit            | R                     | esult                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 17.90          | 7            | 18.823          | Within Bar       | nd F                  | Pass                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |              |                 |                  |                       |                          |
| Keysight Spectrum Analyzer - Element Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Technology - Points: 3000, | Detector: Peak |              |                 |                  |                       |                          |
| <b>X</b> RL RF 50 Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | SENSE:EXT      | 1: 2 59300   | LIGN AUTO/NO RF |                  | 02:16:2<br>Radio Std: | 25 PM Oct 13, 2021       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | Trig: Free I   | Run          | Avg Hold: 5     | 0/50             | rtudio ota.           | none                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #IFGain:Low                | #Atten: 30     | dB           |                 |                  | Radio Devi            | ce: BTS                  |
| Ref Offset 40.18 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |              |                 |                  |                       |                          |
| 10 dB/div Ref 38.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                |              |                 |                  |                       |                          |
| 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - monoral                  | Antoma Mangle  | -harrow with | aquerter whythe |                  |                       |                          |
| 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                          |                |              |                 |                  |                       |                          |
| 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                |              |                 |                  |                       |                          |
| -2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <mark>/</mark>             |                |              |                 |                  |                       |                          |
| -12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                |              |                 |                  |                       |                          |
| -22.0 minute the stand of the second se | rhun,1/11                  |                |              |                 | Jar White Martin | when any gift         | Marker Analys And Mark   |
| -32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                |              |                 |                  |                       |                          |
| -42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                |              |                 |                  |                       |                          |
| -52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                |              |                 |                  |                       |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |              |                 |                  |                       |                          |
| Center 2.59300 GHz<br>#Res BM 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | #VB            | 14 010       | kH7             |                  | Spar<br>Swi           | 1 45.00 MHz<br>een 12 ms |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | <i>"•</i> Ε    | N 313        |                 |                  |                       |                          |
| Occupied Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Total P        | ower         | 45.5 dE         | 3m               |                       |                          |
| 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 907 MHz                    |                |              |                 |                  |                       |                          |
| Transmit Freg Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.680 kHz                  | % of O         |              | ver 99.00       | %                |                       |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |              | 26.00           |                  |                       |                          |
| X dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.02 MHZ                  | хав            |              | -26.00          | u D              |                       |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |              |                 |                  |                       |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                |              |                 |                  |                       |                          |
| leave l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                |              | lesses al       |                  |                       |                          |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                |              | STATUS          |                  |                       |                          |
| 4GITE Band 41 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 196 MHz - 2690 M           | Hz Port 1 I T  | E20 (201     | (Hz) 2560AM     | High Channe      | ≥I 2680 MH            | 7                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 Mil 12 - 2030 Mil      | Valu           | e (201       | Value           | - ngir Onanne    | 2000 1011             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 99% (N         | Hz)          | 26dB (MHz)      | Limit            | R                     | esult                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 17.85          |              | 18.688          | Within Bar       | nd F                  | Pass                     |

02:43:30 PM Oct 13, 2021 Radio Std: None Keysight Spectrum Analyzer - Element Materials Technology - Points: 3000, Detector: Peak
 Ku RF 50 Ω DC SENSE:EXT ENSE:EXT ALIGN AUTO/NO RF Center Freq: 2.680000000 GHz Trig: Free Run Avg|Hold: 50/50 #Atten: 30 dB -#IFGain:Low Radio Device: BTS Ref Offset 40.18 dB Ref 37.00 dBm 10 dB/div Log manapanahhan maken way and a strategy and a Maladad mananta www.what ۲**ار ا** Mahambar N Span 45.00 MHz Sweep 1.2 ms Center 2.68000 GHz #Res BW 300 kHz #VBW 910 kHz Total Power 45.3 dBm **Occupied Bandwidth** 17.858 MHz Transmit Freq Error -8.157 kHz % of OBW Power 99.00 % x dB Bandwidth 18.69 MHz x dB -26.00 dB STATUS MSG



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2021-06-24 | 2022-06-24 |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A | AFL | 2021-03-11 | 2022-03-11 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurements. This method uses trace averaging across the ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1/D)], where D is the duty cycle in decimal, to the measured power to compute the average power during the actual transmission times.

RF conducted emissions testing was performed only on one port. The AZHL antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown during 8 port output power testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

The total average transmit power of all antenna ports was determined per ANSI C63.26-2105 paragraph 6.4.3.1.

The EIRP limit is defined by FCC Part27.50(h)(ii) as 33dBW+ 10Log(X/Y) dBW + 10 log(360/beamwidth) dBW where X is the channel width in MHz and Y is 5.5 or 6MHz. PSD (power/1MHz) measurements are not required for this radio since the FCC limits for EIRP are defined in watts.



EUT: AZHL (C2PC LTE/5G NR B41) Work Order: NOKI0035 Serial Number: YK203400025 Date: 8-Oct-21 Customer: Nokia Solutions and Networks Temperature: 21.1 °C Humidity: 50.6% RH Barometric Pres.: 1021 mbar Job Site: TX09 Attendees: David Le, John Rattanavong Project: None Tested by: Brandon Hobbs TEST SPECIFICATIONS Power: 54 VD Test Method FCC 27:2021 ANSI C63 26:2015 COMMENTS All losses in the measurement path were accounted for: attenuators, cables, DC block and filter when in use. Band n41 carriers and enabled at maximum power. External 1 gating was set using a trig delay = 86.2us and a gate length = 3.714ms. The following is the output power measurements at the radio output ports. The output power was measured for a single carrier channel bandwidth on port 1. The total output power for multiport (2x2 MIMO, 4x4 MIMO and 8x8 MIMO) operation was determined based upon ANSI C63.26 clauses 6.4.3.1 and 6.4.3.2.4 (10 Log Nout). The total output power for two port operation is single port power + 3dB [i.e.: 10 Log(2)]. The total output power for four port operation is single port power + 6dB [i.e.: 10 Log(4)]. The total output power for eight port operation is single port power + 9dB [i.e.: 10 Log(8)]. DEVIATIONS FROM TEST STANDARD None Configuration # 2 1 1 Signature 4 Port (4x4 MIMO) dBm/Carrier BW Initial Value Single Port 2 Port (2x2 MIMO) dBm/Carrier BW dBm/Carrier BW 2 Port (2x2 MIMO) Duty Cycle 8 Port (8x8 MIMO) dBm/Carrier BW dBm/Carrier BW Port 1, 5G NR, Band n41, 2496 MHz - 2690 MH (NR20) 20 MHz Bandwidth 256QAM Modulation Low Channel 2506.02 MHz 38.930 38.9 47.9 41.9 44.9 0 Mid Channel 2592.99 MHz 38.870 0 38.9 41.9 44.9 47.9 High Channel 2679.99 MHz 38.929 38.9 41.9 44.9 47.9 (NR30) 30 MHz Bandwidth 256QAM Modulation Low Channel 2511.00 MHz 40.707 46.7 0 40.7 43.7 49.7 Mid Channel 2592.99 MHz 40.911 0 40.9 43.9 46.9 49.9 40.819 40.8 46.8 High Channel 2674.98 MHz 43.8 49.8 (NR40) 40 MHz Bandwidth 256QAM Modulation Low Channel 2516.01 MHz 41.846 50.8 41.8 44.8 47.8 47.9 0 Mid Channel 2592 99 MHz 41 928 0 419 44 9 50.9 High Channel 2670.00 MHz 42.100 42.1 45.1 48.1 51.1 (NR50) 50 MHz Bandwidth 256QAM Modulation Low Channel 2521.02 MHz 42.600 0 42.6 45.6 48.6 51.6 Mid Channel 2592.99 MHz 42.810 43.136 0 42.8 43.1 45.8 46.1 48.8 51.8 52.1 High Channel 2664.99 MHz 49.1 (NR60) 60 MHz Bandwidth 256QAM Modulation 43.491 Low Channel 2526.00 MHz 0 43.5 46.5 49.5 52.5 Mid Channel 2592.99 MHz High Channel 2659.98 MHz 43.507 0 43.5 46.5 49.5 52 5 46.8 43.786 49.8 43.8 52.8 0 (NR70) 70 MHz Bandwidth 256QAM Modulation Low Channel 2531.01 MHz 44.016 0 44.0 47.0 50.0 53.0 43.981 44.252 44.0 44.3 47.0 47.3 50.0 50.3 53.0 53.3 Mid Channel 2592.99 MHz 0 High Channel 2655.00 MHz 0 (NR80) 80 MHz Bandwidth 256QAM Modulation Low Channel 2536.02 MHz 44.866 0 44.9 47.9 50.9 53.9 51.0 51.1 Mid Channel 2592.99 MHz 44.957 0 45.0 48.0 54.0 High Channel 2649.99 MHz 45.128 0 45.1 48.1 54.1 (NR90) 90 MHz Bandwidth QPSK Modulation Mid Channel 2592.99 MHz 45.426 0 45.4 48.4 51.4 54.4 16QAM Modulati Mid Channel 2592.99 MHz 45.5 51.5 54.5 45.492 48.5 0 64QAM Modulation Mid Channel 2592.99 MHz 45.347 45.3 54.3 48.3 51.3 0 256QAM Modulation Low Channel 2541.00 MHz Mid Channel 2592.99 MHz 45.467 0 45.5 48.5 51.5 51.4 54.5 45.359 0 48.4 54.4 45.4 High Channel 2644.98 MHz 45.584 0 45.6 48.6 51.6 54.6





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR20) 20 MHz Bandwidth, 256QAM Modulation, Mid Channel 2592.99 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW

 38.87
 0
 38.87
 41.87
 44.87
 47.87

| Keysight Spe        | ectrum Analyzer - Element Ma                                                                                   | terials Technology - Points: 1001, D | etector: Average (RMS)                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
|---------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <b>U</b> RL         | RF 50 Ω DC                                                                                                     | #IFGain:Low                          | SENSE:EXT<br>Center Freq: 2.592990<br>Trig: External1<br>#Atten: 30 dB                                         | ALIGN OFF<br>000 GHz<br>Avg Hold: 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10:22:16 AM Oct 08, 2021<br>Radio Std: None<br>Radio Device: BTS |
| 10 dB/div           | Ref Offset 40.18<br>Ref 53.18 dBr                                                                              | dB<br>n                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 43.2                |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 3.2                 |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 3.2                 |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| .18                 |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 82<br>5.8           |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| 5.8                 | ······                                                                                                         |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                          |
| à.8                 |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| enter 2.:<br>Res BW | 59299 GHz<br>430 kHz                                                                                           |                                      | #VBW 1.3 N                                                                                                     | IHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Span 53.33 MH<br>#Sweep 1                                        |
| Chan                | nel Power                                                                                                      |                                      | Power Spect                                                                                                    | ral Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |
| 3                   | 38.87 dBm                                                                                                      | / 20 MHz                             | -34.14                                                                                                         | dBm /Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |
|                     |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
|                     |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
|                     |                                                                                                                |                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |
| ST IST INCOME.      | and a second |                                      | Construction of the second | Construction and an and a second seco |                                                                  |





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR30) 30 MHz Bandwidth, 256QAM Modulation, Low Channel 2511.00 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 40.707

 40.707
 0
 40.707
 43.707
 46.707
 49.707

| Keysight Spect                   | rum Analyzer - Element Materials     | Technology - Points: 1001, | Detector: Average (RMS)                                                |                                          |                                                                 |
|----------------------------------|--------------------------------------|----------------------------|------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|
| RL                               | RF 50 Ω DC                           | ,<br>#IFGain:Low           | SENSE:EXT<br>Center Freq: 2.511000<br>Trig: External1<br>#Atten: 30 dB | ALIGN OFF<br>0000 GHz<br>Avg Hold: 10/10 | 05:06:25 PM Oct 07, 20:<br>Radio Std: None<br>Radio Device: BTS |
| dB/div                           | Ref Offset 40.18 dB<br>Ref 53.18 dBm |                            |                                                                        |                                          |                                                                 |
| 1 <b>g</b><br>3.2                |                                      |                            |                                                                        |                                          |                                                                 |
| .2                               |                                      |                            |                                                                        |                                          |                                                                 |
| 8                                |                                      |                            |                                                                        |                                          |                                                                 |
| 8                                |                                      | )                          |                                                                        |                                          |                                                                 |
| 8                                |                                      |                            |                                                                        |                                          |                                                                 |
| nter 2.5 <sup>°</sup><br>es BW ( | 1100 GHz<br>620 kHz                  |                            | #VBW 2 MF                                                              | z                                        | Span 80.00 M<br>#Sweep イ                                        |
| Chann                            | el Power                             |                            | Power Spect                                                            | ral Density                              |                                                                 |
| 4                                | 0.71 dBm / 3                         | 0 MHz                      | -34.06                                                                 | dBm /Hz                                  |                                                                 |
|                                  |                                      |                            |                                                                        |                                          |                                                                 |
|                                  |                                      |                            |                                                                        |                                          |                                                                 |
|                                  |                                      |                            |                                                                        | STATUS                                   |                                                                 |





| Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR30) 30 MHz Bandwidth, 256QAM Modulation, High Channel 2674.98 MHz |                |   |                |                |                |                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|----------------|---|----------------|----------------|----------------|----------------|--|--|--|--|
| Initial Value Duty Cycle Single Port 2 Port (2x2 MIMO) 4 Port (4x4 MIMO) 8 Port (8x8 MIMO)                         |                |   |                |                |                |                |  |  |  |  |
|                                                                                                                    | dBm/Carrier BW |   | dBm/Carrier BW | dBm/Carrier BW | dBm/Carrier BW | dBm/Carrier BW |  |  |  |  |
|                                                                                                                    | 40.819         | 0 | 40.819         | 43.819         | 46.819         | 49.819         |  |  |  |  |

| Keysight Spe | ectrum Analyzer - Elemen | nt Materials Technology | - Points: 1001, D | etector: Average ( | RMS)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|--------------|--------------------------|-------------------------|-------------------|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|--------------------|
| XI RL        | RF 50 Ω [                | DC DC                   |                   | SENSE:EXT          |               | ALIGN OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | 09:39:     | 17 AM Oct 08, 2021 |
|              |                          |                         |                   | Center Fre         | q: 2.67498000 | 0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40/40                                         | Radio Std: | None               |
|              | Gate: LO                 | #150                    |                   | #Atten: 30         | dB            | Avginoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. 10/10                                      | Radio Devi | ce: BTS            |
|              |                          | #IFV                    | Sam.LOw           | #/tttem. oo        | 40            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Rudio Berr |                    |
|              | Ref Offset 40            | .18 dB                  |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| 10 dB/div    | Ref 53.18 (              | dBm                     |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| Log          |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| 43.2         |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +                                             |            |                    |
| 33.2         |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| 23.2         |                          |                         | 1                 |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| 13.2         |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>                                      </u> |            |                    |
| 3.18         |                          |                         | <u> </u>          |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| 0.00         |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| -b.82        |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| -16.8        |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| -26.8        |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| 20.0         |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| -30.0        |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| Center 2     | 67409 CHz                |                         |                   |                    | l             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Snar       | 20 00 MU2          |
| #Doc BM      | 620 kHz                  |                         |                   | #\/E               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | - Spai     | 180.00 Miliz       |
| #RES DW      | 020 KH2                  |                         |                   | # V E              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | ,          | -Sweep 15          |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
| Chan         | nel Power                |                         |                   | Power              | Spectra       | I Densi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tv                                            |            |                    |
|              |                          |                         |                   |                    | •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    | 22.05         | -ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |            |                    |
| 2            | 40.82 aBi                | m / 30 MH               | Z                 |                    | 33.95         | aBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /Hz                                           |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |            |                    |
|              |                          |                         |                   |                    |               | and the second se |                                               |            |                    |





| Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR40) 40 MHz Bandwidth, 256QAM Modulation, Mid Channel 2592.99 MHz |                |   |                |                |                |                |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------|---|----------------|----------------|----------------|----------------|--|--|
| Initial Value Duty Cycle Single Port 2 Port (2x2 MIMO) 4 Port (4x4 MIMO) 8 Port (8x8 MIMO)                        |                |   |                |                |                |                |  |  |
|                                                                                                                   | dBm/Carrier BW |   | dBm/Carrier BW | dBm/Carrier BW | dBm/Carrier BW | dBm/Carrier BW |  |  |
|                                                                                                                   | 41.928         | 0 | 41.928         | 44.928         | 47.928         | 50.928         |  |  |

| Keysight Spect | rum Analyzer - Element I        | Materials Technology | Points: 1001, D | etector: Average (RMS                         | )                      |                                    |    |                         |                   |
|----------------|---------------------------------|----------------------|-----------------|-----------------------------------------------|------------------------|------------------------------------|----|-------------------------|-------------------|
| LXI RL         | RF 50 Ω DC<br>Gate: LO          |                      |                 | SENSE:EXT<br>Center Freq: 2<br>Trig: External | ▲A<br>2.592990000<br>1 | LIGN OFF<br>0 GHz<br>Avg Hold: 10/ | 10 | 04:06:3<br>Radio Std: M | 8 PM Oct 07, 2021 |
|                |                                 | #IFG                 | ain:Low         | #Atten: 30 dB                                 |                        |                                    |    | Radio Devic             | e: BTS            |
| 10 dB/div      | Ref Offset 40.1<br>Ref 53.18 di | 8 dB<br>3m           |                 |                                               |                        |                                    |    |                         |                   |
| Log<br>43.2    |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
| 33.2           |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
| 23.2           |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
| 13.2           |                                 | /                    |                 |                                               |                        |                                    |    |                         |                   |
| 3.18           |                                 | ł                    |                 |                                               |                        |                                    |    |                         |                   |
| -6.82          |                                 | <b> </b>             |                 |                                               |                        |                                    |    |                         |                   |
| -16.8          |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
| -26.8          |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
| -36.8          |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
| Center 2 5     | 0200 GH7                        |                      |                 |                                               |                        |                                    |    | Snan                    | 80.00 MHz         |
| #Res BW        | 820 kHz                         |                      |                 | #VBW                                          | 2.7 MH                 | Z                                  |    | ۵pun<br>#               | Sweep 1s          |
| Chann          | el Power                        |                      |                 | Power S                                       | pectra                 | I Density                          |    |                         |                   |
| 4              | 1.93 dBn                        | 1 / 40 MHz           |                 | -34                                           | 4.09 d                 | dBm /Hz                            |    |                         |                   |
|                |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
|                |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
|                |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |
|                |                                 |                      |                 |                                               |                        |                                    |    |                         |                   |





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR50) 50 MHz Bandwidth, 256QAM Modulation, Low Channel 2521.02 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW

 42.6
 0
 42.6
 45.6
 48.6
 51.6

| RL                   | RF 50 Ω DC                          |             | SENSE:EXT<br>Center Freq: 2.521020 | ALIGN OFF<br>0000 GHz<br>Avg Hold: 10/10 | 01:38:51 PM Oct 08, 20<br>Radio Std: None |
|----------------------|-------------------------------------|-------------|------------------------------------|------------------------------------------|-------------------------------------------|
|                      | Gate: EO                            | #IFGain:Low | #Atten: 30 dB                      |                                          | Radio Device: BTS                         |
| dB/div               | Ref Offset 40.18 d<br>Ref 53.18 dBm | B           |                                    |                                          |                                           |
| 2                    |                                     |             |                                    |                                          |                                           |
| 2                    |                                     |             |                                    |                                          |                                           |
| 2                    |                                     |             |                                    |                                          |                                           |
| 2                    |                                     |             |                                    |                                          |                                           |
|                      |                                     |             |                                    |                                          |                                           |
|                      |                                     |             |                                    |                                          |                                           |
| nter 2.52<br>es BW 1 | 2102 GHz<br>1 MHz                   |             | #VBW 3 MH                          | IZ                                       | Span 133.3 Ml<br>#Sweep 1                 |
| Chann                | el Power                            |             | Power Spect                        | ral Density                              |                                           |
| 42                   | 2.60 dBm                            | / 50 MHz    | -34.39                             | dBm /нz                                  |                                           |
|                      |                                     |             |                                    |                                          |                                           |
|                      |                                     |             |                                    |                                          |                                           |
|                      |                                     |             |                                    |                                          |                                           |
|                      |                                     |             |                                    | STATUS                                   |                                           |





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR50) 50 MHz Bandwidth, 256QAM Modulation, High Channel 2664.99 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 52.136

| Keysight Spect        | trum Analyzer - Elemen        | t Materials Techn | ology - Points: 1001, | , Detector: Average (                              | RMS)                        |                                     |     |                                        |                                     |
|-----------------------|-------------------------------|-------------------|-----------------------|----------------------------------------------------|-----------------------------|-------------------------------------|-----|----------------------------------------|-------------------------------------|
| (X) RL                | RF 50 ହ ଅ<br>Gate: LO         | IC                | +<br>#IFGain:Low      | EXT REF<br>Center Fre<br>Trig: Exter<br>#Atten: 30 | q: 2.66499000<br>nal1<br>dB | ALIGN OFF<br>00 GHz<br>Avg Hold: 10 | /10 | 02:53:3<br>Radio Std: M<br>Radio Devic | 7 PM Oct 07, 2021<br>None<br>e: BTS |
| 10 dB/div             | Ref Offset 40.<br>Ref 60.00 c | 18 dB<br>IBm      |                       |                                                    |                             |                                     |     |                                        |                                     |
| 50.0                  |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
| 40.0                  |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
| 20.0                  |                               | $\sim$            |                       |                                                    |                             |                                     |     |                                        |                                     |
| 10.0                  |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
| 0.00                  |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
| -10.0                 |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
| -30.0                 |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
| Center 2.6<br>#Res BW | 6499 GHz<br>1 MHz             |                   |                       | #VE                                                | 3W 3MHz                     |                                     |     | Span<br>#                              | 100.0 MHz<br>Sweep 1 s              |
| Chann                 | el Power                      |                   |                       | Power                                              | Spectra                     | al Density                          |     |                                        |                                     |
| 4                     | 3.14 dBr                      | n / 50 N          | lHz                   |                                                    | 26.15                       | dBm /м                              | Hz  |                                        |                                     |
|                       |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
|                       |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |
|                       |                               |                   |                       |                                                    |                             |                                     |     |                                        |                                     |





| Port 1, 5G NF | R, Band n41, 2496 N | ИHz - 2690 MHz, | (NR60) 60 MHz Ba | ndwidth, 256QAM M | Iodulation, Mid Char | nel 2592.99 MHz   |
|---------------|---------------------|-----------------|------------------|-------------------|----------------------|-------------------|
|               | Initial Value       | Duty Cycle      | Single Port      | 2 Port (2x2 MIMO) | 4 Port (4x4 MIMO)    | 8 Port (8x8 MIMO) |
|               | dBm/Carrier BW      |                 | dBm/Carrier BW   | dBm/Carrier BW    | dBm/Carrier BW       | dBm/Carrier BW    |
|               | 43.507              | 0               | 43.507           | 46.507            | 49.507               | 52.507            |

| Keysight Spec | trum Analyzer - Element       | Materials Technolog | y - Points: 1001, De | etector: Average (R                                 | RMS)                        |                      |       |                                         |                                     |
|---------------|-------------------------------|---------------------|----------------------|-----------------------------------------------------|-----------------------------|----------------------|-------|-----------------------------------------|-------------------------------------|
| LXU RL        | RF 50 Ω D<br>Gate: LO         | C   #IF             | Gain:Low             | EXT REF<br>Center Free<br>Trig: Exter<br>#Atten: 30 | 4: 2.59299000<br>nal1<br>dB | 0 GHz<br>Avg Hold: * | 10/10 | 11:30:2:<br>Radio Std: M<br>Radio Devic | 1 AM Oct 07, 2021<br>None<br>e: BTS |
| 10 dB/div     | Ref Offset 40.<br>Ref 60.00 d | 18 dB<br>IBm        |                      |                                                     |                             |                      |       |                                         |                                     |
| 50.0          |                               |                     |                      |                                                     |                             |                      |       |                                         |                                     |
| 30.0<br>20.0  |                               |                     |                      |                                                     |                             |                      |       |                                         |                                     |
| 0.00          |                               |                     |                      |                                                     |                             |                      |       |                                         |                                     |
| -10.0         |                               |                     |                      |                                                     |                             |                      |       | ·····                                   |                                     |
| -30.0         | 9299 GHz                      |                     |                      |                                                     |                             |                      |       | Snan                                    | 120.0 MHz                           |
| #Res BW       | 1.2 MHz                       |                     |                      | #VB                                                 | W 4 MHz                     |                      |       | #                                       | Sweep 1s                            |
| Chann         | el Power                      |                     |                      | Power                                               | Spectra                     | l Density            | ,     |                                         |                                     |
| 4             | 3.51 dBr                      | n / 60 MH           | z                    |                                                     | 25.73 (                     | dBm /M               | ЛНz   |                                         |                                     |
|               |                               |                     |                      |                                                     |                             |                      |       |                                         |                                     |
|               |                               |                     |                      |                                                     |                             |                      |       |                                         |                                     |
| MSG           |                               |                     |                      |                                                     |                             | STATUS               |       |                                         |                                     |





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR70) 70 MHz Bandwidth, 256QAM Modulation, Low Channel 2531.01 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW

 44.016
 0
 44.016
 47.016
 50.016
 53.016

| Keysight Spect        | trum Analyzer - Element       | Materials Technolog | y - Points: 1001, D | etector: Average (I                                | RMS)                         |                                  |                                          |                                        |                                     |
|-----------------------|-------------------------------|---------------------|---------------------|----------------------------------------------------|------------------------------|----------------------------------|------------------------------------------|----------------------------------------|-------------------------------------|
| LXI RL                | RF 50 Ω D<br>Gate: LO         | C<br>#IF            | Gain:Low            | EXT REF<br>Center Fre<br>Trig: Exter<br>#Atten: 30 | rq: 2.53101000<br>nal1<br>dB | LIGN OFF<br>0 GHz<br>Avg Hold: ' | 10/10                                    | 09:54:5<br>Radio Std: M<br>Radio Devic | 7 AM Oct 07, 2021<br>Ione<br>e: BTS |
| 10 dB/div             | Ref Offset 40.<br>Ref 60.00 d | 18 dB<br>Bm         |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| 50.0                  |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| 30.0                  |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| 0.00                  |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| -10.0                 |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| -30.0                 |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| Center 2.5<br>#Res BW | 3101 GHz<br>1.5 MHz           |                     |                     | #VE                                                | SW 5 MHz                     |                                  |                                          | Span<br>#                              | 140.0 MHz<br>Sweep 1 s              |
| Chann                 | el Power                      |                     |                     | Power                                              | Spectra                      | l Density                        |                                          |                                        |                                     |
| 4                     | 4.02 dBn                      | n / 70 мн           | Z                   |                                                    | 25.56 (                      | dBm /M                           | ٨Hz                                      |                                        |                                     |
|                       |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
|                       |                               |                     |                     |                                                    |                              |                                  |                                          |                                        |                                     |
| MSG                   |                               |                     |                     |                                                    |                              | STATUS                           | an a |                                        |                                     |





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR70) 70 MHz Bandwidth, 256QAM Modulation, High Channel 2655.00 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW

 44.252
 0
 44.252
 47.252
 50.252
 53.252

| Keysight Spect | rum Analyzer - Element Materia       | ls Technology - Points: 1001, | Detector: Average (RMS)                                             |                                        |                                                                  |
|----------------|--------------------------------------|-------------------------------|---------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|
| XI RL          | RF 50 Ω DC                           | #IFGain:Low                   | EXT REF Center Freq: 2.65500000<br>Trig: External1<br>#Atten: 30 dB | ALIGN OFF<br>10 GHz<br>Avg Hold: 10/10 | 10:31:44 AM Oct 07, 2021<br>Radio Std: None<br>Radio Device: BTS |
| 10 dB/div      | Ref Offset 40.18 dB<br>Ref 60.00 dBm |                               |                                                                     |                                        |                                                                  |
| 50.0           |                                      |                               |                                                                     |                                        |                                                                  |
| 30.0           |                                      |                               |                                                                     |                                        |                                                                  |
| 20.0           |                                      |                               |                                                                     |                                        |                                                                  |
| -10.0          |                                      |                               |                                                                     |                                        |                                                                  |
| -20.0          |                                      |                               |                                                                     |                                        |                                                                  |
| Center 2.6     | 5500 GHz                             |                               |                                                                     |                                        | Span 140 0 MHz                                                   |
| #Res BW        | 1.5 MHz                              |                               | #VBW 5 MHz                                                          |                                        | #Sweep 1s                                                        |
| Chann          | el Power                             |                               | Power Spectra                                                       | I Density                              |                                                                  |
| 4              | 4.25 dBm /                           | 70 MHz                        | 25.80                                                               | dBm /мнz                               |                                                                  |
|                |                                      |                               |                                                                     |                                        |                                                                  |
|                |                                      |                               |                                                                     |                                        |                                                                  |
| 150            |                                      |                               |                                                                     | STATUS                                 |                                                                  |





| Port 1, 5G NR, | Band n41, 2496 M | ИHz - 2690 MHz, | (NR80) 80 MHz Ba | andwidth, 256QAM N | Iodulation, Mid Chan | nel 2592.99 MHz   |
|----------------|------------------|-----------------|------------------|--------------------|----------------------|-------------------|
|                | Initial Value    | Duty Cycle      | Single Port      | 2 Port (2x2 MIMO)  | 4 Port (4x4 MIMO)    | 8 Port (8x8 MIMO) |
|                | dBm/Carrier BW   |                 | dBm/Carrier BW   | dBm/Carrier BW     | dBm/Carrier BW       | dBm/Carrier BW    |
|                | 44.957           | 0               | 44.957           | 47.957             | 50.957               | 53.957            |

| Keysight Spec       | trum Analyzer - Element Materia      | lls Technology - Points: 100 | 1, Detector: Average (RM                                  | S)                     |                            |       |                                     |                                       |
|---------------------|--------------------------------------|------------------------------|-----------------------------------------------------------|------------------------|----------------------------|-------|-------------------------------------|---------------------------------------|
| XI RL               | RF 50 Ω DC                           | #IFGain:Low                  | EXT REF<br>Center Freq:<br>Trig: Externa<br>#Atten: 30 dE | 2.592990000<br>11<br>3 | GN OFF<br>GHz<br>Avg Hold: | 10/10 | 04:20:0<br>Radio Std:<br>Radio Devi | 08 PM Oct 06, 2021<br>None<br>ce: BTS |
| 10 dB/div           | Ref Offset 40.18 dB<br>Ref 40.00 dBm |                              |                                                           |                        |                            |       |                                     |                                       |
| 100                 |                                      |                              |                                                           |                        | · ·                        |       |                                     |                                       |
| 10.0                |                                      |                              |                                                           |                        |                            |       |                                     |                                       |
| -10.0               |                                      | /                            |                                                           |                        |                            |       | ·····                               |                                       |
| -40.0               |                                      |                              |                                                           |                        |                            |       |                                     |                                       |
| -50.0<br>Center 2.5 | 9299 GHz                             |                              |                                                           |                        |                            |       | Spai                                | 160.0 MH                              |
| #Res BW             | 1.6 MHz                              |                              | #VBN                                                      | / 5 MHz                |                            |       | 1                                   | ≄Sweep 1 s                            |
| Chann               | el Power                             |                              | Power S                                                   | Spectral               | Density                    | /     |                                     |                                       |
| 4                   | 4.96 dBm /                           | 80 MHz                       | 2                                                         | 5.93 d                 | Bm /                       | MHz   |                                     |                                       |
|                     |                                      |                              |                                                           |                        |                            |       |                                     |                                       |
|                     |                                      |                              |                                                           |                        |                            |       |                                     |                                       |
| ISG                 |                                      |                              |                                                           |                        | STATUS                     |       |                                     | and the same and                      |





| Port 1, 5G N | R, Band n41, 2496 | MHz - 2690 MHz | z, (NR90) 90 MHz B | andwidth, QPSK Mo | dulation, Mid Chann | el 2592.99 MHz    |
|--------------|-------------------|----------------|--------------------|-------------------|---------------------|-------------------|
|              | Initial Value     | Duty Cycle     | Single Port        | 2 Port (2x2 MIMO) | 4 Port (4x4 MIMO)   | 8 Port (8x8 MIMO) |
|              | dBm/Carrier BW    |                | dBm/Carrier BW     | dBm/Carrier BW    | dBm/Carrier BW      | dBm/Carrier BW    |
|              | 45.426            | 0              | 45.426             | 48.426            | 51.426              | 54.426            |

| Keysight Spect       | rum Analyzer - Element N        | laterials Technolog | gy - Points: 1001, De | tector: Average (R                        | RMS)                         |                    |       |                                        |                                     |
|----------------------|---------------------------------|---------------------|-----------------------|-------------------------------------------|------------------------------|--------------------|-------|----------------------------------------|-------------------------------------|
| RL                   | RF 50 Ω DC                      | #IF                 | Gain:Low              | Center Free<br>Trig: Extern<br>#Atten: 30 | 4: 2.592990000<br>nal1<br>dB | D GHz<br>Avg Hold: | 10/10 | 02:10:2<br>Radio Std: M<br>Radio Devic | 7 PM Oct 06, 2021<br>lone<br>e: BTS |
| 10 dB/div            | Ref Offset 40.1<br>Ref 60.00 dE | B dB<br>Sm          |                       |                                           |                              |                    |       |                                        |                                     |
| - <b>og</b><br>50.0  |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
| 30.0                 |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
| 10.0                 |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
| 0.0                  |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
| 0.0                  |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
| enter 2.59<br>Res BW | 9299 GHz<br>1.8 MHz             |                     |                       | #VB                                       | W 6 MHz                      |                    |       | Span<br>#                              | 180.0 MH<br>Sweep 1                 |
| Chann                | el Power                        |                     |                       | Power                                     | Spectra                      | l Density          | ,     |                                        |                                     |
| 4                    | 5.43 dBm                        | I / 90 M⊦           | Iz                    |                                           | 25.88 (                      | dBm /M             | /IHz  |                                        |                                     |
|                      |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
|                      |                                 |                     |                       |                                           |                              |                    |       |                                        |                                     |
| G                    |                                 |                     |                       |                                           |                              | STATUS             |       |                                        |                                     |





| Port 1, 5G N | R, Band n41, 2496 l | MHz - 2690 MHz | , (NR90) 90 MHz B | andwidth, 64QAM M | odulation, Mid Chan | nel 2592.99 MHz   |
|--------------|---------------------|----------------|-------------------|-------------------|---------------------|-------------------|
|              | Initial Value       | Duty Cycle     | Single Port       | 2 Port (2x2 MIMO) | 4 Port (4x4 MIMO)   | 8 Port (8x8 MIMO) |
|              | dBm/Carrier BW      |                | dBm/Carrier BW    | dBm/Carrier BW    | dBm/Carrier BW      | dBm/Carrier BW    |
|              | 45.347              | 0              | 45.347            | 48.347            | 51.347              | 54.347            |

| Keysight Spect | rum Analyzer - Element        | Materials Techno | logy - Points: 1001, | Detector: Average (F                               | RMS)                                      |                    |       |       |                                                   | X           |
|----------------|-------------------------------|------------------|----------------------|----------------------------------------------------|-------------------------------------------|--------------------|-------|-------|---------------------------------------------------|-------------|
| LXIRL          | RF 50 Ω D                     | C                | 4FGain:Low           | EXT REF<br>Center Fre<br>Trig: Exter<br>#Atten: 30 | <u>^</u> ₄<br>q: 2.59299000<br>nal1<br>dB | 0 GHz<br>Avg Hold: | 10/10 | Radio | 02:24:32 PM Oct 06, 2<br>Std: None<br>Device: BTS | 2021        |
| 10 dB/div      | Ref Offset 40.<br>Ref 40.00 d | 18 dB<br>IBM     |                      |                                                    |                                           |                    |       |       |                                                   |             |
| 30.0           |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |
| 10.0           |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |
| -10.00         |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |
| -20.0          |                               | d                |                      |                                                    |                                           |                    |       |       |                                                   |             |
| -40.0          |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |
| -50.0          | 1299 GH7                      |                  |                      |                                                    |                                           |                    |       |       | Spap 180.0 M                                      | <b>1H</b> 7 |
| #Res BW 1      | I.8 MHz                       |                  |                      | #VB                                                | W 6 MHz                                   |                    |       |       | #Sweep                                            | 1 s         |
| Channe         | el Power                      |                  |                      | Power                                              | Spectra                                   | I Density          | /     |       |                                                   |             |
| 4              | 5.35 dBn                      | n / 90 M         | Hz                   |                                                    | 25.80                                     | را dBm             | MHz   |       |                                                   |             |
|                |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |
|                |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |
|                |                               |                  |                      |                                                    |                                           |                    |       |       |                                                   |             |





 Port 1, 5G NR, Band n41, 2496 MHz - 2690 MHz, (NR90) 90 MHz Bandwidth, 256QAM Modulation, Mid Channel 2592.99 MHz

 Initial Value
 Duty Cycle
 Single Port
 2 Port (2x2 MIMO)
 4 Port (4x4 MIMO)
 8 Port (8x8 MIMO)

 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW
 dBm/Carrier BW

 45.359
 0
 45.359
 48.359
 51.359
 54.359

| Keysight Spect        | trum Analyzer - Elemen       | t Materials Techn | ology - Points: 1001, D | etector: Average (                      | RMS)                        |                    |       |                                         |                                     |
|-----------------------|------------------------------|-------------------|-------------------------|-----------------------------------------|-----------------------------|--------------------|-------|-----------------------------------------|-------------------------------------|
| LXI RL                | RF 50 Ω E<br>Gate: LO        | IC                | +→-<br>#IFGain:Low      | Center Fre<br>Trig: Exter<br>#Atten: 30 | q: 2.59299000<br>nal1<br>dB | 0 GHz<br>Avg Hold: | 10/10 | 02:30:40<br>Radio Std: N<br>Radio Devic | 8 PM Oct 06, 2021<br>Ione<br>e: BTS |
| 10 dB/div             | Ref Offset 40<br>Ref 60.00 c | 18 dB<br>IBm      |                         |                                         |                             |                    |       |                                         |                                     |
| 50.0                  |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| 40.0                  |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| 30.0                  |                              |                   |                         | •                                       |                             |                    |       |                                         |                                     |
| 10.0                  |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| 0.00                  |                              |                   |                         |                                         |                             |                    | \     |                                         |                                     |
| -10.0                 |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| -20.0                 |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| -30.0                 |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| Center 2.5<br>#Res BW | 9299 GHz<br>1.8 MHz          |                   |                         | #VE                                     | SW 6 MHz                    |                    |       | Span<br>#                               | 180.0 MHz<br>Sweep 1 s              |
| Chann                 | el Power                     |                   |                         | Power                                   | Spectra                     | l Density          | ,     |                                         |                                     |
| 4                     | 5.36 dBr                     | n / 90 M          | IHz                     |                                         | 25.82 (                     | dBm /M             | ٨Hz   |                                         |                                     |
|                       |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
|                       |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
|                       |                              |                   |                         |                                         |                             |                    |       |                                         |                                     |
| MSG                   |                              |                   |                         |                                         |                             | STATUS             |       |                                         |                                     |







#### 5G NR EIRP Calculations for Eight Port MIMO Operations

EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements. Each cell site installation needs to consider the power measurements in the radio certification report as well as site specific regulatory requirements (such as antenna height, population density, etc.), site installation parameters (line loss between antenna and radio, antenna parameters, etc.) and b ase station operational parameters (MIMO operational setup, carrier power level, channel bandwidth, modulation type, etc.) to optimize performance. Transmitter output power may be reduced (from maximum) by base station setup parameters. Base station antennas are selected by the customer.

The base station antenna is selected by the customer and this EIRP calculation is based upon a sample worst case antenna. The EIRP calculation is based upon the Commscope Planar Array Antenna model T4-90A-R1-V2. This antenna assembly has four columns with a maximum beamforming gain of 22.  $3 \pm 0.8$  dBi. The columns within the antenna have  $\pm 45^\circ$  cross-polarized (orthogonal) radiators. The eight AZHL transmitter outputs are connected to the columns (four are connected to  $+45^\circ$  radiators/antennas). The AZHL provides transmitter outputs for one 4-column antenna.

Equivalent Isotropically Radiated Power (EIRP) is calculated (as specified in ANSI C63.26-2015 section 6.4 for a system of correlated output signals) from the results of power measurements (highest measured average power for each channel bandwidth type). The maximum antenna assembly beamforming gain was used for this calculation. The cable loss between the antenna and transmitter is site dependent (will not be 0 dB) but for this worst case EIRP calculation 0 dB was used. Calculations of worst-case EIRP for eight port MIMO are as follows:

| Parameter                               | 20 MHz     | 30 MHz     | 40 MHz     | 50 MHz     | 60 MHz     | 70 MHz      | 80 MHz      | 90 MHz      |
|-----------------------------------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|
| Falameter                               | Ch BW       | Ch BW       | Ch BW       |
| Power Out /Radio Antenna                | 38.9 dBm   | 40.9 dBm   | 42.1 dBm   | 43.1 dBm   | 43.8 dBm   | 44.3 dBm    | 45.1 dBm    | 45.6 dBm    |
| Port                                    | or         | or         | or         | or         | or         | or          | or          | or          |
| Fort                                    | 7.8 W      | 12.3 W     | 16.2 W     | 20.4 W     | 24.0 W     | 26.9 W      | 32.4 W      | 36.3 W      |
| Cable Loss                              | 0 dB        | 0 dB        | 0 dB        |
| Number of Ant Ports per<br>Polarization | 4          | 4          | 4          | 4          | 4          | 4           | 4           | 4           |
| Total Dower per                         | 31.0 Watts | 49.2 Watts | 64.9 Watts | 81.7 Watts | 96.0 Watts | 107.7 Watts | 129.4 Watts | 145.2 Watts |
| Belarization                            | or         | or         | or         | or         | or         | or          | or          | or          |
| PoidTization                            | 44.9 dBm   | 46.9 dBm   | 48.1 dBm   | 49.1 dBm   | 49.8 dBm   | 50.3 dBm    | 51.1 dBm    | 51.6 dBm    |
| Maximum Antenna                         |            |            |            |            |            |             |             |             |
| Beamforming Gain per                    | 23.1 dBi    | 23.1 dBi    | 23.1 dBi    |
| Polarization                            |            |            |            |            |            |             |             |             |
|                                         | 68.0 dBm   | 70.0 dBm   | 71.2 dBm   | 72.2 dBm   | 72.9 dBm   | 73.4 dBm    | 74.2 dBm    | 74.7 dBm    |
| EIRP per Polarization                   | or         | or         | or         | or         | or         | or          | or          | or          |
|                                         | 6.34 kW    | 10.0 kW    | 13.2 kW    | 16.7 kW    | 19.6 kW    | 22.0 kW     | 26.4 kW     | 29.7 kW     |
| Number of Polarizations                 | 2          | 2          | 2          | 2          | 2          | 2           | 2           | 2           |
| EIRP Total                              | 68.0 dBm   | 70.0 dBm   | 71.2 dBm   | 72.2 dBm   | 72.9 dBm   | 73.4 dBm    | 74.2 dBm    | 74.7 dBm    |
| (See Note 1)                            | or         | or         | or         | or         | or         | or          | or          | or          |
|                                         | 6.34 kW    | 10.0 kW    | 13.2 kW    | 16.7 kW    | 19.6 kW    | 22.0 kW     | 26.4 kW     | 29.7 kW     |
| EIRP Limit Calculation (See<br>Note 2)  | 79.6 dBm   | 81.4 dBm   | 82.7 dBm   | 83.6 dBm   | 84.4 dBm   | 85.1 dBm    | 85.7 dBm    | 86.2 dBm    |

Note 1: The EIRP per antenna polarity is required to be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b)2) and KDB 662911 D02v01 page 3 example (2) since the two transmitter outputs to each antenna are 90 degree-phase shifted relative to each other (cross-polarized radiators). Note 2: The EIRP limit is defined by FCC part 27.50(h)(ii) as 33dBW+ 10Log(X/Y) dBW + 10 log(360/beamwidth) dBW where X is the channel width in MHz and Y is 5.5 or 6MHz. The Commscope model T4-90A-R1-V2 antenna has a horizontal beamwidth of 26 degrees. Y was selected to be 6MHz for this calculation.

#### **Calculation Summary**

The worst case AZHL eight port MIMO EIRP levels for all 5G NR channel bandwidths using the Commscope antenna assembly model "T4-90A-R1-V2" are less than the FCC regulatory limits.



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A | AFL | 2021-03-11 | 2022-03-11 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2021-06-24 | 2022-06-24 |

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurements. This method uses trace averaging across the ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1/D)], where D is the duty cycle in decimal, to the measured power to compute the average power during the actual transmission times.

RF conducted emissions testing was performed only on one port. The AZHL antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown during 8 port output power testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

The total average transmit power of all antenna ports was determined per ANSI C63.26-2105 paragraph 6.4.3.1.

The EIRP limit is defined by FCC Part 27.50(h)(ii) as 33dBW + 10Log(X/Y) dBW + 10 log(360/beamwidth) dBW where X is the channel width in MHz and Y is 5.5 or 6MHz. PSD (power/1MHz) measurements are not required for this radio since the FCC limits for EIRP are defined in watts.



|                        |                            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      | 10(1X 2021.03.19.1                                                                   | 74HIL 2020.12.00.0                                                           |
|------------------------|----------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| EUT:                   | AZHL (C2PC LTE/5G NR       | B41)                                                     |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      | Work Order:                                                                          | NOKI0035                                                                             |                                                                              |
| Serial Number:         | YK203400025                |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      | Date:                                                                                | 13-Oct-21                                                                            |                                                                              |
| Customer:              | Nokia Solutions and Net    | tworks                                                   |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      | Temperature:                                                                         | 22.6 °C                                                                              |                                                                              |
| Attendees:             | David Le, John Rattanav    | /ong                                                     |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      | Humidity:                                                                            | 52.6% RH                                                                             |                                                                              |
| Project:               | None                       |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      | Barometric Pres.:                                                                    | 1011 mbar                                                                            |                                                                              |
| Tested by:             | Brandon Hobbs              |                                                          |                                                                                                                                                                                               | Power:              | 54 VDC                                                                                 |                                         |                                                                      | Job Site:                                                                            | TX09                                                                                 |                                                                              |
| TEST SPECIFICATI       | IONS                       |                                                          |                                                                                                                                                                                               |                     | Test Method                                                                            |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
| FCC 27:2021            |                            |                                                          |                                                                                                                                                                                               |                     | ANSI C63.26:2015                                                                       |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        |                            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
| COMMENTS               |                            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
| All losses in the me   | easurement path were ac    | counted for                                              | : attenuators, cables, DC b                                                                                                                                                                   | lock and filter whe | en in use. Band n41 c                                                                  | arriers and enab                        | led at maximum po                                                    | wer. External 1 gatir                                                                | ng was set using a tri                                                               | ig delay = 5.044ms                                                           |
| and a gate length =    | 6.8061ms. The following    | is the outp                                              | ut power measurements at                                                                                                                                                                      | the radio output p  | oorts. The output pov                                                                  | er was measure                          | ed for a single carrie                                               | r channel bandwidt                                                                   | h on port 1. The total                                                               | output power for                                                             |
| multiport (2x2 MIM     | O, 4x4 MIMO and 8x8 MI     | NO) operatio                                             | on was determined based u                                                                                                                                                                     | pon ANSI C63.26     | clauses 6.4.3.1 and 6                                                                  | .4.3.2.4 (10 Log I                      | Nout). The total outp                                                | out power for two po                                                                 | rt operation is single                                                               | e port power + 3dB                                                           |
| [i.e.: 10 Log(2)]. The | e total output power for f | our port ope                                             | eration is single port powe                                                                                                                                                                   | + 6dB [i.e.: 10 Lo  | g(4)]. The total outpu                                                                 | t power for eight                       | port operation is si                                                 | ngle port power + 9                                                                  | dB [i.e.: 10 Log(8)].                                                                |                                                                              |
|                        |                            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
| DEVIATIONS FROM        | I TEST STANDARD            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
| None                   |                            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        |                            |                                                          |                                                                                                                                                                                               | 7                   | 4                                                                                      |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
| Configuration #        | 2                          |                                                          |                                                                                                                                                                                               |                     | 1-1                                                                                    |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        |                            |                                                          | Signature                                                                                                                                                                                     | e                   |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        |                            |                                                          |                                                                                                                                                                                               |                     | Initial Value                                                                          | Duty Cycle                              | Single Port                                                          | 2 Port (2x2 MIMO)                                                                    | 4 Port (4x4 MIMO)                                                                    | 8 Port (8x8 MIMO)                                                            |
|                        |                            |                                                          |                                                                                                                                                                                               |                     | dBm/Carrier BW                                                                         |                                         | dBm/Carrier BW                                                       | dBm/Carrier BW                                                                       | dBm/Carrier BW                                                                       | dBm/Carrier BW                                                               |
| 4G LTE, Band 41, 24    | 496 MHz - 2690 MHz         |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        | Port 1                     |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        |                            |                                                          |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        | LTE15 (15M                 | IHz)                                                     |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        | LTE15 (15M                 | IHz)<br>QPSK                                             |                                                                                                                                                                                               |                     |                                                                                        |                                         |                                                                      |                                                                                      |                                                                                      |                                                                              |
|                        | LTE15 (15M                 | IHz)<br>QPSK                                             | Mid Channel 2593 MHz                                                                                                                                                                          |                     | 37.674                                                                                 | 0                                       | 37.7                                                                 | 40.7                                                                                 | 43.7                                                                                 | 46.7                                                                         |
|                        | LTE15 (15M                 | IHz)<br>QPSK<br>16QAM                                    | Mid Channel 2593 MHz                                                                                                                                                                          |                     | 37.674                                                                                 | 0                                       | 37.7                                                                 | 40.7                                                                                 | 43.7                                                                                 | 46.7                                                                         |
|                        | LTE15 (15M                 | IHz)<br>QPSK<br>16QAM                                    | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz                                                                                                                                                  |                     | 37.674<br>37.892                                                                       | 0                                       | 37.7<br>37.9                                                         | 40.7<br>40.9                                                                         | 43.7<br>43.9                                                                         | 46.7<br>46.9                                                                 |
|                        | LTE15 (15M                 | Hz)<br>QPSK<br>16QAM<br>64QAM                            | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz                                                                                                                                                  |                     | 37.674<br>37.892                                                                       | 0                                       | 37.7<br>37.9                                                         | 40.7<br>40.9                                                                         | 43.7<br>43.9                                                                         | 46.7<br>46.9                                                                 |
|                        | LTE15 (15M                 | Hz)<br>QPSK<br>16QAM<br>64QAM                            | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz                                                                                                                          |                     | 37.674<br>37.892<br>37.853                                                             | 0<br>0<br>0                             | 37.7<br>37.9<br>37.9                                                 | 40.7<br>40.9<br>40.9                                                                 | 43.7<br>43.9<br>43.9                                                                 | 46.7<br>46.9<br>46.9                                                         |
|                        | LTE15 (15M                 | IHz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM                 | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz                                                                                                                          |                     | 37.674<br>37.892<br>37.853                                                             | 0 0 0                                   | 37.7<br>37.9<br>37.9                                                 | 40.7<br>40.9<br>40.9                                                                 | 43.7<br>43.9<br>43.9                                                                 | 46.7<br>46.9<br>46.9                                                         |
|                        | LTE15 (15M                 | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM                  | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 5 MHz                                                                                                |                     | 37.674<br>37.892<br>37.853<br>37.777<br>27.942                                         | 0 0 0 0 0                               | 37.7<br>37.9<br>37.9<br>37.8<br>27 8                                 | 40.7<br>40.9<br>40.9                                                                 | 43.7<br>43.9<br>43.9<br>43.8                                                         | 46.7<br>46.9<br>46.9<br>46.8                                                 |
|                        | LTE15 (15M                 | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM                  | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz                                                  |                     | 37.674<br>37.892<br>37.853<br>37.777<br>37.813<br>37.716                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 37.7<br>37.9<br>37.9<br>37.8<br>37.8<br>37.8<br>37.7                 | 40.7<br>40.9<br>40.9<br>40.8<br>40.8<br>40.8                                         | 43.7<br>43.9<br>43.8<br>43.8<br>43.8                                                 | 46.7<br>46.9<br>46.9<br>46.8<br>46.8<br>46.8                                 |
|                        | LTE15 (15M                 | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM                  | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 MHz<br>Mid Channel 2593 MHz<br>High Channel 2682.5 MHz                                               | _                   | 37.674<br>37.892<br>37.853<br>37.777<br>37.813<br>37.716                               | 0<br>0<br>0<br>0<br>0<br>0<br>0         | 37.7<br>37.9<br>37.9<br>37.8<br>37.8<br>37.8<br>37.8<br>37.7         | 40.7<br>40.9<br>40.9<br>40.8<br>40.8<br>40.8<br>40.7                                 | 43.7<br>43.9<br>43.9<br>43.8<br>43.8<br>43.8<br>43.8<br>43.7                         | 46.7<br>46.9<br>46.9<br>46.8<br>46.8<br>46.8<br>46.7                         |
|                        | LTE15 (15M<br>LTE20 (20M   | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM                  | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 MHz<br>Mid Channel 2593 MHz<br>High Channel 2682.5 MHz                                               |                     | 37.674<br>37.892<br>37.853<br>37.777<br>37.813<br>37.716                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 37.7<br>37.9<br>37.9<br>37.8<br>37.8<br>37.8<br>37.7                 | 40.7<br>40.9<br>40.9<br>40.8<br>40.8<br>40.8<br>40.7                                 | 43.7<br>43.9<br>43.9<br>43.8<br>43.8<br>43.8<br>43.8<br>43.7                         | 46.7<br>46.9<br>46.9<br>46.8<br>46.8<br>46.8<br>46.7                         |
|                        | LTE15 (15M<br>LTE20 (20M   | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM<br>Hz)<br>256QAM | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 MHz<br>High Channel 2593 MHz<br>High Channel 2682.5 MHz                                              |                     | 37.674<br>37.892<br>37.853<br>37.777<br>37.813<br>37.716<br>39.023                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 37.7<br>37.9<br>37.9<br>37.8<br>37.8<br>37.8<br>37.7<br>39.0         | 40.7<br>40.9<br>40.9<br>40.8<br>40.8<br>40.8<br>40.7                                 | 43.7<br>43.9<br>43.9<br>43.8<br>43.8<br>43.8<br>43.7                                 | 46.7<br>46.9<br>46.9<br>46.8<br>46.8<br>46.7<br>48.0                         |
|                        | LTE15 (15M<br>LTE20 (20M   | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM<br>Hz)<br>256QAM | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 MHz<br>High Channel 2593 MHz<br>Low Channel 2596 MHz<br>Low Channel 2596 MHz                         |                     | 37.674<br>37.892<br>37.853<br>37.777<br>37.813<br>37.716<br>39.023<br>39.100           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 37.7<br>37.9<br>37.9<br>37.8<br>37.8<br>37.7<br>39.0<br>39.1         | 40.7<br>40.9<br>40.9<br>40.8<br>40.8<br>40.7<br>42.0<br>42.1                         | 43.7<br>43.9<br>43.9<br>43.8<br>43.8<br>43.8<br>43.7<br>45.0<br>45.1                 | 46.7<br>46.9<br>46.9<br>46.8<br>46.8<br>46.8<br>46.7<br>48.0<br>48.1         |
|                        | LTE15 (15M<br>LTE20 (20M   | Hz)<br>QPSK<br>16QAM<br>64QAM<br>256QAM<br>Hz)<br>256QAM | Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Mid Channel 2593 MHz<br>Low Channel 2593 MHz<br>High Channel 2693 MHz<br>Low Channel 2693 MHz<br>Low Channel 2506 MHz<br>Mid Channel 2506 MHz |                     | 37.674<br>37.892<br>37.853<br>37.777<br>37.813<br>37.716<br>39.023<br>39.000<br>39.055 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 37.7<br>37.9<br>37.9<br>37.8<br>37.8<br>37.7<br>39.0<br>39.1<br>39.1 | 40.7<br>40.9<br>40.9<br>40.8<br>40.8<br>40.8<br>40.7<br>42.0<br>42.0<br>42.1<br>42.1 | 43.7<br>43.9<br>43.9<br>43.8<br>43.8<br>43.8<br>43.8<br>43.7<br>45.0<br>45.1<br>45.1 | 46.7<br>46.9<br>46.9<br>46.8<br>46.8<br>46.8<br>46.7<br>48.0<br>48.1<br>48.1 |



|                                                                 | 4G LTE, Band 41, 2                                                                                                                                                                      | 2496 MHz - 26                                                                       | 690 MHz, Port 1, LTE1                                                                                                                                                                                                            | 15 (15MHz), QPSK, I                                                                                                                                                        | Mid Channel 2593 M                                                                                                       | Hz                                                   |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                 | Initial Value                                                                                                                                                                           | Duty Cycle                                                                          | Single Port                                                                                                                                                                                                                      | 2 Port (2x2 MIMO)                                                                                                                                                          | 4 Port (4x4 MIMO)                                                                                                        | 8 Port (8x8 MIMO)                                    |
|                                                                 | dBm/Carrier BW                                                                                                                                                                          |                                                                                     | dBm/Carrier BW                                                                                                                                                                                                                   | dBm/Carrier BW                                                                                                                                                             | dBm/Carrier BW                                                                                                           | dBm/Carrier BW                                       |
|                                                                 | 37.674                                                                                                                                                                                  | 0                                                                                   | 37.674                                                                                                                                                                                                                           | 40.674                                                                                                                                                                     | 43.674                                                                                                                   | 46.674                                               |
|                                                                 |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| 🧱 Keysight Spectrum Analy:                                      | zer - Element Materials Technolo                                                                                                                                                        | ogy - Points: 500, Dete                                                             | ector: Average (RMS)                                                                                                                                                                                                             |                                                                                                                                                                            | <u>-</u>                                                                                                                 |                                                      |
| LXIRL RF                                                        | 50 Ω DC                                                                                                                                                                                 | SE                                                                                  | ENSE:EXT A                                                                                                                                                                                                                       | ALIGN OFF                                                                                                                                                                  | 10:36:31 AM<br>Padio Std: Non                                                                                            | Oct 13, 2021                                         |
| Gate:                                                           | LO                                                                                                                                                                                      |                                                                                     | Trig: External1                                                                                                                                                                                                                  | Avg Hold: 50/50                                                                                                                                                            | radio ota. non                                                                                                           |                                                      |
|                                                                 | #1                                                                                                                                                                                      | IFGain:Low                                                                          | #Atten: 30 dB                                                                                                                                                                                                                    |                                                                                                                                                                            | Radio Device: B                                                                                                          | ITS                                                  |
| Ref                                                             | Offset 40.18 dB                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| 10 dB/div Ref                                                   | 27.00 dBm                                                                                                                                                                               |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| 17.0                                                            |                                                                                                                                                                                         | · · · · · ·                                                                         |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| 7.00                                                            |                                                                                                                                                                                         | 1                                                                                   |                                                                                                                                                                                                                                  | 1                                                                                                                                                                          |                                                                                                                          |                                                      |
| 7.00                                                            |                                                                                                                                                                                         | ł                                                                                   |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -3.00                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -13.0                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -23.0                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -33.0                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -43.0                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -53.0                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| -63.0                                                           |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
|                                                                 |                                                                                                                                                                                         |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                          |                                                      |
| Center 2.59300 G                                                | Hz                                                                                                                                                                                      |                                                                                     |                                                                                                                                                                                                                                  |                                                                                                                                                                            | Span 35                                                                                                                  | .00 MHz                                              |
| Channel Po<br>37.67                                             | wer<br>' dBm / 15 MI                                                                                                                                                                    | Hz                                                                                  | Power Spectra<br>25.91                                                                                                                                                                                                           | al Density<br>dBm /MHz                                                                                                                                                     |                                                                                                                          |                                                      |
| Channel Po<br>37.67                                             | wer<br>′ dBm / 15 мн                                                                                                                                                                    | Hz                                                                                  | Power Spectra<br>25.91                                                                                                                                                                                                           | al Density<br>dBm /мнz                                                                                                                                                     |                                                                                                                          |                                                      |
| Channel Po<br>37.67                                             | wer<br>' dBm / 15 Mł                                                                                                                                                                    | Hz                                                                                  | Power Spectra<br>25.91                                                                                                                                                                                                           | al Density<br>dBm /мнz<br><sup>status</sup>                                                                                                                                |                                                                                                                          |                                                      |
| Channel Po<br>37.67                                             | wer<br><b>dBm</b> / 15 MH<br>4G LTE, Band 41, 2                                                                                                                                         | H <b>z</b><br>2496 MHz - 263                                                        | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1                                                                                                                                                                                   | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,                                                                                                                      | Mid Channel 2593 M                                                                                                       | Hz                                                   |
| Channel Po<br>37.67                                             | wer<br><sup>7</sup> dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value                                                                                                                  | Hz<br>2496 MHz - 269<br>Duty Cycle                                                  | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port                                                                                                                                                                    | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)                                                                                                 | Mid Channel 2593 M<br>4 Port (4x4 MIMO)                                                                                  | IHz<br>8 Port (8x8 MIMO)                             |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>000                                                                                                      | Hz<br>2496 MHz - 26<br>Duty Cycle                                                   | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW                                                                                                                                                  | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW                                                                               | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW                                                                | IHz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW           |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892                                                                                                   | Hz<br>2496 MHz - 26<br>Duty Cycle<br>0                                              | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1:<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                       | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892                                                                     | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892                                                                                                   | Hz<br>2496 MHz - 26:<br>Duty Cycle<br>0                                             | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                        | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892                                                                     | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>zer - Element Materials Technolo                                                               | Hz<br>2496 MHz - 26:<br>Duty Cycle<br>0<br>2sgy - Points 500, Dete                  | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1:<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                       | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892                                                                     | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67<br>MSG<br>Keysight Spectrum Analyz<br>RL RF | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>zer - Element Materials Technolo<br>50 Ω DC                                                    | Hz<br>2496 MHz - 269<br>Duty Cycle<br>0<br>2999 - Points: 500, Dete                 | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                        | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>SN AUTO/NO RF<br>00 GHz                                          | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>zer - Element Materials Technolo<br>59 Ω DC<br>LO                                              | Hz<br>2496 MHz - 265<br>Duty Cycle<br>0<br>ogy - Points 500, Dete                   | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1:<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                       | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>SN AUTO/NO RF<br>00 GHz<br>Avg Hold: 50/50                       | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>cer - Element Materials Technolo<br>50 Ω DC<br>LO                                              | Hz<br>2496 MHz - 263<br>Duty Cycle<br>0<br>2099 - Points 500, Dete                  | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                        | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>SN AUTO/NO RF<br>00 GHz<br>Avg Hold: 50/50                       | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892<br>10:49:42 AM<br>Radio Std: Non-<br>Radio Device: E | IHZ<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892 |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>zer - Element Materials Technolo<br>50 Ω DC<br>LO #I<br>Coffset 40.18 dB                       | Hz<br>2496 MHz - 263<br>Duty Cycle<br>0<br>29y - Points 500, Dete<br>0<br>FGain:Low | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW<br>37.892                                                                                                                                        | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>SN AUTO/NO RF<br>00 GHz<br>Avg Hold: 50/50                       | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892<br>10:49:42 AM<br>Radio Std: Non<br>Radio Device: E  | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>zer - Element Materials Technolo<br>50 Ω DC<br>LO<br>#I<br>Offset 40.18 dB<br>27.00 dBm        | Hz<br>2496 MHz - 26<br>Duty Cycle<br>0<br>pay - Points 500, Dete<br>SE<br>FGain:Low | Power Spectre<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW<br>37.892<br>xtor: Average (RMS)<br>NSEEXT<br>Center Freq: 2.5930000<br>Trite: Freq: 2.5930000<br>Center Freq: 2.5930000<br>Trite: Average (RMS) | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>SN AUTO/NO RF<br>00 GHz<br>Avg Hold: 50/50                       | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>ABM / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>er - Element Materials Technolo<br>50 Ω DC<br>LO<br>#1<br>Dffset 40.18 dB<br>27.00 dBm         | Hz<br>2496 MHz - 26<br>Duty Cycle<br>0<br>cgy - Points 500, Dete<br>FGain:Low       | Power Spectra<br>25.91<br>25.91<br>90 MHz, Port 1, LTE1:<br>Single Port<br>dBm/Carrier BW<br>37.892<br>extor Average (RMS)<br>SINSE:EXT<br>ALL<br>Center Freq: 2.593000<br>Trig: External1<br>#Atten: 30 dB                      | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>GN AUTO/NO RF<br>100 GHz<br>Avg Hold: 50/50                      | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>zer - Element Materials Technolo<br>59 Ω DC<br>LO<br>#I<br>Offset 40.18 dB<br>27.00 dBm        | Hz<br>2496 MHz - 26:<br>Duty Cycle<br>0<br>ogy - Points 500, Dete<br>FGain:Low      | Power Spectra<br>25.91<br>25.91<br>90 MHz, Port 1, LTE1:<br>Single Port<br>dBm/Carrier BW<br>37.892<br>xtor Average (RMS)<br>NSE:EXT<br>Setter Freq: 2.5930000<br>Trig: External1<br>#Atten: 30 dB                               | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>5N AUTO/NO RF<br>5N AUTO/NO RF<br>5N AUTO/NO RF<br>5N AUTO/NO RF | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>2r - Element Materials Technolo<br>50 \overline DC<br>LO<br>#I<br>Offset 40.18 dB<br>27.00 dBm | Hz<br>2496 MHz - 265<br>Duty Cycle<br>0<br>599 - Points: 500, Dete<br>FGain:Low     | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1<br>Single Port<br>dBm/Carrier BW<br>37.892<br>ctor Average (RMS)<br>Center Freq: 2.5930000<br>Trig: External<br>#Atten: 30 dB                                                     | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>GN AUTO/NO RF<br>00 GHz<br>Avg Hold: 50/50                       | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892                                                      | Hz<br>8 Port (6x8 MIMO)<br>dBm/Carrier BW<br>46.892  |
| Channel Po<br>37.67                                             | Wer<br>dBm / 15 MH<br>4G LTE, Band 41, 2<br>Initial Value<br>dBm/Carrier BW<br>37.892<br>2r - Element Materials Technolo<br>50 $\Omega$ DC<br>LO<br>#1<br>Offset 40.18 dB<br>27.00 dBm  | Hz<br>2496 MHz - 265<br>Duty Cycle<br>0<br>ogy - Points 500, Dete<br>9<br>FGain:Low | Power Spectra<br>25.91<br>90 MHz, Port 1, LTE1:<br>Single Port<br>dBm/Carrier BW<br>37.892<br>etco: Average (RMS)<br>ENSE:EXT<br>Center Freq: 2.5930000<br>Trig: External1<br>#Atten: 30 dB                                      | al Density<br>dBm /MHz<br>status<br>5 (15MHz), 16QAM,<br>2 Port (2x2 MIMO)<br>dBm/Carrier BW<br>40.892<br>SN AUTO/NO RF<br>00 GHz<br>Avg Hold: 50/50                       | Mid Channel 2593 M<br>4 Port (4x4 MIMO)<br>dBm/Carrier BW<br>43.892<br>10:49:42 AM<br>Radio Std: Non<br>Radio Device: E  | IHZ<br>8 Port (8x8 MIMO)<br>dBm/Carrier BW<br>46.892 |







|                       | Gate: LO                                                                            | #IFGain:Low | Center Freq: 2.5035000<br>Trig: External1<br>#Atten: 30 dB | 000 GHz<br>Avg Hold: 10/10 | Radio Std: None<br>Radio Device: BTS |
|-----------------------|-------------------------------------------------------------------------------------|-------------|------------------------------------------------------------|----------------------------|--------------------------------------|
| 10 dB/div             | Ref Offset 40.18 d<br>Ref 53.18 dBm                                                 | В           |                                                            |                            |                                      |
| 43.2                  |                                                                                     |             |                                                            |                            |                                      |
| 23.2                  |                                                                                     |             |                                                            |                            |                                      |
| 3.18                  |                                                                                     |             |                                                            |                            |                                      |
| -6.82                 |                                                                                     |             |                                                            |                            |                                      |
| -26.8                 | aha ay na yang na yang na na yang na na yang na |             |                                                            |                            |                                      |
| Center 2.:<br>#Res BW | 50350 GHz<br>300 kHz                                                                |             | #VBW 910 k                                                 | Hz                         | Span 40.00 MHz<br>#Sweep 1 s         |
| Chanı                 | nel Power                                                                           |             | Power Spectr                                               | al Density                 |                                      |
| 3                     | 37.78 dBm /                                                                         | 15 MHz      | -33.98                                                     | dBm /Hz                    |                                      |
|                       |                                                                                     |             |                                                            |                            |                                      |
|                       |                                                                                     |             |                                                            |                            |                                      |
|                       |                                                                                     |             |                                                            | 1                          |                                      |





| Gate: LO                              | • <b>•</b> • | Center Freq: 2.682500000 GHz<br>Trig: External1 Avg Hold: | 50/50                                 | Radio Std: None | e<br>                      |
|---------------------------------------|--------------|-----------------------------------------------------------|---------------------------------------|-----------------|----------------------------|
|                                       | #IFGain:Low  | #Atten: 30 dB                                             |                                       | Radio Device: B | TS                         |
| Ref Offset 40.18 dB                   |              |                                                           |                                       |                 |                            |
| Log                                   |              |                                                           |                                       |                 |                            |
| 17.0                                  |              |                                                           | Ì                                     |                 |                            |
| 7.00                                  |              |                                                           |                                       |                 |                            |
| -3.00                                 |              |                                                           |                                       |                 |                            |
| -13.0                                 |              |                                                           |                                       |                 |                            |
| -23.0                                 |              |                                                           | · · · · · · · · · · · · · · · · · · · |                 |                            |
| -33.0                                 |              |                                                           |                                       |                 |                            |
| -43.0                                 |              |                                                           |                                       |                 |                            |
| -53.0                                 |              |                                                           |                                       |                 |                            |
| -63.0                                 |              |                                                           |                                       |                 |                            |
| Center 2.68250 GHz<br>#Res BW 300 kHz |              | #VBW 910 kHz                                              |                                       | Span 35<br>#Sw  | .00 MHz<br>reep <u>1 s</u> |
| Channel Power                         |              | Power Spectral Densit                                     | V                                     |                 |                            |
|                                       |              |                                                           |                                       |                 |                            |
| 37.72 dBm / 15                        | MHz          | 25.95 dBm //                                              | MHz                                   |                 |                            |
|                                       |              |                                                           |                                       |                 |                            |
|                                       |              |                                                           |                                       |                 |                            |
|                                       |              |                                                           |                                       |                 |                            |
|                                       |              |                                                           |                                       |                 |                            |
| MSG                                   |              | STATUS                                                    |                                       |                 |                            |





| Log                                  |                 | · · · · · · · · · · · · · · · · · · · |      |                    |                      |          | 1         |                        |
|--------------------------------------|-----------------|---------------------------------------|------|--------------------|----------------------|----------|-----------|------------------------|
| 17.0                                 |                 |                                       |      |                    |                      |          |           |                        |
| 7.00                                 |                 | <b> </b>                              |      |                    |                      |          |           |                        |
| -3.00                                |                 |                                       |      |                    | l                    |          |           |                        |
| -13.0                                |                 | /                                     |      |                    |                      |          |           |                        |
| -23.0                                |                 | 1                                     |      |                    |                      |          |           |                        |
| -33.0                                |                 |                                       |      |                    |                      |          |           |                        |
| 42.0                                 |                 |                                       |      |                    |                      |          |           |                        |
| -43.0                                |                 |                                       |      |                    |                      |          |           |                        |
| -53.0                                |                 |                                       |      |                    |                      |          |           |                        |
| -63.0                                |                 |                                       |      |                    |                      |          |           |                        |
| Center 2.59300 GH<br>#Res BW 430 kHz | z               |                                       | #VI  | 3W 1.3 MH          | z                    |          | Span<br># | 50.00 MHz<br>Sweep 1 s |
|                                      |                 |                                       |      |                    |                      |          |           |                        |
| Channel Pow                          | /er             |                                       | Powe | r Spectra          | I Density            | /        |           |                        |
| Channel Pow<br>39.10                 | /er<br>dBm / 20 | MHz                                   | Powe | r Spectra<br>26.09 | I Density<br>dBm /I  | /<br>AHz |           |                        |
| Channel Pow<br><b>39.10</b>          | ver<br>dBm / 20 | MHz                                   | Powe | r Spectra<br>26.09 | I Density            | ИНz      |           |                        |
| Channel Pow<br>39.10                 | /er<br>dBm / 20 | MHz                                   | Powe | r Spectra<br>26.09 | I Density<br>dBm /I  | ИНz      |           |                        |
| Channel Pow<br>39.10                 | /er<br>dBm / 20 | MHz                                   | Powe | r Spectra          | l Density<br>dBm  /I | /<br>ЛНz |           |                        |







#### 4G LTE EIRP Calculations for Eight Port MIMO Operations

EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regu latory requirements. Each cell site installation needs to consider the power measurements in the radio certification report as well as site specific regulatory requirements (such as antenna height, population density, etc.), site installation parameters (line loss between antenna and radio, antenna parameters, etc.) and base station operational parameters (MIMO operational setup, carrier power level, channel bandwidth, modulation type, etc.) to optimize performance. Transmitter output power may be reduced (from maximum) by base station setup parameters. Base station antennas are selected by the customer.

The base station antenna is selected by the customer and this EIRP calculation is based upon a sample worst case antenna. The EIRP calculation is based upon the Commscope Planar Array Antenna model T4-90A-R1-V2. This antenna assembly has four columns with a maximum beamforming gain of 22.3 ± 0.8dBi. The columns within the antenna have ±45° cross-polarized (orthogonal) radiators. The eight AZHL transmitter outputs are connected to the columns (four are connected to +45° radiators/antennas and four are connected to the -45° radiators/antennas). The AZHL provides transmitter outputs for one 4-column antenna.

Equivalent Isotropically Radiated Power (EIRP) is calculated (as specified in ANSI C63.26-2015 section 6.4 for a system of correlated output signals) from the results of power measurements (highest measured average power for each channel bandwidth type). The maximum antenna assembly beamforming gain was used for this calculation. The cable loss between the antenna and transmitter is site dependent (will not be 0 dB) but for this worst case EIRP calculation 0 dB was used. Calculations of worst-case EIRP for eight port

| Parameter                               | 15 MHz Ch BW | 20 MHz Ch BW |
|-----------------------------------------|--------------|--------------|
|                                         | 37.9 dBm     | 39.1 dBm     |
| Power Out /Radio Antenna                | or           | or           |
| Port                                    | 6.2 W        | 8.1 W        |
| Cable Loss                              | 0 dB         | 0 dB         |
| Number of Ant Ports per<br>Polarization | 4            | 4            |
| Total Rower per                         | 24.7 Watts   | 32.5 Watts   |
| Delevization                            | or           | or           |
| Polarización                            | 43.9 dBm     | 45.1 dBm     |
| Maximum Antenna                         |              |              |
| Beamforming Gain per<br>Polarization    | 23.1 dBi     | 23.1 dBi     |
|                                         | 67.0 dBm     | 68.2 dBm     |
| EIRP per Polarization                   | or           | or           |
|                                         | 5.0 kW       | 6.6 kW       |
| Number of Polarizations                 | 2            | 2            |
|                                         | 67.0 dBm     | 68.2 dBm     |
| EIRP Total (See Note 1)                 | or           | or           |
|                                         | 5.0 kW       | 6.6 kW       |
| EIRP Limit Calculation (See<br>Note 2)  | 78.4 dBm     | 79.6 dBm     |

Note 1: The EIRP per antenna polarity is required to be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b)2) and KDB 662911 D02v01 page 3 example (2) since the two transmitter outputs to each antenna are 90 degree-phase shifted relative to each other (cross-polarized radiators).

Note 2: The EIRP limit is defined by FCC part 27.50(h)(iii) as 33dBW+ 10Log(X/Y) dBW + 10 log(360/beamwidth) dBW where X is the channel width in MHz and Y is 5.5 or 6MHz. The Commscope model T4-90A-R1-V2 antenna has a horizontal beamwidth of 26 degrees. Y was selected to be 6MHz for this calculation.

#### **Calculation Summary**

The worst case AZHL eight port MIMO EIRP levels for all 4G LTE channel bandwidths using the Commscope antenna assembly model "T4-90A-R1-V2" are less than the FCC regulatory limits.



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model  | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|--------|-----|------------|------------|
| Analyzer - Spectrum Analyzer | Agilent            | N9010A | AFL | 2021-03-11 | 2022-03-11 |
| Block - DC                   | Fairview Microwave | SD3239 | ANC | 2021-06-24 | 2022-06-24 |
| Generator - Signal           | Agilent            | N5173B | TIW | 2020-07-17 | 2023-07-17 |

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurements. This method uses trace averaging across the ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1/D)], where D is the duty cycle in decimal, to the measured power to compute the average power during the actual transmission times.

RF conducted emissions testing was performed on all ports at NR100 middle channel in order to prove the AZHL antenna ports are essentially electrically identical. Antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.



|                       |                                                           |                                                                                                                |                                                                                                       |                           |                                                                                |                                                                                         | TbtTx 2019.08.30.0                                                                                                                                | XMit 2020.12.30                                          |
|-----------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| EUT:                  | AZHL (C2PC LTE/5G NR                                      | B41)                                                                                                           |                                                                                                       |                           |                                                                                | Work Order                                                                              | : NOKI0035                                                                                                                                        |                                                          |
| Serial Number:        | YK203400025                                               |                                                                                                                |                                                                                                       |                           |                                                                                | Date                                                                                    | : 8-Oct-21                                                                                                                                        |                                                          |
| Customer:             | Nokia Solutions and Net                                   | works                                                                                                          |                                                                                                       |                           |                                                                                | Temperature                                                                             | : 20.9 °C                                                                                                                                         |                                                          |
| Attendees:            | David Le, John Rattanav                                   | ong                                                                                                            |                                                                                                       |                           |                                                                                | Humidity                                                                                | : 51.1% RH                                                                                                                                        |                                                          |
| Project:              | None                                                      |                                                                                                                |                                                                                                       |                           |                                                                                | Barometric Pres.                                                                        | : 1021 mbar                                                                                                                                       |                                                          |
| Tested by:            | Brandon Hobbs                                             |                                                                                                                | Power: 54 VDC                                                                                         |                           |                                                                                | Job Site                                                                                | : TX09                                                                                                                                            |                                                          |
| TEST SPECIFICATIO     | ONS                                                       |                                                                                                                | Test Method                                                                                           |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
| FCC 27:2021           |                                                           |                                                                                                                | ANSI C63.26:2015                                                                                      |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
|                       |                                                           |                                                                                                                |                                                                                                       |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
| COMMENTS              |                                                           |                                                                                                                |                                                                                                       |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
| All losses in the me  | asurement path were acc                                   | counted for: attenuators, cables, DC bl                                                                        | ock and filter when in use. Band n41                                                                  | carriers and enable       | ed at maximum p                                                                | ower (40 watts/carr                                                                     | ier). External 1 gating                                                                                                                           | was set using a                                          |
| trig delay = 86.2us a | nd a gate length = 3.714                                  | ns.                                                                                                            |                                                                                                       |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
|                       |                                                           |                                                                                                                |                                                                                                       |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
| DEVIATIONS FROM       | TEST STANDARD                                             |                                                                                                                |                                                                                                       |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
| None                  |                                                           |                                                                                                                |                                                                                                       |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
|                       |                                                           |                                                                                                                | 1 1                                                                                                   |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
| Configuration #       | 2                                                         |                                                                                                                | and Jean                                                                                              |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
|                       |                                                           | Signature                                                                                                      | Ł                                                                                                     |                           |                                                                                |                                                                                         |                                                                                                                                                   |                                                          |
|                       |                                                           |                                                                                                                | Arres Oren d                                                                                          | Durtes Oreals             | Malaia                                                                         | All Dente                                                                               |                                                                                                                                                   |                                                          |
|                       |                                                           |                                                                                                                | Avg Cond                                                                                              | Duty Cycle                | Value                                                                          | All Ports                                                                               | Limit                                                                                                                                             | Deculto                                                  |
| EC ND Band n41 04     |                                                           |                                                                                                                | Avg Cond<br>Pwr (dBm)                                                                                 | Duty Cycle<br>Factor (dB) | Value<br>(dBm)                                                                 | All Ports<br>Value (dBm)                                                                | Limit                                                                                                                                             | Results                                                  |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz                                         |                                                                                                                | Avg Cond<br>Pwr (dBm)                                                                                 | Duty Cycle<br>Factor (dB) | Value<br>(dBm)                                                                 | All Ports<br>Value (dBm)                                                                | Limit                                                                                                                                             | Results                                                  |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>2560 MM Ma | dth                                                                                                            | Avg Cond<br>Pwr (dBm)                                                                                 | Duty Cycle<br>Factor (dB) | Value<br>(dBm)                                                                 | All Ports<br>Value (dBm)                                                                | Limit                                                                                                                                             | Results                                                  |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>dulation<br>Mid Chappel 2592 99 MHz                                                                     | Avg Cond<br>Pwr (dBm)                                                                                 | Duty Cycle<br>Factor (dB) | Value<br>(dBm)                                                                 | All Ports<br>Value (dBm)                                                                | Limit                                                                                                                                             | Results                                                  |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>dulation<br>Mid Channel 2592.99 MHz<br>Port 1                                                           | Avg Cond<br>Pwr (dBm)<br>46.023                                                                       | Duty Cycle<br>Factor (dB) | Value<br>(dBm)                                                                 | All Ports<br>Value (dBm)                                                                | Limit                                                                                                                                             | Results                                                  |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>dulation<br>Mid Channel 2592.99 MHz<br>Port 1<br>Port 2                                                 | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000                                                             | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0                                                 | All Ports<br>Value (dBm)<br>N/A                                                         | Limit<br>Within Tolerance                                                                                                                         | Results<br>N/A<br>N/A                                    |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>dulation<br>Mid Channel 2592.99 MHz<br>Port 1<br>Port 2<br>Port 3                                       | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000<br>45.869                                                   | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0<br>45.9                                         | All Ports<br>Value (dBm)<br>N/A<br>N/A<br>N/A                                           | Limit<br>Within Tolerance<br>Within Tolerance                                                                                                     | Results<br>N/A<br>N/A<br>N/A                             |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>dulation<br>Mid Channel 2592.99 MHz<br>Port 1<br>Port 2<br>Port 3<br>Port 4                             | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000<br>45.869<br>46.233                                         | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0<br>45.9<br>46.2                                 | All Ports<br>Value (dBm)<br>N/A<br>N/A<br>N/A<br>N/A                                    | Limit<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance                                                                                 | Results<br>N/A<br>N/A<br>N/A<br>N/A                      |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>2560AM Mo  | dth<br>dulation<br>Mid Channel 2592.99 MHz<br>Port 1<br>Port 2<br>Port 3<br>Port 4<br>Port 5                   | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000<br>45.869<br>46.233<br>46.023                               | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0<br>45.9<br>46.2<br>46.0                         | All Ports<br>Value (dBm)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | Limit<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance                                                             | Results<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>Julation<br>Mid Channel 2592.99 MHz<br>Port 1<br>Port 2<br>Port 3<br>Port 4<br>Port 5<br>Port 6         | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000<br>45.869<br>46.233<br>46.023<br>46.023                     | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0<br>45.9<br>46.2<br>46.0<br>46.0                 | All Ports<br>Value (dBm)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | Limit<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance                                         | Results<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>dulation<br>Port 1<br>Port 2<br>Port 3<br>Port 4<br>Port 5<br>Port 6<br>Port 7                          | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000<br>45.869<br>46.233<br>46.023<br>46.023<br>46.038<br>46.146 | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0<br>46.2<br>46.0<br>46.0<br>46.1                 | All Ports<br>Value (dBm)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | Limit<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance                     | Results<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        |
| 5G NR, Band n41, 24   | 96 MHz - 2690 MHz<br>(NR100) 100 MHz Bandwi<br>256QAM Mo  | dth<br>Mid Channel 2592.99 MHz<br>Port 1<br>Port 2<br>Port 3<br>Port 4<br>Port 5<br>Port 6<br>Port 7<br>Port 8 | Avg Cond<br>Pwr (dBm)<br>46.023<br>46.000<br>45.869<br>46.233<br>46.023<br>46.038<br>46.146<br>46.240 | Duty Cycle<br>Factor (dB) | Value<br>(dBm)<br>46.0<br>46.0<br>45.9<br>46.2<br>46.0<br>46.0<br>46.1<br>46.2 | All Ports<br>Value (dBm)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Limit<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance<br>Within Tolerance | Results<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |



























| 5G NR, Band n | 41, 2496 MHz - 2 | 2690 MHz, (NR10 | 0) 100 MHz Band | dwidth, 256QAM | Modulation, Mid C | Channel 2592.99 M | Hz, Port 7 |  |
|---------------|------------------|-----------------|-----------------|----------------|-------------------|-------------------|------------|--|
|               |                  | Avg Cond        | Duty Cycle      | Value          | All Ports         |                   |            |  |
|               |                  | Pwr (dBm)       | Factor (dB)     | (dBm)          | Value (dBm)       | Limit             | Results    |  |
|               |                  | N/A             | 0               | N/A            | 55.1              | N/A               | N/A        |  |

| AVERAGE POWER PORT SUMMING |        |        |        |        |        |        |        |        |           |  |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|--|
|                            | PORT 1 | PORT 2 | PORT 3 | PORT 4 | PORT 5 | PORT 6 | PORT 7 | PORT 8 | SUM TOTAL |  |
| INITIAL VALUE (dBm)        | 46.023 | 46.000 | 45.869 | 46.233 | 46.023 | 46.038 | 46.146 | 46.230 | N/A       |  |
| INITIAL VALUE (Watts)      | 40.0   | 39.8   | 38.6   | 42.0   | 40.0   | 40.2   | 41.2   | 42.0   | 323.8     |  |
| TOTAL VALUE (dBm)          | N/A    | 55.1      |  |