

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17

TEST DESCRIPTION

The antenna port spurious emissions were measured at the RF output terminal of the EUT through 3 different attenuation configurations which continues through to the RF input of the spectrum analyzer. Analyzer plots utilizing a resolution bandwidth called out by the client's test plan were made for each modulation type from 9 KHz to 8 GHz. The conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than the limits also called out by the client's test plan shown below.

The measurement methods are detailed in KDB 971168 D01v03 section 6 and ANSI C63.26-2015. Per FCC 2.1057(a)(1) and RSS Gen 6.13, the upper level of measurement is the 10th harmonic of the highest fundamental frequency. These measurements are for the frequency band after the first 100 kHz bands immediately outside and adjacent to the frequency block.

AHLBBA antenna ports 1&4 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

AHLBBA antenna ports 2&3 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 2 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

Per section 90.543(e)(3) and RSS 140 4.4 the power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm. The limit is adjusted to -19 dBm [-13 dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter for Band n14. FCC 90.543(e)(5) and RSS 140 4.4b requires a >100 kHz measurement bandwidth for emissions 100 kHz outside of the RRH operating frequency range.

Per section 90.543(f) and RSS 140 4.4, for the frequency range 1559-1610 MHz the EIRP limit is -70dBW/MHz for wideband signals and -80dBW for discrete emissions of bandwidths less than 700Hz. This equates to an EIRP of -40dBm/MHz for wideband emissions and -50dBm/MHz for discrete emissions. The limit is adjusted to -46 dBm [-40 dBm -10 log (4)] for wideband signals and -56dBm [-50 dBm -10 log (4)] for discrete emissions per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

The limit for the 9kHz to 150kHz frequency range was adjusted to –39dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 100kHz [i.e.: -39dBm = -19dBm -10log(100kHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to –29dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 100kHz [i.e.: -29dBm = -19dBm -10log(100kHz/10kHz)]. The required limit of -19dBm with a RBW of > 100kHz was used for all other frequency ranges. (See ANSI C63.26-2015 paragraph 5.7.2a for details on the Limit/RBW scaling method)

		F00//05D			147	TbtTx 2022.05.02.0	XMit 2022.02.07.0
EU Serial Number	1. AHLBBA (C2PC/C3PC 1. K9193514835	FGG/ISED)			Work Order:	4-Aug-22	
Customer	r: Nokia Solutions and N	etworks			Temperature:	22.2 °C	
Attendees	s: Mitchell Hill				Humidity:	53% RH	
Projec Tested by	y: Marty Martin	P	ower: 54VDC		Job Site	TX07	
TEST SPECIFICA	TIONS		Test Method				
FCC 27:2022	2018		ANSI C63.26:2015				
FCC 90R:2022	. 2010		ANSI C63.26:2015				
COMMENTS							
All measurement	t path losses were accour	nted for in the reference level offset including attenu	ators, cables, DC block and filter when	in use. Band n12 and Band	n14 carriers were	operating at maxi	mum power in
eacn applicable t	DM TEST STANDARD	ai port power of 80 watts.					
None							
Configuration #	1. 2. 3	Mat	Mat				
	.,_, •	Signature	Masta				
			Frequency	Measured	Max Value	Limit	Recult
Port 1			Tunge		(abiii)	- (abiii)	Nooun
	Band n14, 758 - 768 Mh	1Z					
	o MHZ Bar	QPSK Modulation					
		Mid Channel, 763 MHz	9 kHz - 150 kHz	0.01	-51.8	-39	Pass
		Mid Channel, 763 MHz Mid Channel, 763 MHz	150 KHZ - 20 MHZ 20 MHz - 1.2 GHz	0.15 737	-49.2 -38.4	-29 -19	Pass
		Mid Channel, 763 MHz	1.2 GHz - 8 GHz	4013.16	-36.4	-19	Pass
		16QAM Modulation Mid Channel 763 MHz	9 kHz - 150 kHz	0.01	-52.0	_30	Page
		Mid Channel, 763 MHz	150 kHz - 20 MHz	0.15	-48.3	-29	Pass
		Mid Channel, 763 MHz	20 MHz - 1.2 GHz	737	-38.6	-19	Pass
		64QAM Modulation	1.2 GHZ - 8 GHZ	4015.2	-36.4	-19	Pass
		Mid Channel, 763 MHz	9 kHz - 150 kHz	0.01	-51.6	-39	Pass
		Mid Channel, 763 MHz Mid Channel, 763 MHz	150 kHz - 20 MHz 20 MHz - 1 2 GHz	0.15	-48.8	-29	Pass
		Mid Channel, 763 MHz	1.2 GHz - 8 GHz	4014.52	-36.5	-19	Pass
		256QAM Modulation		0.04	E0.4	20	Derr
		Mid Channel, 763 MHZ Mid Channel, 763 MHz	9 кнz - тоџ кнz 150 kHz - 20 MHz	0.01	-52.4 -48.6	-39 -29	Pass
		Mid Channel, 763 MHz	20 MHz - 1.2 GHz	737	-38.3	-19	Pass
	10 MHz Pa	Mid Channel, 763 MHz andwidth	1.2 GHz - 8 GHz	4014.52	-36.4	-19	Pass
		256QAM Modulation					
		Mid Channel, 763 MHz Mid Channel, 763 MHz	9 kHz - 150 kHz	0.01	-51.9	-39	Pass
		Mid Channel, 763 MHz	20 MHz - 1.2 GHz	737		-29 -19	Pass
Dort 0		Mid Channel, 763 MHz	1.2 GHz - 8 GHz	4026.76	-36.4	-19	Pass
POIL 2	Band n14, 758 - 768 Mh	IZ					
	5 MHz Bar	ndwidth					
		QPSK Modulation Mid Channel 763 MHz	9 kHz - 150 kHz	0.01	-51.5	-39	Pass
		Mid Channel, 763 MHz	150 kHz - 20 MHz	0.15	-48.7	-29	Pass
		Mid Channel, 763 MHz	20 MHz - 1.2 GHz	737	-39.3	-19	Pass
		16QAM Modulation	1.2 GHZ - 0 GHZ	4032.2	-30.0	-19	Pass
		Mid Channel, 763 MHz	9 kHz - 150 kHz	0.01	-51.9	-39	Pass
		Mid Channel, 763 MHz Mid Channel, 763 MHz	150 kHz - 20 MHz 20 MHz - 1 2 GHz	0.15	-49.2 -39.7	-29	Pass
		Mid Channel, 763 MHz	1.2 GHz - 8 GHz	4037.64	-36.5	-19	Pass
		64QAM Modulation Mid Channel 763 MHz	9 kHz - 150 kHz	0.01	-51.8	_30	Page
		Mid Channel, 763 MHz	150 kHz - 20 MHz	0.15	-48.7	-39	Pass
		Mid Channel, 763 MHz	20 MHz - 1.2 GHz	737	-39.7	-19	Pass
		256QAM Modulation	1.2 GHZ - 8 GHZ	4019.96	-36.5	-19	Pass
		Mid Channel, 763 MHz	9 kHz - 150 kHz	0.01	-52.1	-39	Pass
		Mid Channel, 763 MHz Mid Channel, 763 MHz	150 kHz - 20 MHz 20 MHz - 1.2 GHz	0.15	-48.7 -39.6	-29 -19	Pass
	_	Mid Channel, 763 MHz	1.2 GHz - 8 GHz	4021.32	-36.5	-19	Pass
	10 MHz Ba	256QAM Modulation					
		Mid Channel, 763 MHz	9 kHz - 150 kHz	0.01	-51.7	-39	Pass
		Mid Channel, 763 MHz	150 kHz - 20 MHz	0.15	-49.2	-29	Pass
		Mid Channel, 763 MHz Mid Channel, 763 MHz	20 MHZ - 1.2 GHZ 1.2 GHz - 8 GHz	737 4011.8	-36.5 -36.4	- 19 -19	Pass Pass
Port 1	Dan I dd ard d					-	
	Band n14, 758 - 768 Mh 5 MHz Ban	12 ndwidth					
	J WI 12 DBI	QPSK Modulation					
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1600.11	-62.7	-46	Pass
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1609.72	-62.6	-46	Pass
		64QAM Modulation	4.550.011		oc =		5
		256QAM Modulation	1.059 GHZ - 1.61 GHZ	1604.83	-62.7	-46	Pass
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1603	-62.6	-46	Pass
	10 MHz Ba	andwidth 256QAM Modulation					
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1608.03	-62.6	-46	Pass
Port 2	Band n14 750 700 to	7					
	5 MHz Bar	ndwidth					
		QPSK Modulation	4550.011		00.0	1-	5
		ма Channel, 763 MHz 16QAM Modulation	1.559 GHz - 1.61 GHz	1606.36	-62.6	-46	Pass
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1609.55	-62.7	-46	Pass
		64QAM Modulation	1 550 CH7 1 61 CH-	4602.04	62.6	10	Deee
		256QAM Modulation	1.000 GHZ - 1.01 GHZ	1002.61	-02.0	-40	r dSS
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1609.65	-62.6	-46	Pass
	10 MHz Ba	256QAM Modulation					
		Mid Channel, 763 MHz	1.559 GHz - 1.61 GHz	1605.34	-62.6	-46	Pass

Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, QPSK Modulation, Mid Channel, 763 MHz							
Frequency	Measured	Max Value	Limit				
Range	Freq (MHz)	(dBm)	< (dBm)	Result			
150 kHz - 20 MHz	0.15	-49.23	-29	Pass			

RL	RF 50 9	DC COR	REC	SENSE:IN	П	ALIGN AUTO		07:13:4	5 AM Aug 04, 20
			PNO: Fast IFGain:Low	, Trig #Att	: Free Run en: 16 dB	Avg Type: Avg Hold:	RMS 100/100	TI	RACE 1 2 3 4 5 TYPE A WWWM DET A NNNN
dB/div	Ref Offset 2 Ref 11.70	7.7 dB dBm						Mkr1 ⁻ -49	150.0 kH .227 dBr
70					Ĭ				
SU									
3									
3									DI 1 -29.00
·									
3	Alexandrical and the second	WHAT THE REAL PROPERTY AND IN THE REAL PROPERTY AND INTERPORT							
3		"International	and the second	maying vision for the second	ens heijädissidistationaksi.		aliti ya ali	ingen gefeler en skaar en skaa Skaar en skaar en skaa	n an
rt 150 s BW	kHz 10 kHz			#VBW 30	kHz*		#Swe	Stop 2	20.000 M

	Port 1, Band n14, 758 - 7	768 Mhz, 5 Mł	Hz Bandwidth, QP	SK Modulation, M	id Channel, 763	MHz
	Range		Freg (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 1.2 GHz		737	-38.427	-19	Pass
Keysight Spectrur	m Analyzer - Element Materials Technolo	ogy	SENSE:INT	ALIGN AUTO		07:48:21 AM Aug 06, 2022
		PNO: Fast ↔	Trig: Free Run #Atten: 20 dB	Avg Type Avg Hold	: RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN
R 10 dB/div R	ef Offset 41.6 dB ef 43.60 dBm					Mkr1 737.00 MHz -38.427 dBm
Log			Ť			
33.6						
23.6						
13.6						
3.60						
-6.40						
-16.4						DL1 -19.00 dBm
-26.4						
-36.4						
-46.4						
Start 0.0200	GHz	40 (B)				Stop 1.2000 GHz
#Res BW 100	0 KHZ	#VB	W 300 KHZ*	STATUS	#Sweep	176.0 ms (30000 pts)
MGG				SIXIOS		
	Port 1, Band n14, 758 - 7	768 Mhz, 5 Mł	Hz Bandwidth, QP	SK Modulation, M	id Channel, 763	MHz
	Frequency		Measured Freq (MHz)	Max Value	Limit	Result
	Frequency Range 1.2 GHz - 8 GHz		Measured Freq (MHz) 4013.16	Max Value (dBm) -36.35	Limit < (dBm) -19	Result Pass
	Frequency Range 1.2 GHz - 8 GHz		Measured Freq (MHz) 4013.16	Max Value (dBm) -36.35	Limit < (dBm) -19	Result Pass
Keysight Spectrur	Frequency Range 1.2 GHz - 8 GHz mAnalyzer - Element Materials Technolog RF 50 Ω DC CORREC	yev 	Measured Freq (MHz) 4013.16	Max Value (dBm) -36.35	Limit < (dBm) -19	Result Pass 07:55:58 MA Aug 06, 2022
Keysight Spectrur	Frequency Range 1.2 GHz - 8 GHz mAnalyzer - Element Materials Technolo RF 50 Ω DC CORREC	ngy S PNO: Fast ↔	Measured Freq (MHz) 4013.16	Max Value (dBm) -36.35 ALIGN AUTO Avg Type: Avg Hold:	Limit < (dBm) -19 RMS 100/100	Result Pass 07:55:58 AM Aug 66, 2022 TTRACE 12.34 5.6 TYPE A WANNER
Keysight Spectrur	Frequency Range 1.2 GHz - 8 GHz m Analyzer - Element Materials Technolo RF 50 Ω DC CORREC	PNO: Fast ↔ FGain:Low	Measured Freq (MHz) 4013.16 ENSE:INT Trig: Free Run #Atten: 22 dB	Max Value (dBm) -36.35 ALIGN AUTO Avg Type: Avg Hold:	Limit < (dBm) -19 RMS 100/100	Result Pass 07:55:58 AM Aug 06, 2022 TRACE 12.345.6 TYPE ANNANN DET ANNANN T1 4.009.5 GHz
Keysight Spectrur (20 RL 1	Frequency Range 1.2 GHz - 8 GHz m Analyzer - Element Materials Technolo RF 50 Ω DC CORREC CORREC I I ef Offset 27.6 dB ef 29.60 dBm	egy PNO: Fast FGain:Low	Measured Freq (MHz) 4013.16	Max Value (dBm) -36.35 ALIGN AUTO Avg Type: Avg Hold:	Limit < (dBm) -19 RMS 100/100	Result Pass 07:55:58 AM Aug06, 2022 TRACE 2 3 4 5 6 TYPE ANNINN Kr1 4.009 5 GHz -36.354 dBm
Keysight Spectrur M RL 10 dB/cliv R	Frequency Range 1.2 GHz - 8 GHz m Analyzer - Element Materials Technolo RF 50 Ω DC CORREC CORREC International Control Contro	rgy S PNO: Fast →→ FGain:Low	Measured Freq (MHz) 4013.16 ENSE:INT Trig: Free Run #Atten: 22 dB	Max Value (dBm) -36.35 ALIGN AUTO Avg Type: Avg Hold:	Limit < (dBm) -19 RMS 100/100	Result Pass 07:55:58 MA kag 06, 2022 TRACE 2 3 4 5 6 PYPE A WINNIN kr1 4.009 5 GHz -36.354 dBm
10 dB/div R	Frequency Range 1.2 GHz - 8 GHz m Analyzer - Element Materials Technolo RF 50 Ω DC CORREC I ef Offset 27.6 dB ef 29.60 dBm	rgy PNO: Fast →→ FGain:Low	Measured Freq (MHz) 4013.16 ENSE:INT Trig: Free Run #Atten: 22 dB	Max Value (dBm) -36.35 ALIGN AUTO Avg Type: Avg Hold:	Limit < (dBm) -19 RMS 100/100	Result Pass 07:55:58 MA Aug 06, 2022 Trace 12 34 5 6 Type A WWWW DET ANNNNN kr1 4.009 5 GHz -36.354 dBm
Cog	Frequency Range 1.2 GHz - 8 GHz mAnalyzer - Element Materials Technolo RF 50 Ω DC CORREC ef Offset 27.6 dB ef 29.60 dBm	rgy PNO: Fast →→ FGain:Low	Measured Freq (MHz) 4013.16	Max Value (dBm) -36.35 ALIGN AUTO Avg Type: Avg Hold:	Limit < (dBm) -19 RMS 100/100	Result Pass 07:55:58 AM Aug 6, 2022 TRACE 12 3 4 5 6 TYPE A WINNIN DET ANNINN kr1 4.009 5 GHz -36.354 dBm

#Res BW 1.0 MHz	#VBW 3.0 MHz*	#Sweep	175.0 ms (15000 pts)
Start 1.200 GHz			Stop 8.000 GHz
-bU.4			
-50.4			
-40.4			
-30.4			
-20.4			DL1 -19.00 dBm
-10.4			
-0.40			
9.60			

Frequer	су	Measured	Max Value	Limit	Beault
	;) ku-		(UDIII)	< (ubiii)	Result
3 KHZ - 130		0.01	-51.57	-00	1 435
Keysight Spectrum Analyzer - Element Materia	als Technology	CENCEANT	A ALICALOFT		
	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 12 dB	Avg Type: Avg Hold: 1	RMS 100/100	TRACE 1 2 3 4 5 TYPE A WWW DET A N N N N
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm					Mkr1 9.000 kH -51.971 dBn
209					
1.90					
-8.10					
-18.1					
-28.1					
-38.1					DL1 ~39.00 dB
-48.1 1					
-58 1		Δ			Δ
and the second s	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm			٨	
-68.1		m monthered	mmmmm	1 mmm	mont have
-78.1					
Start 9.00 kHz #Res BW 1.0 kHz	#VE	3W 3.0 kHz*		#Sweep	Stop 150.00 kH 174.4 ms (8001 pts
MSG			STATUS		

Port 1, Band n14, 758 - 768 Mhz, 5 MH	z Bandwidth, 16C	AM Modulation, I	Mid Channel, 763	MHz	
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBm)	< (dBm)	Result	
150 kHz - 20 MHz	0.15	-48.3	-29	Pass	

VI RI	PE 50.0	COPPEC		ENCE-INT		IGN OFF		07:56:27	AM Aug 04, 2025
	N 50 32		PNO: Fast ↔→ IFGain:Low	Trig: Free Ru #Atten: 16 dB	un B	Avg Type: I Avg Hold: 1	RMS 00/100	TF	ACE 1 2 3 4 5 DET A NNNN
I0 dB/div	Ref Offset 27.7 Ref 11.70 dB	dB m						Mkr1 1 -48.	50.0 kHz 295 dBm
1 70									
8.30									
18.3									
28.3									DI 1 -29.00 dBn
38.3									
48.3									
58.3									
68.3	and the state of t	New York Contraction of the	en della sinata dalla machada and	internet setting oppid in the set	d of a state of a little state of a	na. spullardu a "den sei	a 18/18, ang an 188, j.). Ki bia		
78.3				ng ng pi Minisipi di Tani (ba	n man fin test justimpie and (
Start 150	kHz							Stop 2	20.000 MHz
Res BW	10 kHz		#VBV	V 30 kHz*			#Sweep	174.4 ms	(8001 pts

	Frequency		Measured	Max Value	Limit	Pocult
	20 MHz - 1.2 GHz		737	-38.6	-19	Pass
Keysight Spectrun	n Analyzer - Element Materials Technolo RF 50 Ω DC CORREC	gyS	ENSE:INT	ALIGN AUTO		07:51:04 AM Aug 06, 2022
	I	PNO: Fast ↔ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN
10 dB/div Re	ef Offset 41.6 dB ef 43.60 dBm					-38.603 dBm
33.6						
23.6						
13.6						
3.60						
-6.40						
-16.4						DL1 -19.00 dBm
-26.4						
-36.4				1		
-46.4						
Start 0.0200	CH ₂					Stop 1 2000 GHz
#Res BW 100) kHz	#VBV	V 300 kHz*	STATUS	#Sweep 170	5.0 ms (30000 pts)
	Port 1 Band n14 758 -	768 Mhz 5 Mi	Hz Bandwidth 160	AM Modulation	Mid Channel 763	MHz
	Frequency		Measured	Max Value	Limit	
	Range		Freg (MHz)	(dBm)	< (dBm)	Result

Frequency		Max Value	Limit	Desult
Range 9 kHz - 150 kHz		-51.61	-39	Pass
0 KHZ - 100 KH	0.01	-01.01	-00	1 435
Keysight Spectrum Analyzer - Element Materials Te	echnology REC SENSE:INT	ALIGN OFF		08:14:54 AM Aug 04, 2022
	PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 12 dB	Avg Type: Avg Hold: 1	RMS 100/100	TRACE 2 3 4 5 TYPE A WWWW DET A NNNN
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm				Mkr1 9.000 kHz -51.607 dBm
1.90				
-810				
-18.1				
-28.1				
-38.1				DL1 - 39.00 dBir
-48.1				
monor	Λ			٨
and the second s	man			
-68.1	and have been were	mommon	Awarman	mont have an
-78.1				
Start 9.00 kHz	#\/P\// 2.0 kH74		#Swoon 1	Stop 150.00 kHz

_	1114, 100 100 1012, 0 101		Aivi iviodulation, i	vild Channel, 763	MHZ
Freq	uency	Measured	Max Value	Limit	Beault
150 kHz	- 20 MHz	0 15	-48 79	< (uBill)	Pass
150 KHZ	- 20 10112	0.15	-40.79	-29	1 455
🔤 Keysight Spectrum Analyzer - Element M	aterials Technology				
LX RL RF 50Ω DC	CORREC SI	ENSE:INT	ALIGN OFF	RMS	08:17:55 AM Aug 04, 2022 TRACE 1 2 3 4 5 6
	PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 16 dB	Avg Hold:	100/100	TYPE A WWWWW DET A N N N N N
Ref Offset 27.7 dB				N	/kr1 150.0 kHz -48.791 dBm
Log		Ĭ			
1 70					
-8.30					
-18.3					
-28.3					DI 1 -29.00 dBm
-38.3					
1					
-48.3 🗲					
-58.3					
-68.3					
	What a part of the state of the		nersfeldet big toget frank galanter and	aline to a state of the second se	antaine a the grant plain of a straight for a state
-78.3					
Start 150 kHz #Res BW 10 kHz	#VBV	V 30 kHz*		#Sweep 17	Stop 20.000 MHz 74.4 ms (8001 pts)
MSG			STATUS		
	44 750 700 ML - 514		A. A. A. J. J. C.		N411-
Port 1, Band	n14, 758 - 768 Mhz, 5 MF uency	IZ Bandwidth, 64Q	Max Value	Limit	MHZ
Ra	nge	Freq (MHz)	(dBm)	< (dBm)	Result
20 MHz	- 1.2 GHz	737	-38.64	-19	Pass
🔤 Keysight Spectrum Analyzer - Element N	laterials Technology				
	CORDEC	ENCERTAIT	ALICN AUTO		07-50-00 AM Aug 05 200

		PNO: Fast + IFGain:Low	. Trig: Free #Atten: 20	Run dB	Avg Avg H	lold: 100/100	1	TYPE A WWWWW DET A NNNNN
10 dB/div	Ref Offset 41.6 dB Ref 43.60 dBm						Mkr1 73 -38	7.00 MHz .635 dBm
33.6								
23.6								
13.6								
3.60								
-6.40								
-16.4								DL1 -19.00 dBm
-26.4								
-36.4				(
-46.4								
Start 0.0: #Res BW	200 GHz / 100 kHz	#VB	W 300 kHz	*		#Swe	ep 176.0 ms	1.2000 GHz (30000 pts)
MSG					STAT	s		

	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	1.2 GHz - 8 GHz		4014.52	-36.48	-19	Pass
1						
Keysight Spectrum Analyz	zer - Element Materials Technolo	pav				
XIRL RF	50 Ω DC CORREC		SENSE:INT	ALIGN AUTO		07:58:27 AM Aug 06, 2022
	I	PNO: Fast ↔→ FGain:Low	Trig: Free Run #Atten: 22 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN
Ref Offs 10 dB/div Ref 29	set 27.6 dB .60 dBm				М	kr1 4.020 4 GH -36.476 dBm
			Ť			
19.6						
9.60						
-0.40						
-10.4						
~ .						DL1 -19.00 dBr
-20.4						
-30.4						
			∳'			
-40.4			\sim	$\sim\sim\sim$		<u> </u>
-50.4						
-60.4						
Start 1.200 GHz						Stop 8.000 GHz
#Res BW 1.0 MHz		#VB	W 3.0 MHz*		#Sweep 1	75.0 ms (15000 pts
ASG				STATUS		
Por	t 1, Band n14, 758 - 7	68 Mhz, 5 MF	Iz Bandwidth, 2560	AM Modulation.	Mid Channel, 76	3 MHz
	Frequency		Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	9 kHz - 150 kHz		0.01	-52.39	-39	Pass

	Port 1, Band	n14 758 - 768 Mhz.	5 MHz Bandwidth, 2560	DAM Modulation.	Mid Channel, 763	3 MHz
	Free	quency	Measured	Max Value	Limit	
	R	ange	Freq (MHz)	(dBm)	< (dBm)	Result
	150 kH	z - 20 MHz	0.15	-48.61	-29	Pass
•			•			•
	Spectrum Analyzer - Element	Materials Technology				
LXI RL	RF 50 Ω D0	CORREC	SENSE:INT	ALIGN OFF		08:46:53 AM Aug 04, 2022
		PNO: Fast IFGain:Low	→→ Trig: Free Run #Atten: 16 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N
10 dB(div	Ref Offset 27.7 d	3			Ν	/kr1 155.0 kHz -48.607 dBm
Log			The second secon			
1.70						
0.00						
-8.30						
.18.3						
-10.3						
-28.3						DI 1 -29.00 dBm
-38.3						
1						
-48.3						
-58.3						
-68.3	an the state of th					
		and the second	n gelen de provinsiere de provinsiere de la companyer	electrony for a particulation com	مهنورهم ومطينا فالما المالية المراجع والمحمد و	۲۰۰۵٬۰۰۹ <mark>و او در او</mark>
-78.3						
Start 15	0 kHz					Stop 20.000 MHz
#Res B	N 10 kHz		VBW 30 kHz*		#Sweep 17	74.4 ms (8001 pts)
MSG				STATUS	-	
		11 750 700 5 "				
	Port 1, Band	n14, 758 - 768 Mhz,	5 MHz Bandwidth, 2560	JAM Modulation,	Mid Channel, 763	3 MHZ
	Free	quency	weasured			Pocult
	7	ange		(UDIII)		Result

L	RF	50 Ω D	CORREC		9	SENSE:INT		ALIGN	AUTO		07:53	3:18 AM Aug 06. 3
				PNO: Fast IFGain:Low		Trig: Free #Atten: 20	Run dB	Á	Avg Type Vg Hold:	: RMS 100/100		TRACE 1 2 3 4 TYPE A WWW DET A N N N
B/div	Ref Offs Ref 43	et 41.6 d .60 dBn	B n								Mkr1 7 -3	′37.00 M 8.278 dE
							Ĭ					
												DL1 -19.0
								1				
								لأحسبه				
0.020	0 GHz										Stop	o 1.2000 (

	Frequency		Measured	Max Value	Limit	Ba	
	1 2 GHz - 8 GHz		4014 52	-36.44	-19	P	acc
					-		
Keysight Spectrum Anal	lyzer - Element Materials Techn 50 Ω DC CORREC	ology	SENSE:INT	ALIGN AUTO		07:59:37	AM Aug 06, 2022
		PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 22 dB	Avg Type: Avg Hold: 1	RMS 100/100	TR	ACE 123456 TYPE A WWWWW DET A NNNNN
Ref Of 10 dB/div Ref 2	fset 27.6 dB 9.60 dBm				Μ	lkr1 4.0 -36.	13 1 GHz 439 dBm
			Ý				
19.6							
9.60							
-0.40							
-10.4							
20.4							DL1 -19.00 dBm
-20.4							
-30.4			♦ ¹				
-40.4			\sim	$\rightarrow \sim \sim$		<u> </u>	~~~
-50.4							
-60.4							
Start 1.200 GHz #Res BW 1.0 MH	Iz	#VB	W 3.0 MHz*		#Sweep 1	Stop 75.0 ms	8.000 GHz (15000 pts)
MSG				STATUS			

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
9 kHz - 150 kHz	0.01	-51.9	-39	Pass

	Port 1, Band n14, 758 - 7	768 Mhz, 10 MH	Iz Bandwidth, 256	QAM Modulation,	Mid Channel, 76	3 MHz	
	Frequency		Measured	Max Value	Limit	Pocult	
	150 kHz - 20 MHz		0.15	-48.72	-29	Pass	
	100 Mile 20 Mile		0.10	10.12	20	1 400	
	🛄 Keysight Spectrum Analyzer - Element Materials Techno	blogy					
	CM RL RF 50 Ω DC CORREC	SI	ENSE:INT	ALIGN AUTO	DMS	10:20:35 AM Aug 04, 202	2
		PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 16 dB	Avg Hold: 1	100/100		6 *
	Ref Offset 27.7 dB 10 dB/div Ref 11.70 dBm				N	/lkr1 150.0 kHz -48.724 dBn	z 1
	Log						
	1.70						
	-8.30						
	-18.3						
	28.3					DL 1 -29 00 dBr	
	-38.3						
	1						
	-48.3 🗲						
	58.2						
	-30.5						
	-68.3	and a second state of the latter of					
		and the second second second second	and the state of the second state of the second	and the state of the		rrest and and many traded straighting as	*
	-78.3						
	Start 150 kHz #Res BW 10 kHz	#VBV	V 30 kHz*		#Sweep 17	Stop 20.000 MH 4.4 ms (8001 pts	z))
	MSG			STATUS			
	Port 1, Band n14, 758 - 7	768 Mhz, 10 MF	Iz Bandwidth, 256	QAM Modulation,	Mid Channel, 76	3 MHz	
	Range		Freg (MHz)	Max value (dBm)	< (dBm)	Result	
1	20 MHz - 1.2 GHz		737	-37.07	-19	Pass	

keysight Spectrum Analyzer - Element Materials Tec	nnology		
RL RF 50 Ω DC CORRE	C SENSE:INT	ALIGN AUTO	08:23:44 AM Aug 06, 20
	PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB	Avg Hold: 100/100	TYPE A WWW DET A N N N
Ref Offset 41.6 dB B/div Ref 43.60 dBm			Mkr1 737.00 MI -37.072 dB
6			
a			
6			
,			
4			DL1 -19.00
4			
4			
n Territoria a seconda propiata en la propiata de seconda de seconda des del litera de seconda de seconda de second			
			0 4 4 0000 0
es BW 100 kHz	#VBW 300 kHz*	#Swee	Stop 1.2000 G ep 176.0 ms (30000 r

Freque	ncy	Measured	Max Value	Limit		
Rang	le	Freq (MHz)	(dBm)	< (dBm)	Result	1
1.2 GHz -	8 GHz	4026.76	-36.38	-19	Pass	
🤷 Keysight Spectrum Analyzer - Element Materi	ials Technology					×
XI RL RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO	-	08:26:19 AM Aug 06, 2	2022
	PNO: Fast	. Trig: Free Run #Atten: 22 dB	Avg Type: Avg Hold: 1	RMS 100/100	TYPE A WWW DET A N N I	15 6 ₩₩₩ NNN
	II Gam.Low			Mk	1 4 020 8 C	U-7
Ref Offset 27.6 dB				WIN	-36 381 dF	Rm
19.6						
9.60						
-0.40						
-10.4						
					DI4 40.00	L I Dan
-20.4					DET -19.00	
-30.4		1				
-40.4						\leq
-50.4						
-60.4						
Start 1.200 GHz		A			Stop 8.000 G	Hz
	#\/P	MI 3 0 MHz*		#Sween 174	5.0 ms (15000 r	te)

Frequen	су	Measured Freq (MHz)	Max Value	Limit	Result
9 kHz - 150	kH7	0.01	-51 54	-39	Pass
			1		1
Keysight Spectrum Analyzer - Element Material RL RF 50 Ω DC C	s Technology ORREC	SENSE:INT	ALIGN OFF		09:02:15 AM Aug 04, 2022
	PNO: Wide ↔ IFGain:Low	 Trig: Free Run #Atten: 12 dB 	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNN
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm					Mkr1 9.388 kHz -51.541 dBm
		Ť			
1.90					
-8.10					
-18.1					
-28.1					
38.1					DI 1 - 39.00 dBm
-48.1					
-58.1					Λ
-68.1	mana	no hanna	0.0	Δ	
			and the way	"have more	man pure
-78.1					
Start 0.00 kHz					Stop 150 00 kHz
#Res BW 1.0 kHz	#VI	BW 3.0 kHz*		#Sweep 1	74.4 ms (8001 pts)
MSG			STATUS		

Port 2, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, QPSK Modulation, Mid Channel, 763 MHz										
Frequency	Measured	Max Value	Limit							
Range	Freq (MHz)	(dBm)	< (dBm)	Result						
150 kHz - 20 MHz	0.15	-48.71	-29	Pass						

RL	RE	IN O DC	CORREC		SENSEIINT		I IGN OFF		09:04:46	5 AM Aug 04 202
				PNO: Fast ++	. Trig: Free #Atten: 16	Run dB	Avg Type: Avg Hold: 1	RMS 00/100	TF	ACE 1 2 3 4 5 TYPE A WWW DET A NNNN
) dB/div	Ref Offset Ref 11.7	27.7 dB 0 dBm							Mkr1 1 -48.	55.0 kH 705 dBn
70										
3.3										
3.3										DI 1 -29.00.d
3.3										
3.3										
3.3										
3.3	and a strength for the states			teles, have a shifted on the states	Anna takata wata manata	والمستحد ومحادث والأروا	an an de Ballet an San San Anna, a' ai dh' an an Anna	unimultin such abituition	v. el des es dedicións	ha la falmendan sa
3.3									an ann	
450									0	0.000 84
art 150 Res BW	KHZ 10 kHz			#VE	W 30 kHz*			#Sweer	Stop 2 0 174.4 ms	20.000 MF \$ (8001 pt

	Frequency Range		Measured Freg (MHz)	Max Value (dBm)	Limit < (dBm)	Result
	20 MHz - 1.2 GHz		737	-39.6	-19	Pass
· · ·						·
Keysight Spectr	rum Analyzer - Element Materials Technolo	gy				
LXI RL	RF 50 Ω DC CORREC	S	ENSE:INT		RMS	08:04:25 AM Aug 06, 2022 TRACE 1 2 3 4 5 6
	F	PNO: Fast ↔→ FGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold:	100/100	TYPE A WWWWW DET A N N N N N
	Ref Offset 41.6 dB				M	kr1 737.00 MHz
10 dB/div	Ref 43.60 dBm					-39.594 dBm
33.6	<u>م المال</u>			All the second		
23.6						
13.6						
2.60						
3.80						
-6.40	<u>سم مما ک</u>					
-16.4						DL1 -19.00 dBm
-26.4						
-36.4						
46.4						
-40.4						
Start 0.0200 #Res BM/ 11	0 GHz	#VB	A/ 300 kHz*		#Sween 17	Stop 1.2000 GHz
	20 KH2		4 300 KH2	STATUS	#Gweep II	oro una (accore pres)
	Port 2, Band n14, 758 - 7	768 Mhz, 5 M	Hz Bandwidth, QP	SK Modulation, N	Mid Channel, 763	MHz
	Frequency		Measured	Max Value	Limit	B H
	Kange		Freq (IVIHZ)	(asm)	< (asm)	Result

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
9 kHz - 150 k	Hz 0.01	-51.86	-39	Pass
Keysight Spectrum Analyzer - Element Materials T	echnology			- 6 ×
LXI RL RF 50Ω DC COF	REC SENSE:INT	ALIGN OFF		09:19:39 AM Aug 04, 2022
	PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 12 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm				Mkr1 9.141 kHz -51.858 dBm
Log				
1.90				
-8.10				
-18.1				
-28.1				
-38.1				DL1 -39.00 dBm
-40.1				
-58.1				A
	mmmmm has seen as		۸	
-80.1		www.	a month	month from
-78.1				
Start 9.00 kHz #Res BW 1.0 kHz	#\/B\\/ 3.0 kHz*		#Sween	Stop 150.00 kHz
MSG	#VEVV J.0 KHZ	STATUS	#oweep	17444 IIIS (8001 pts)

Port 2, Band n14, 758 - 768 Mhz, 5 MH	z Bandwidth, 16C	AM Modulation, I	Mid Channel, 763	3 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	0.15	-49.19	-29	Pass

I PE 50.0 DC	COPPEC		ENCE-INT	ALIGN OFF		00-21-20 AM Aug 04 -20
	CONCEC	PNO: Fast +++ FGain:Low	Trig: Free Run #Atten: 16 dB	Avg Type: R Avg Hold: 10	RM S 00/100	TRACE 2 3 4 TYPE A WWW DET A N N N
Ref Offset 27.7 dB B/div Ref 11.70 dBm						Mkr1 150.0 kł -49.189 dB
			Ĭ			
						DI 1-29.00
with the stand of						
	and the state of t	langetyk som interaptionale state	<mark>stylege</mark> likke my'nykske person stylest fyn	terrippiscology distributions projects ligning a	an de la companya de	ielijfe eizengeneele sterekense tierekerste
t 150 kHz						Stop 20.000 M

element

F	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
20 M	MHz - 1.2 GHz	737	-39.06	-19	Pass
Keysight Spectrum Analyzer - Elen	nent Materials Technology		ALTCH AUTO		
KE KE DU V	PNO: Fast H IFGain:Low	Trig: Free Run #Atten: 20 dB	ALIGN AUTO Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 TYPE A WWW DET A N N N
Ref Offset 41. 10 dB/div Ref 43.60 d	6 dB Bm			M	kr1 737.00 MH -39.061 dB
		ľ			
33.0					
23.6					
13.6					
3.60					
-6.40					
-16.4					DL1 -19.00 d
-26.4					
			1		
-36.4					
-46.4					
Start 0.0200 GHz					Stop 1.2000 GH
Res BW 100 kHz	#V	BW 300 kHz*		#Sweep 17	76.0 ms (30000 pt

	Port 2, Band n14, 758 - 768 Mhz, 5 M	Hz Bandwidth, 160	AM Modulation, I	Mid Channel, 763	MHz	
	Frequency	Measured	Max Value	Limit		
	Range	Freq (MHz)	(dBm)	< (dBm)	Result	
ĺ	1.2 GHz - 8 GHz	4037.64	-36.47	-19	Pass	

RL RF 50 Ω DC CO	RREC	SENSE:INT	ALIGN AUTO		08:13:28	AM Aug 06, 2022
	PNO: Fast ↔ IFGain:Low	. Trig: Free Run #Atten: 22 dB	Avg Type Avg Hold:	RMS 100/100	TF	ACE 1 2 3 4 5 TYPE A WWWW DET A NNNN
Ref Offset 27.6 dB dB/div Ref 29.60 dBm					Mkr1 4.0 -36.	19 0 GHz 465 dBm
3		Ĭ				
.6						
60						
4						DI 4 40 00 VD
4						DCT -19.00 0BN
4		1				
4		<u> </u>	\rightarrow			
4						
4						
art 1.200 GHz es BW 1.0 MHz	#VB	W 3.0 MHz*		#Sweep	Stop 175.0 ms	8.000 GHz (15000 pts
			STATUS			

Freq	uency	Measured Freg (MHz)	Max Value (dBm)	Limit < (dBm)	Result	
9 kHz -	150 kHz	0.01	-51.83	-39	Pass	
Keysight Spectrum Analyzer - Element M	aterials Technology					x
XX RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO		09:35:20 AM Aug 04, 20)22
	PNO: Wide IFGain:Low	 Trig: Free Run #Atten: 12 dB 	Avg Type: I Avg Hold: 1	RMS 00/100	TRACE 1 2 3 4 TYPE A WWW DET A N N N	56 ₩₩ NN
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm					Mkr1 9.000 kH -51.831 dB	lz m
Log						
1 90						
1.00						
-8 10						
-18.1						
-28.1						
-38.1					DL1 -39.00 d	Bm
-48.1						
manna a		٨				
-58.1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	mm			۸		
-68.1		and the second s	men manual and a second and a second and a second a secon	Vham	www home	
70.4						
-70.1						
Start 9.00 kHz #Res BW 1.0 kHz	#	VBW 3.0 kHz*		#Sweep	Stop 150.00 kH 174.4 ms (80 <u>01 pt</u>	iz ts)
MSG			STATUS			

Port 2, Band n14, 758 - 768 Mhz, 5 MH	z Bandwidth, 64C	AM Modulation, I	Mid Channel, 763	MHz	
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBm)	< (dBm)	Result	
150 kHz - 20 MHz	0.15	-48.68	-29	Pass	

Key	sight Spe	ctrum Ar	nalyzer - Element	Materials Technol	ogy	annuan suml					
XI KL	-	ĸ⊦	50 Ω D	C CORREC		SENSE:INI	Pure P	Avg Type:	RMS	09:38:31 TR	AM Aug 04, 2022
					PNO: Fast ++ IFGain:Low	#Atten: 16	dB	Avginoia: 1	00/100		DETANNNN
10 dE	3/div	Ref (Ref	0ffset 27.7 d 11.70 dBr	B n						Mkr1 1 -48.	50.0 kHz 684 dBm
^{_og}							Ĭ				
1.70											
-8.30											
-18.3											
-28.3											DI 1 -29.00 dBm
20.0											
-38.3											
-48.3	1 										
	l										
-58.3	-		and a state of the								
-68.3			A DESCRIPTION OF THE OWNER OF THE	Law Martin Contraction	til ette settle tegleit fördenar for	waranter and the second	urte inti cer inci incina	en andere faller ander der ster der der der der der der der der der d		ellêr werene teken	
-78.3											
Star	150	kHz								Stop 2	0.000 MHz
#Res	SBW	10 KH	Z		#VE	SW 30 kHz*			#Swee	5 174.4 ms	(8001 pts)

Range Freq (MHz) (dBm) < (dBm)		Freque	ency	Measured	Max Value	Limit	
20 MHz - 1.2 GHz 737 -40.45 -19 Pass		Rang	ge	Freq (MHz)	(dBm)	< (dBm)	Result
Keydight Spectrum Analyzer - Element Materials Technology CORREC SENSE:INT ALIGN AUTO 08:07:21 AM AUG06, 22 R.L<		20 MHz - 1	1.2 GHz	737	-40.45	-19	Pass
Propuls operating by the limit matrix is the limit of the limit	M Keysight Spa	strum Analyzer Element Mater	rials Tochaology				
PNO: Fast IFGain:Low Trig: Free Run #Atten: 20 dB Avg Type: RMS AvgIHold: 100/100 Trace 0.34 Type: RMS AvgIHold: 100/100 Ref Offset 41.6 dB Mkr1 737.00 MH -40.446 dB 33.6 Mkr1 737.00 MI -40.446 dB 33.6 Image: Start Start Start Start Stop 1.2000 CHz #Res BW 100 kHz	LXI RL	RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO		08:07:21 AM Aug 06, 2022
Ref Offset 41.6 dB Mkr1 737.00 Mi 336 -40.446 dB 34 -40.446 dB 350 -40.446 dB 361 -40.446 dB 362 -40.446 dB 363 -40.446 dB 364 -40.446 dB 365 -40.446 dB 366 -40.446 dB </td <td></td> <td></td> <td>PNO: Fast ↔ IFGain:Low</td> <td>, Trig: Free Run #Atten: 20 dB</td> <td>Avg Type: Avg Hold: 1</td> <td>RMS 100/100</td> <td>TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN</td>			PNO: Fast ↔ IFGain:Low	, Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold: 1	RMS 100/100	TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN
33.6 33.6 33.6 36 33.6 36 36.4 36.4 -15.4 011-15000 -15.4 011-15000 Start 0.0200 CHz \$top 1.2000 CHz #Res BW 100 kHz #VBW 300 kHz* \$tot 0.200 CHz \$top 1.2000 CHz #Res BW 100 kHz \$top 1.2000 CHz	10 dB/div	Ref Offset 41.6 dB Ref 43.60 dBm				Ν	/kr1 737.00 MHz -40.446 dBm
33.6				1 Y			
33.6 36.0							
23.6 13.6 3.60 	33.6						
13 6 13 6 14 6	23.6						
136	20.0						
3 60 -6 40 -16.4 -26.4 -36.4 -36.4 -46.4 Start 0.0200 GHz #Res BW 100 kHz #VBW 300 kHz* #Start 0.0200 GHz #Start 0.0	13.6						
3 60							
6.40 -16.4 -26.4 -36.4 -46.4 -36.4 -46.4 -36.4 -46.4 -36.4 -46.4 -36.4 -46	3.60						
-6.40 -16.4 -27.5 -2							
16.4 00.1 13000 26.4 00.1 3000 36.4 00.1 3000 45.4 00.1 3000 Start 0.0200 GHz #VBW 300 kHz* #Res BW 100 kHz #VBW 300 kHz*	-6.40						
-16.4 00.1.1.30000 -26.4 -26.4 -37.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
-26.4 -26.4 -26.4 -36.4 -36.4 -46.4 -26.4 -46.4 -26.4 Start 0.0200 GHz Stop 1.2000 GHz #Res BW 100 kHz #VBW 300 kHz* #Sweep 176.0 ms (30000 pt MSG Startus	-16.4						DL1 -19.00 dBn
26 4							
-36.4 -46.4 -46.4 -46.4 Start 0.0200 GHz #VBW 300 kHz* #Res BW 100 kHz #VBW 300 kHz* #So Startus	-26.4						
-45.4 -45.4 -45.4 -45.4 Start 0.0200 GHz #VBW 300 kHz* Stop 1.2000 GHz #Res BW 100 kHz #VBW 300 kHz* #Sweep 176.0 ms (30000 pr Msg Startus							
-46.4 -46.4	-36.4		i - best and				
Start 0.0200 GHz Stop 1.2000 GHz #Res BW 100 kHz #VBW 300 kHz* #Sweep 176.0 ms (30000 pr Msg starus	-46.4						
Start 0.0200 GHz Stop 1.2000 GH #Res BW 100 kHz #VBW 300 kHz* #Sweep 176.0 ms (30000 pr Msg status status Status Status							
Start 0.0200 GHz Stop 1.2000 GHz #Res BW 100 kHz #VBW 300 kHz* #Sweep 176.0 ms (30000 pt MSG status status							
MSG	Start 0.02 #Res BW	00 GHz 100 kHz	#VI	BW 300 kHz*		#Sweep 1	Stop 1.2000 GHz 76.0 ms (30000 pts
	MSG				STATUS		
Port 2, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 64QAM Modulation, Mid Channel, 763 MHz		Port 2, Band n1	4, 758 - 768 Mhz, 5	MHz Bandwidth, 640	AM Modulation,	Mid Channel, 7	63 MHz

	Port 2, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 64QAM Modulation, Mid Channel, 763 MHz							
	Frequency	Measured	Max Value	Limit				
	Range	Freq (MHz)	(dBm)	< (dBm)	Result			
Г	1.2 GHz - 8 GHz	4019.96	-36.46	-19	Pass			

Fre	quency	Measured Freq (MHz)	Max Value (dBm)	Limit < (dBm)	Result	
9 kHz	- 150 kHz	0.01	-52 12	-39	Pass	
-						
Keysight Spectrum Analyzer - Element	Materials Technology	SENSE:INT	ALIGN AUTO		09:59:57 AM Aug 04, 202	2
	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 12 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 TYPE A WWW DET A N N N N	6 ₩ N
Ref Offset 27.9 d 10 dB/div Ref 11.90 dBn	3				Mkr1 9.000 kH -52.122 dBn	z n
Log		Ĭ				
1.90						
-8.10						
-18.1						
-28.1						
-38.1					DL1 -39.00 dB	m
1						
-48.1						
-58.1 -58.1		Λ			A	
- www.	mymmmm					
-68.1		my working where	······································	American	my Imm.	
-78.1						
Start 0.00 kHz		k			Stop 150 00 kH	
#Res BW 1.0 kHz	#V	BW 3.0 kHz*		#Sweep	174.4 ms (800 <u>1 pts</u>)
MSG			STATUS			

	Frequency	Measured	Max Value	Limit	0 11112
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
1	150 kHz - 20 MHz	0.15	-48.69	-29	Pass

RL	RF 5	0Ω DC	CORREC		100	SENSE:INT		ALIGN AUTO	and the state	10:02:08	3 AM Aug 04, 20
				PNO: Fast IFGain:Low	•••	Trig: Free #Atten: 16	Run dB	Avg Type: Avg Hold:	RMS 100/100	TF	ACE 1 2 3 4 TYPE A WWW DET A NNN
lB/div	Ref Offset Ref 11.7	27.7 dB 0 dBm								Mkr1 1 -48,	50.0 kl 693 dB
;											
											DI 1 29.00
;											
1											
×											
- Antonio	Mary Harrison and Strategy	Without I									
,		Constant of the second s	Managawan an	وبزهواساعايه والروسية	P (her				ala ann de fean an Frances		aynaa hydrafau (
3											
rt 150	kHz			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Stop 2	0.000 N

element

	Dener		Measure	ed Ma:	x Value	Limit	Desult
	20 MHz - 1.2 G	Ηz	737	1Z) ((<u>авт)</u> 40.02	< (dBm) -19	Pass
				<u>.</u>			· · · · ·
Keysight Spectru	m Analyzer - Element Materials Teo	hnology	SENSE:INT	ALI	GN AUTO		08:09:28 AM Aug 06, 20
		PNO: Fast	Trig: Free Ru	un	Avg Type Avg Hold:	: RMS 100/100	TRACE 1 2 3 4
		IFGain:Low	#Atten: 20 dl	В			DETANNN
R 10 dRidiu	tef Offset 41.6 dB						Mkr1 737.00 MF -40.016 dB
	(el 45.00 ubili		T T				
33.6							
33.0							
23.6							
10.0							
13.6							
3.60							
-6.40							
-16.4							DL1 -19.00 d
-26.4							
-36.4							
					-		
-46.4							
#Res BW 10	GHZ 10 kHz	#\	/BW 300 kHz*			#Sweep	Stop 1.2000 GH 176.0 ms (30000 pt
	Port 2, Band n14, 758 Frequency	3 - 768 Mhz, 5	MHz Bandwidth, Measure	256QAM M ed Ma	lodulation, x Value	Mid Channel Limit	, 763 MHz
	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH	3 - 768 Mhz, 5 Iz	MHz Bandwidth, Measure Freq (MH 4021.32	256QAM M ed Ma: 1z) (1 2 -	lodulation, x Value dBm) 36.37	Mid Channel, Limit < (dBm) -19	763 MHz Result Pass
Kaurinht Snartru	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH	3 - 768 Mhz, 5 Iz	MHz Bandwidth, Measure Freq (MH 4021.32	256QAM M ed Ma: iz) ((2 -	lodulation, x Value dBm) 36.37	Mid Channel, Limit < (dBm) -19	763 MHz Result Pass
Keysight Spectru	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH um Analyzer - Element Materials Tet RF 50 Ω DC CORRI	3 - 768 Mhz, 5 Iz :hnology :c	MHz Bandwidth, Measure Freq (MH 4021.32	256QAM M ed Ma: 1z) ((2 -	Iodulation, x Value dBm) 36.37	Mid Channel, Limit < (dBm) -19	763 MHz Result Pass 08:16:25 AM Aug 06, 202 Texture for the former of th
Keysight Spectru	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH International Statement Materials Tec RF 50 Ω DC CORR	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MH 4021.32	256QAM M ed Ma: 1z) (1 2 -: ALIC	Iodulation, x Value dBm) 36.37 GN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19	763 MHz Result Pass 08:16:25 AM Aug 06, 23 4 TYPE AUg 06, 23 4 TYPE AUG 07, 23 4 TYPE AUG 07, 23 4 TYPE AUG 07, 23 4 TYPE AUG 07, 24 4 TY
Keysight Spectru	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH um Analyzer - Element Materials Tec RF 50 Ω DC CORRI	3 - 768 Mhz, 5 Iz thnology C IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT Trig: Free Ru #Atten: 22 dE	256QAM Ma dd Ma: dz) (r 2 -: ALIC	Iodulation, x Value dBm) 36.37 GN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 23 4 5 TYPE ANNNN Mkr1 4,017 7 GH
Keysight Spectru M RL 10 dB/div R	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH um Analyzer - Element Materials Tec RF 50 Ω DC CORR RF 950 Ω DC CORR Ref 0ffset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5 Iz hnology CC PNO: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT SENSE:INT Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2 -: ALIC	Iodulation, x Value dBm) 36.37 GN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 12.3 4 A DET ANNINY Mkr1 4.017 7 GH -36.367 dBr
Keysight Spectru RL 10 dB/div R Log	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tex RF 50 Ω DC CORR RF 0ffset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5 Iz hnology CC IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 2: . ALIC	Iodulation, x Value dBm) 36.37 GN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 23 A4 S TRACE 33 A4 S TRACE 34 S TRACE 34 A5 S TRACE 34 S TRACE 34 A5 S TRACE 34
Keysight Spectro R L 10 dB/div R Log	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tee RF 50 Ω DC CORR Ref 29,60 dBm	3 - 768 Mhz, 5 iz hnology cc PN0: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2 -: 2 -: 3	lodulation, x Value dBm) 36.37	Mid Channel Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 02 3 4 5 TAPE AVAINANN Mkr1 4.017 7 GH: -36.367 dBr
10 dB/div	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offiset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5 iz hnology CC PNO: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2 -: ALIC	Iodulation, x Value dBm) 36.37 SN AUTO Avg Type: Avg[Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 12 3 4 5 TAPE A WAYNY DET A NNNN Mkr1 4.017 7 GH; -36.367 dBn
19.60	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Officiel 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5 Iz cc PNO: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2 -: 1 ALIC	Iodulation, x Value dBm) 36.37 SN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 23 42 TRACE 12 23 44 Aug 06, 23 42 TRACE 12 24 AUG 06, 23 42 TYPE AWWWN DET 7 7 GH: -36.367 dBn
Keysight Spectru Keysight Spectru R L 10 dB/div R 19.6 9.60	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH and Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5 Iz hnology EC PNO: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT	256QAM M ed Ma: 1z) (1 2 -: 1 ALIC	Iodulation, x Value dBm) 36.37 SN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 23 4 S TYPE AWWWN DET A NNNN Mkr1 4.017 7 GH -36.367 dBn
Keysight Spectru MRL 10 dB/div 19.6 9.60	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH um Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref 29.60 dB Ref 29.60 dB	3 - 768 Mhz, 5 Iz C PNO: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ad Ma: 12) ((2 -	Iodulation, x Value dBm) 36.37 SN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 08:16:25 AM Aug 06, 202 TRACE 2 3 4 5 TYPE A WWWW DET A NNNN Mkr1 4.017 7 GH -36.367 dBn
Keysight Spectru Keysight Spectru Keysight Spectru Keysight Spectru R	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref 29,60 dBm	3 - 768 Mhz, 5 Iz hnology CC PNO: Fast IFGain:Low	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2 -	Iodulation, x Value dBm) 36.37 SN AUTO Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 08:16:25 AM Aug 06, 202 TRACE 2 3 4 5 TYPE A WWWW DET A NNNN Mkr1 4.017 7 GH2 -36.367 dBm
Keysight Spectru Keysight Spectru Keysight Spectru Keysight Spectru Keysight Spectru R	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tex RF 50 Ω DC CORR Correct Correct Correct Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 12 (1 2 -: 1 ALIC	Iodulation, x Value dBm) 36.37 Avg Type: Avg]Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz
Keysight Spectru R L IO dB/div R 9.60	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tee RF 50 Ω DC CORR Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MI- 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 2 : (1 2	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 23 4 5 TYPE 4 NINNN Mkr1 4.017 7 GH2 -36.367 dBm DL1-19:00-88
Keysight Spectru IO dB/div R 19.6	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH an Analyzer - Element Materials Tee RF 50 Ω DC CORR Ref 29,60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MI 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 2: 2:	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 23 4 5 TVPE 4 NNNN Mkr1 4.017 7 GH2 -36.367 dBn
Keysight Spectru ID dB/div R 10 dB/div R 19.6 - - 9.60 - - -0.40 - - -30.4 - -	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH am Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref 29,60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MI- 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 12) ((2 -: 1 ALIC	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz Result Pass 08:16:25 AM Aug 06, 202 TRACE 12:3 4 5 TAPE 4 WAYN Mkr1 4.017 7 GH2 -36.367 dBn DL1 -19:00 dB
Image: Keysight Spectru Image: Keysight Spectru	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH an Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offiset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2 -:) ALIC	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz
Keysight Spectru Keysight Spectru R L In dB/div R	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH an Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offiset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel Limit < (dBm) -19 RMS 100/100	763 MHz
Keysight Spectru R L R O dB/div F 19.6	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH an Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offiset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 1z) ((2	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel Limit < (dBm) -19 RMS 100/100	763 MHz
Keysight Spectru Keysight Spectru R L Log B/div R 19.6	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH an Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MH 4021.32 SENSE:INT Trig: Free Ru #Atten: 22 dB	256QAM M ed Ma: 1z) ((2 -: 	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz
Keysight Spectru Keysight Spectru RL R 10 dB/div R 9 60	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH and Analyzer - Element Materials Tec RF 50 Ω DC CORR Ref Offset 27.6 dB Ref 29.60 dBm	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MI- 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 2 : (1 2 : ALIC in 3	Iodulation, x Value dBm) 36.37 Avg Type: Avg]Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz
Keysight Spectru RL R dB/div R dB/div R d0 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48	Port 2, Band n14, 758 Frequency Range 1.2 GHz - 8 GH an Analyzer - Element Materials Tee RF 50 Ω DC CORR Ref 29.60 dBm Comparison of the second seco	3 - 768 Mhz, 5	MHz Bandwidth, Measure Freq (MI- 4021.32 SENSE:INT → Trig: Free Ru #Atten: 22 dE	256QAM M ed Ma: 2: . ALIC	Iodulation, x Value dBm) 36.37 Avg Type: Avg Hold:	Mid Channel, Limit < (dBm) -19 RMS 100/100	763 MHz

Fr	equency	Measured	Max Value	Limit	D It	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result	
9 KH	z - 150 kHz	0.01	-51.72	-39	Pass	
······································						
Keysight Spectrum Analyzer - Eleme	DC CORREC	SENSE:INT	ALIGN AUTO		10:35:22 AM Aug 04, 202	22
		Trig: Free Run	Avg Type	: RMS 100/100	TRACE 1 2 3 4 5	6
	PNO: Wide + IFGain:Low	#Atten: 12 dB	, triginiola.	100/100	DETANNN	IN
Ref Offset 27.9	dB				Mkr1 9.300 kH	z
10 dB/div Ref 11.90 dE	Sm				-51.719 dBr	n
LUg		The second se				
1.90						
-8.10						
-18.1						
-28.1						
-38.1					DL1 -39.00 dB	am.
-48.1 1						
man and		٨			D	
-58.1	Num - 1					
69.4	and when we want	man have a		۸		
-00.1		the for the second seco	······································	1 mmmmm	many have	~
-78.1						
Start 0.00 kHz					Stop 150 00 kH	
#Res BW 1.0 kHz	#\	/BW 3.0 kHz*		#Sweep 1	74.4 ms (800 <u>1 pt</u>	s)
MSG			STATUS			
						And the owner of the owner

FUILZ, BAILUTIT4, 750 - 700 WILZ, TO WIL	iz banuwiuti, 200	QAIN MOUUIATION	, IVIIU GHAIIITEI, 70	
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	0.15	-49.15	-29	Pass

					Trig: Free	Run	Avg Type:	RMS	TF	TYPE A WAR
				PNO: Fast ↔ IFGain:Low	#Atten: 10	6 dB	Avginoid.	100/100		DET A N N N
lB/div	Ref Offs Ref 11.	et 27.7 dE . 70 dBm	3						Mkr1 1 -49.	155.0 kl 147 dB
						Ĭ				
;										
										DI 1 -29.00
1										
	and and the property of the	el and de lige d'alors	and the horas of		den se	and the of an article	terret de la deserve			
rt Touk Is BW 1	N KH7			#V	BW 30 kHz*			#Swee	Stop 2 n 174.4 ms	20.000 Mi 20.000 Mi 20.000 Mi

	Port 2 Band n14 758 - 76	8 Mhz 10 MH	Iz Bandwidth 256	OAM Modulation	Mid Channel 76	3 MHz	
	Frequency	0 10112, 10 101	Measured	Max Value	Limit	0 10112	
	Range		Freq (MHz)	(dBm)	< (dBm)	Result	
	20 MHz - 1.2 GHz		737	-38.61	-19	Pass	
Keysight Spectrum	Analyzer - Element Materials Technolog	y cr	automated				
	- SUS2 DC CORREC	SE	NSEINI	ALIGN AUTO Avg Type:	RMS	TRACE 1 2 3 4 5 6	
	PI IE(NO: Fast +++ Gain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold:	100/100	DET A NNNN	
B					Mk	r1 737.00 MHz	
10 dB/div Re	f 43.60 dBm					-38.608 dBm	
			Ý				
33.6							
				h			
23.6							
13.6							
3.60							
-6.40							
0.40							
-16.4						DL1 -19.00 dBm	
-26.4							
				1			
-36.4		dhan da					
-46.4						أكال المتعادل والمركبة المستلمية المتحد الأحداث الألادة	
Start 0 0200 C						Stop 1 2000 CHa	
#Res BW 100	kHz	#VBW	300 kHz*		#Sweep <u>176</u>	5.0 ms (30000 <u>pts)</u>	
MSG				STATUS			
	Port 2, Band n14, 758 - 76	8 Mhz, 10 MF	Iz Bandwidth, 256	QAM Modulation	, Mid Channel, 76	3 MHz	
	Frequency		Measured	Max Value	Limit	Bocult	
			4011.8	-36.4	-19	Pass	

Keysight Spe	ectrum Analyzer - Element Materia	ls Technology			and an		
RL	RF 50 Ω DC C	PNO: Fast ++	. Trig: Free Run #Atten: 22 dB	ALIGN AUTO Avg Type: Avg Hold: 1	RMS 100/100	08:18:52 TF	AM Aug 06, 20 ACE 1 2 3 4 1 TYPE A WWW DET A N N N
dB/div	Ref Offset 27.6 dB Ref 29.60 dBm					Mkr1 4.0 -36.	08 6 GI 392 dB
9			Ĭ				į .
.6							
0							
0							
4							
4							DL1 -19.00
4			1				
4			• <u> </u>	\sim			
4							
4							
art 1.20 es BW	0 GHz 1.0 MHz	#VB	W 3.0 MHz*		#Sweep	Stop 175.0 ms	8.000 G (15000 j
- RANGEN OF			ing a state of the state of the	STATUS	enses de transiste	entes de la te	

Normal Tried (mint) (ubm) Floating 1.559 GHz - 1.61 GHz 1600.11 -62.67 -46 Pass Keylight Spectrum Analyse - Element Material Echology Analon GF 074955 M Aug(4, 202 074955 M Aug(4, 202 M K RF 59.9 DC CORREC SENSE: INT Analon GF 074955 M Aug(4, 202 M K INF 59.9 DC CORREC SENSE: INT Analon GF 074955 M Aug(4, 202 M K INF 59.9 DC CORREC SENSE: INT Analon GF 074955 M Aug(4, 202 M K INF 1.559 GHZ - 1.61 GHz Trig: Free Run Analon GF 074955 M Aug(4, 202 M K INF INF INF INF INF INF 10 dB/dut Ref Onfset 24.4 dB MKr1 1.600 GHZ MKr1 1.600 GHZ INF -62.667 dBn 20.6 INF INF INF INF INF INF 20.6 INF INF INF INF INF INF 20.6 INF INF I		Frequency	Measured	Max Value	Limit	Posult
Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Start 1.55900 CHz Image: start 1.55900 CHz Start 1.55900 CHz Image: start 1.55900 CHz Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16CAM Modulation, Mid Channel, 763 MHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900 CHz Image: start 1.55900	1	1 559 GHz - 1 61 GHz	1600 11	-62.67	-46	Pass
RE RF SOR DC CORREC SENSEINT Auton OF 07:49:56 Mappé, 202 PR0: Fast	Kevsight Spectrum Analyz	zer - Element Materials Technology	1000.11			
PNO: East IFGain:Low Trig: Free Run #Atten: 6 dB Avg1ybe: KMS Avg1ybe: KMS Av	IXI RL RF	50 Ω DC CORREC	SENSE:INT	ALIGN OFF		07:49:56 AM Aug 04, 2022
Ref Offset 24.4 dB Mkr1 1.600 1111 1 GH: -62.667 dBm 100 -62.667 dBm 100 -62.67 dBm 100 -62.667 dBm 100 -62.64 100 -62.64 100 -62.64 100 -62.64		PNO: IFGain	Fast ↔ Trig: Free Run :Low #Atten: 6 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN
Log 106 206 306 406 506 506 506 506 506 506 506 5	Ref Offs 10 dB/div Ref -0.	set 24.4 dB .60 dBm			Mkr1 1	.600 111 1 GHz -62.667 dBm
1006	Log					
-20.6	10 P					
2016						
-30.6 -30.6 <td< td=""><td>-20.6</td><td></td><td></td><td></td><td></td><td></td></td<>	-20.6					
306 Image I						
40.6 0	-30.6					
-40.6 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
50.6 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0	-40.6					
60.6 1 60.6 1 70.6 1 70.6 1 90.6 1 90.6 1 Start 1.55900 GHz #VBW 3.0 MHz* #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 pts MsG start 3.559 GHz Stop 1.61000 GHz Frequency Measured Max Value Limit Range Freq (MHz) 1.559 GHz - 1.61 GHz 1609.72 -62.64 -46						DL1 -46.00 dBm
460 6 1 70 6 1 90 7 1 90 8 1 90 8 1 90 9 1 1 1 9	-50.6					
60 6					1	
70.6 80.6 90.0 90.6 90.0 90.6 90.0	-60.6				V	
30.6	70.0					
60.6	-/U.6					
Start 1.55900 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 pts starus Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1609.72 -62.64 -46 Pass	-80.6					
Start 1.55900 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 Pts #start 1.55900 GHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 pts starus Starus Starus Stop 1.61000 GHz starus Starus Stop 1.61000 GHz Starus Starus Stop 1.61000 GHz Starus Starus Stop 1.61000 GHz Starus Starus Starus Stop 1.61000 GHz Starus Starus Starus Stop 1.61000 GHz Starus Starus Starus Stop 1.61000 GHz Starus Starus Starus Stop 1.61000 GHz Starus Starus Starus Stop 1.61000 GHz Starus S						
Start 1.55900 GHz Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 pts Msg startus starus Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm)	-90.6					
Start 1.55900 GHz Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep T74.7 ms (10001 pts MSG Istartus Istartus Istartus Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm)						
Mices DVF Ho Mill2 #VDV 50 Mill2 #Sweep T/4.7 IIIS (1000 Fpts Mices DVF Ho Mill2 #Sweep T/4.7 IIIS (1000 Fpts Mices DVF Ho Mill2 Istarus Istarus Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16QAM Modulation, Mid Channel, 763 MHz Frequency Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm)	Start 1.55900 GHz #Res BM 1.0 MHz	Z	#VBM 3.0 MH=*		#Sween_17	Stop 1.61000 GHz
Initial Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) 1.559 GHz - 1.61 GHz 1609.72 -62.64 -46 Pass	WRCS DWY 1.0 WITZ		#VBVV 5.0 WITZ	STATUS	#oweep II	4.7 ms (10001 pts)
Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 16QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1609.72 -62.64 -46 Pass				STATUS		
Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1609.72 -62.64 -46 Pass	Por	t 1, Band n14, 758 - 768 I	Mhz, 5 MHz Bandwidth, 1	6QAM Modulation,	Mid Channel, 76	3 MHz
Interpretended Interpr		Frequency	Measured	Max value		Posult
	1	1.559 GHz - 1.61 GHz	1609 72	-62.64	-46	Pass
			1000.12	02.01	-10	1 400

LXI RL	RF	50 Ω DC	CORREC		SENSE:INT		ALIGN OFF		08:38:12	AM Aug 04, 2022
				PNO: Fast 🔸 FGain:Low	. Trig: Free #Atten: 6 d	Run IB	Avg Type: Avg Hold:	RMS 100/100	TR	ACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN
10 dB/div	Ref Offse Ref -0.6	et24.4 dB 3 0 dBm						Mkr	1.609 7 -62.	19 5 GHz 641 dBm
-10.6										
-20.6										
-30.6										
-40.6										
-50.6										UL1 -46.00 dem
-60.6										
-70.6										
-80.6										
-90.6										
Start 1.5: #Res BW	5900 GHz 1.0 MHz			#VB	W 3.0 MHz	*		#Sweep	Stop 1. 174.7 ms	61000 GHz (10001 pts)
MSG				automotion and			STATUS			

Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.59 GHz.161 GHz 1604.83 -0.2.83 -46 Pass Provide Sector Mathematic Technology Measured Max Value Limit 02.448 Max (Value) 02.400 <t< th=""><th></th><th>Port</th><th>1 Band n14 758.</th><th>768 Mbz 5 MH</th><th>Iz Bandwidth 640</th><th>AM Modulation</th><th>Mid Channel 763</th><th>3 MHz</th></t<>		Port	1 Band n14 758.	768 Mbz 5 MH	Iz Bandwidth 640	AM Modulation	Mid Channel 763	3 MHz		
Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz-1.61 GHz 1604.83 -62.68 -46 Pass Image: State State Image: State State State Image: State		1 011	Frequency		Measured	Max Value	Limit			
1.559 GHz - 1.61 GHz 1604.83 -62.68 -46 Pass Registering address to receive a server in the technology If it is is a colspan="2">Registering address to receive addre			Range		Freq (MHz)	(dBm)	< (dBm)	Result		
Trystall Spectrum Analyzer - Bernert Manualt Technology Autor Off Autor Off Option 1000000000000000000000000000000000000		1	.559 GHz - 1.61 GI	Ηz	1604.83	-62.68	-46	Pass		
Projekt Spectrum Markers/Technology PRO: Fast										
Mith Bit Bit Market Market Bit		Keysight Spectrum Analyze	er - Element Materials Techn	ology						
PRO-Fast #Atten: 6 dB Avg hidd: 100/100 Tric: Free Run #Atten: 6 dB Avg hidd: 100/100 Ref Offset 24.4 dB Mkr1 1.604 828 6 GHz .62.677 dBm .62.677 dBm 106 .006 .007 .62.677 dBm 106 .006 .007 .007 .007 .006 .006 .007 .007 .007 .007 .006 .006 .007 .007 .007 .007 .007 .006 .007 .007 .007 .007 .007 .007 .007 .006 .007 .	LXI.	RL RF	50 Ω DC CORREC	SE	INSE:INT	ALIGN OFF	RMS	08:34:48 AM Aug 04, 202 TRACE 1 2 3 4 5		
Ref offset 24.4 dB Mkr1 1.604 828 6 GHz 105 62.677 dBm 1160 62.61 105 62.677 dBm 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105 70.6 105.9				PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 6 dB	Avg Hold: 1	100/100	TYPE A WWWW DET A N N N N		
Log 106 206 206 206 206 206 206 206 2	10	dB/div Ref Offs	et 24.4 dB 6 0 dBm				Mkr1 1	604 828 6 GH. 62.677 dBn-		
	Lo	g			Ť					
006 01.4600.461 006 01.4600.461 006 01.4600.461 006 01.4600.461 006 01.4600.461 006 01.4600.461 006 01.4600.461 007 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 008 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 01.4600.461 <t< td=""><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	10									
-006 -01 <td>-10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-10									
-0.6 -0.6	-20).6								
30.6 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
4016 CC1.46.00 dem 5017 CC1.46.00 dem Start 1.55900 GHz #VBW 3.0 MHz* #Stees BW 1.0 MHz #VBW 3.0 MHz* #Stees BW 1.0 MHz #VBW 3.0 MHz* #Stees BW 1.0 MHz #VBW 3.0 MHz* Frequency Measured Max Value Limit Range Freq (MHz) Max Value Limit 1.559 GHz - 1.61 GHz 1603 1.559 GHz - 1.61 GHz 1603 1.559 GHz - 0.00 Gem GBM 4.00 OFF Water 8 dB Auton OFF PRO, Fast + Trig: Free Run AvgThyre: RMS AvgHoid: 100/100 Tree Stee	-30).6								
40.6 C1600 Gen 50.6 1 60.6 1 70.6 1 90.7 1 80.0 1.5590 GHz 1.559 GHz - 1.61 GHz 1603 1.559 GHz - 1.61 GHz 1603 1.559 GHz - 1.61 GHz 1003 1.603 -62.61 98 00:0 C CORREC Stratter 1.602 98 00:0 1										
50.6 0.1 #0.00#m 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.6 1 50.7 5 50.8 1.5590.0 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* Start 1.5590.0 GHz #VBW 3.0 MHz* Start 1.5590.0 GHz #VBW 3.0 MHz* Start 1.5590.0 GHz #VBW 3.0 MHz* Badded Hz 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm)	-40).6								
305 1 406 1 507 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 508 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DL1 -46.00 dB</td>								DL1 -46.00 dB		
606 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 706 1 707 1 708 1 709 1 806 1 Start 1.55900 GHz #VEW 3.0 MHz* Stop 1.61000 GHz #VEW 3.0 MHz* Stop 1.61000 GHz #Stop 1.6100 GHz <td <="" colspan="2" td=""><td>-50</td><td>1.6</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>-50</td> <td>1.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-50	1.6						
-70.6 -0.6	-60	16						1		
-70.6 -70.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ť.</td></t<>								Ť.		
60.6 90.6	-70).6								
60.6										
3016 Start 1.55900 GHz #VBW 3.0 MHz* Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Sweep 174.7 ms (10001 pts) MSG STATUS Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 256QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Rege Freq (MHz) (dBm) Add B	-80).6								
Start 1.55900 GHz Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Stop 1.61000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* #Stop 1.61000 GHz Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 256QAM Modulation, Mid Channel, 763 MHz Init Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm)										
Start 1.55900 GHz #Res BW 1.0 MHz Stop 1.61000 GHz #Stop 1.61000 GHz #Stop 1.61000 GHz #Sweep 174.7 ms (10001 pts) MsG Start us Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 256QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1603 -62.61 -46 Pass Keysight Spectrum Analyzer - Element Materials Technology Max Link Off 06:40:40 AM aug 04, 2022 PNO: Fast → Trig: Free Run IFGain:Low Auglifold: 100/100 Trace 2.3 4 ±00 PNO: Fast → Trig: Free Run IFGain:Low Avg Type: RMS Avg/Hoid: 100/100 Mkr1 1.602 997 7 GHz	-90).6								
Start 1.55900 GHz #Res BW 1.0 MHz Stop 1.61000 GHz #Sweep 174.7 ms (10001 pts) MsG starus Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 256QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm)										
MSG STATUS Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 256QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit (dBm) < (dBm)	Sta #R	art 1.55900 GHz Res BW 1.0 MHz		#VBW	/ 3.0 MHz*		#Sweep 17	Stop 1.61000 GH 4.7 ms (10001 pts		
Port 1, Band n14, 758 - 768 Mhz, 5 MHz Bandwidth, 256QAM Modulation, Mid Channel, 763 MHz Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1603 -62.61 -46 Pass Keysight Spectrum Analyzer - Element Materials Technology RL RF 50 Q DC CORREC SENSE:INT ALIGN OFF 08:49040 AM Aug 004, 2022 Avg Type: RMS Avg Type: RMS Avg Type: RMS Avg Type: RMS Ref Offset 24.4 dB Mkr1 1.602 997 7 GHz	MSG	3				STATUS				
Frequency Measured Max Value Limit Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1603 -62.61 -46 Pass		Port	1. Band n14, 758 -	768 Mhz, 5 MH;	z Bandwidth, 2560	QAM Modulation.	Mid Channel. 76	3 MHz		
Range Freq (MHz) (dBm) < (dBm) Result 1.559 GHz - 1.61 GHz 1603 -62.61 -46 Pass Keysight Spectrum Analyzer - Element Materials Technology ALIGN OFF 08:40:40 AM Aug 04, 2022 Keysight Spectrum Analyzer - Element Materials Technology ALIGN OFF 08:40:40 AM Aug 04, 2022 NO: Fast → Trig: Free Run IF Gain:Low Aug Type: RMS Avg Type: RMS Trace 12.3.4.5.9 Avg Type: RMS PNO: Fast → Trig: Free Run IF Gain:Low Mkr1 1.602 997 7 GHz			Frequency		Measured	Max Value	Limit			
1.559 GHz - 1.61 GHz 1603 -62.61 -46 Pass Keysight Spectrum Analyzer - Element Materials Technology ALIGN OFF 08:40:40 AM Aug 04, 2022 RL RF 50 Ω DC CORREC SENSE:INT ALIGN OFF 08:40:40 AM Aug 04, 2022 PNO: Fast + Trig: Free Run IFGain:Low Trig: Free Run #Atten: 6 dB Avg Type: RMS Avg[Hold: 100/100 TRACE 02.3 4.50 TYPE A WINNING			Range		Freq (MHz)	(dBm)	< (dBm)	Result		
Keysight Spectrum Analyzer - Element Materials Technology Image: Comparison of the sector of th		1	.559 GHz - 1.61 Gł	Ηz	1603	-62.61	-46	Pass		
Keysight Spectrum Analyzer - Element Materials Technology OW RL RF S0 Ω DC CORREC SENSE:INT ALIGN OFF OB:40:40 AM avg OH CORREC SENSE:INT Avg Type: RMS Trace Trace Z 3 4 5 0 Trace Trace Z 3 4 5 0 Trace Trace Trace Avg Type: RMS Trace CORREC SENSE:INT Avg Type: RMS Trace										
Avg Type: RMS TRACE 12 4 5 6 PNO: Fast → Trig: Free Run Avg Hold: 100/100 Trace 12 3 4 5 6 PNO: Fast → Trig: Free Run Avg Hold: 100/100 Trace 12 3 4 5 6 PNO: Fast → Trig: Free Run Avg Hold: 100/100 Trace 12 3 4 5 6 PNO: Fast → Trig: Free Run Avg Hold: 100/100 Trace 12 4 5		Keysight Spectrum Analyze	er - Element Materials Techn	ology		A U IGN OFF		08:40:40 AM Aug 04, 202		
PNO: Fast Irig: Free Run AvgiHoid: 100/100 PPE ANNNNN IFGain:Low #Atten: 6 dB Mkr1 1.602 997 7 GHz	CA1	N N	SO IL DO COMEC			Avg Type:	RMS	TRACE 1 2 3 4 5		
Ref Offset 24.4 dB Mkr1 1.602 997 7 GHz				PNO: Fast +++	#Atten: 6 dB	Avg Hold: 1	100/100	DETANNN		
		Ref.Offe	et 24.4 dB				Mkr <u>1 1</u>	.602 997 7 <u>GH</u>		

		PNO: Fast +++	#Atten: 6 dB	Avginoid. 1	00/100		DET A NNNNN
10 dB/div	Ref Offset 24.4 dB Ref -0.60 dBm				Mkr	1 1.602 9 -62.	97 7 GHz 605 dBm
			Ť				
-10.6							
-20.6							
-30.6							
-40.6							DI 1 48.00 dBm
-50.6							DE1 -40.00 (D)
						▲1	
-60.6					· · · · · · · · · · · · · · · · · · ·		
-70.6							
-80.6							
-90.6							
Start 1.5	5900 GHz					Stop 1.	61000 GHz
#Res BW	1.0 MHz	#VBV	V 3.0 MHz*		#Sweep	174.7 ms	(10001 pts)
MSG				STATUS			

F	requency	Measured	Max Value	Limit	Desult
4 550 4	Kange	rreq (MHZ)	(aBm)	< (aBm)	Result
1.559 0	5HZ - 1.61 GHZ	1608.03	-62.63	-46	Pass
Keysight Spectrum Analyzer - Elem	ent Materials Technology				
LXI RL RF 50 Ω	DC CORREC	SENSE:INT	ALIGN AUTO		10:29:28 AM Aug 04, 202
	PNO: Fast IFGain:Low	→→ Trig: Free Run #Atten: 6 dB	Avg Type: Avg Hold:	100/100	TYPE A WWWW DET A N N N N
Ref Offset 24.4 10 dB/div Ref -0.60 dE	dB S m			Mkr1 1.	608 026 3 GH -62.626 dBn
		The second secon			
-10.6					
-20.6					
-30.6					
-40.6					
					DL1 -46.00 dB
-50.6					
-60.6					
-70.6					
-80.6					
-90.6					
- 5000					
Start 1.55900 GHz					Stop 1.61000 GH

	Frequency		Measured	Max Value	Limit	
			Freq (MHZ)	(dBm)	< (dBm)	Result
	1.559 GHZ - 1.01 G		1000.30	-02.01	-40	Pass
Keysight Spectra	um Analyzer - Element Materials Tech	inology				
LXI RL	RF 50 Ω DC CORREC		SENSE:INT	ALIGN OFF		09:12:17 AM Aug 04, 2022
		PNO: Fast ++ IFGain:Low	. Trig: Free Run #Atten: 6 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN
10 dB/div	Ref Offset 24.4 dB Ref -0.60 dBm				Mkr1 1.	.606 363 7 GHz -62.610 dBm
Log			ľ			
-10.6						
-20.6						
-30.6						
-40.6						DL1 -46.00 dBm
-50.6						
-60.6						\
-70.6						
90 G						
-90.6						
Start 1.5590	00 GHz	I	L			Stop 1.61000 GHz
#Res BW 1.	0 MHz	#VB	W 3.0 MHz*		#Sweep 17	4.7 ms (10001 pts)
MSG				STATUS		
	Port 2, Band n14, 758	- 768 Mhz, 5 M	1Hz Bandwidth, 16C	AM Modulation, I	Viid Channel, 763	3 MHz
	Range		Freg (MHz)	(dBm)	< (dBm)	Result
		`U-7	1600 55	62.67	-46	Pass

LXI RL	RF 50 9	DC CORF	REC	SENSE:INT	ALIGN OFF	09:14:02 AM Aug 04, 2022
			PNO: Fast ↔ IFGain:Low	⊢ Trig: Free Ru #Atten: 6 dB	Avg Type: RM n Avg Hold: 100/1	S TRACE 1 2 3 4 5 6 100 TYPE A WWWWW DET A N N N N
10 dB/div	Ref Offset 24 Ref -0.60	4.4 dB d Bm				Mkr1 1.609 551 2 GHz -62.665 dBm
_09						
-10.6						
-20.6						
20.6						
-30.8						
-40.6						DL1 -46.00 dBm
-50.6						
e0.e						1
-60.6						¥
-70.6						
-80.6						
00.0						
-90.6						
Start 1. <u>55</u>	900 GHz					Stop 1.61000 GHz
#Res BW	1.0 MHz		#VI	BW 3.0 MHz*		#Sweep 174.7 ms (10001 pts)
MSG					STATUS	

Frequ	ency	Measured	Max Value	Limit	Result
1.559 GHz -	1.61 GHz	1602.61	-62.55	-46	Pass
Keysight Spectrum Analyzer - Element Mat RL RF 50 Ω DC	correc	SENSE:INT	ALIGN AUTO	RMS	09:49:29 AM Aug 04, 2022
	PNO: Fast ++- IFGain:Low	. Trig: Free Run #Atten: 6 dB	Avg Hold: 1	100/100	TYPE A WWWWW DET A N N N N N
Ref Offset 24.4 dB 10 dB/div Ref -0.60 dBm				Mkr1	1.602 605 0 GHz -62.549 dBm
-10.6		Ĭ			
-20.6					
-30.6					
-40.6					DL1 -46.00 dBm
-50.6					
-60.6	c la babada a reserva ya nga minata dinika maa	······································			<u> </u>
-70.6					
-80.6					
-30.0					
Start 1.55900 GHz #Res BW 1.0 MHz	#VB	W 3.0 MHz*		#Sweep	Stop 1.61000 GHz 174.7 ms (10001 pts)
MSG			STATUS		
Port 2, Band n1 Frequ	4, 758 - 768 Mhz, 5 Ml ency	Hz Bandwidth, 2560 Measured	AM Modulation, Max Value	Mid Channel, Limit	763 MHz
Ran	ge	Freq (MHz)	(dBm)	< (dBm)	Result

🛄 Keysight Spe	ctrum Analyzer - Element Mate	rials Technology					
LXI RL	RF 50 Ω DC	CORREC	SENSE:INT	ALIGN AUTO		09:51:24	AM Aug 04, 2022
		PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 6 dB	Avg Type: F Avg Hold: 1	RMS 00/100	TR T	ACE 1 2 3 4 5 6 YPE A WWWW DET A NNNNN
10 dB/div	Ref Offset 24.4 dB Ref -0.60 dBm				Mkr1	1.609 64 -62.	48 1 GHz 629 dBm
- 0g							
-10.6							
-20.6							
-30.6							
-40.6							
-50.6							DL1 -46.00 dBm
-50.0							1
-60.6							Y
-70.6							
-80.6							
-90.6							
Start 1.559 #Res BW	900 GHz 1.0 MHz	#VE	3W 3.0 MHz*		#Sweep	Stop 1. 174.7 ms	61000 GHz (10001 pts)
MSG				STATUS	State internet internet		en en en en en e

	Frequenc	y	Measured	Max Value	Limit	Desult	
	Kange	4.011-	Fred (MHZ)	(aBm)	< (dBm)	Result	
	1.559 GHZ - 1.6	1 GHZ	1605.34	-62.59	-40	Pass	
Keysight Spectru	um Analyzer - Element Materials	Technology					x
LXI RL	RF 50 Ω DC CO	RREC	SENSE:INT	ALIGN AUTO		10:31:19 AM Aug 04, 20	J22
		PNO: Fast ++	. Trig: Free Run #Atten: 6 dB	Avg Type: Avg Hold:	100/100	TYPE A WWW DET A NNN	5 6 ₩₩ N N
10 dB/div	Ref Offset 24.4 dB Ref -0.60 dBm				Mkr1 1	.605 343 7 GI -62.591 dB	lz m
			T T				
-10.6							
-20.6							
-30.6							
-40.6							
						DL1 -46.00 c	IBm
-50.6							
						4	
-60.6						\ '	
-70.6							
-80.6							
-90.6							
Start 1.5590	00 GHz					Stop 1.61000 GI	ΗZ

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17

TEST DESCRIPTION

The antenna port spurious emissions were measured at the RF output terminal of the EUT through 3 different attenuation configurations which continues through to the RF input of the spectrum analyzer. Analyzer plots utilizing a resolution bandwidth called out by the client's test plan were made for each modulation type from 9 KHz to 8 GHz. The conducted

power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than the limits also called out by the client's test plan shown below.

The measurement methods are detailed in KDB 971168 D01v03 section 6 and ANSI C63.26-2015. Per FCC 2.1057(a)(1) and RSS Gen 6.13, the upper level of measurement is the 10th harmonic of the highest fundamental frequency. These measurements are for the frequency band after the first 100 kHz bands immediately outside and adjacent to the frequency block.

AHLBBA antenna ports 1&4 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4. AHLBBA antenna ports 2&3 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 2 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

Per FCC section 27.53(g), RSS 130 4.7, FCC section 90.543(e)(3) and RSS 140 4.4 the power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm. The limit is adjusted to -19 dBm [-13 dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter. FCC 27.53(g), RSS 130 4.7.1, FCC 90.543(e)(5) and RSS 140 4.4b requires a >100 kHz measurement bandwidth for emissions 100 kHz outside of the RRH operating frequency range. Per section 90.543(f) and RSS 140 4.4, for the frequency range 1559 - 1610 MHz the EIRP limit is -70dBW/MHz for wideband signals and -80dBW for discrete emissions of bandwidths less than 700Hz. This equates to an EIRP of -40dBm/MHz for wideband emissions and -50dBm/MHz for discrete emissions. The limit is adjusted to -46 dBm [-40 dBm -10 log (4)] for wideband signals and -56dBm [-50 dBm -10 log (4)] for discrete emissions per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

The limit for the 9kHz to 150kHz frequency range was adjusted to -39dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 100kHz [i.e.: -39dBm = -19dBm -10log(100kHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to -29dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 100kHz [i.e.: -29dBm = -19dBm -10log(100kHz/10kHz)]. The required limit of -19dBm with a RBW of > 100kHz was used for all other frequency ranges. (See ANSI C63.26-2015 paragraph 5.7.2a for details on the Limit/RBW scaling method)

Multi-carrier Test Cases:

Test Case 1 (3GPP Band n12 Multicarrier): Three NR 5MHz carriers using two carriers (with minimum spacing between carrier frequencies) at the lower band (731.5MHz & 736.5MHz) and a third carrier with maximum spacing between the other two carrier frequencies (742.5MHz) at the upper band edge. The NR 5MHz channel bandwidth was selected to maximize carrier power spectral density. The carriers are operated at maximum power for a total port power of 80 watts (~26.6W/Band n12 carriers).

Test Case 2 (3GPP Band n12 and Band n14 Multicarrier/Multiband): In the Band n12 _ Two NR 5MHz carriers at the lower band edge (731.5 & 736.5MHz). In Band n14 _ one NR 5MHz carrier at the upper band edge 765.5MHz. The carriers are operated at maximum power for a total port power of 80 watts (~26.6W/Band n12/n14 carriers).

						TbiTx 2022.05.02.0	XMit 2022.02.07.0
EUT:	AHLBBA (C2PC/C3PC FC	C/ISED)			Work Order:	NOKI0047	
Serial Number:	K9193514835				Date:	5-Aug-22	
Customer:	Nokia Solutions and Net	NORKS			Temperature:	20.2 °C	
Attendees:	None				Humidity:	01.3% KH	
Tested by:	Marty Martin		Power: 54VDC		Ioh Sitor		
TEST SPECIFICAT			Tost Mothod		JOD Sile.	1.007	
ECC 27:2022	10113						
PCC 27.2022	010 and BEE 140 Jacua 1:	2018	ANSI C63.20.2015				
R55-130 ISSUE 2: 2	2019 and RSS 140 Issue 1:	2018	ANSI C63.20:2015				
FCC 90R:2022			ANSI C63.26:2015				
COMMENTS							
All measurement n	ath losses were accounte	d for in the reference level offset including attenuate	ors cables DC block and filter when in use Band n1	2 and Band n14 carrier	s were operating a	at maximum nower i	in each
annlicable test cas	to achieve a total port n	ower of 80 watte	sis, cables, bo block and litter when in ase. Dana in	L and Band III + carrier.	s were operating t		in cucii
DEVIATIONS FROM	M TEST STANDARD						
None	TEOTOTAIDAID						
110110		22					
Configuration #	1, 2, 3	Martin	Marti				
-		Signature	n'at she				
			Frequency	Measured	Max Value	Limit	
			Range	Freq (MHz)	(dBm)	< (dBm)	Result
Port 1, 5G NR, Mult	i-Carrier Test Case 1						
	Band n12, 729 - 745 Mhz						
	5 MHz Bandy	vidth					
		QPSK Modulation					
		(731.5, 736.5 and 742.5 MHz)	9 kHz - 150 kHz	0.01	-52.0	-39	Pass
		(731.5, 736.5 and 742.5 MHz)	150 kHz - 20 MHz	0.16	-48.9	-29	Pass
		(731.5, 736.5 and 742.5 MHz)	20 MHz - 1.2 GHz	765	-37.9	-19	Pass
		(731.5, 736.5 and 742.5 MHz)	1.2 GHz - 8 GHz	4011.12	-36.4	-19	Pass
Port 2, 5G NR, Mult	i-Carrier Test Case 1						
	Band n12, 729 - 745 Mhz						
	5 MHZ Bandy						
		QPSK Modulation		0.04	50.4	20	Dees
		(731.5, 730.5 and 742.5 MHZ)	9 KHZ - 150 KHZ	0.01	-52.1	-39	Pass
		(731.5, 730.5 and 742.5 MHz)		0.15	-48.0	-29	Pass
		(731.5, 730.5 and 742.5 MHz)	20 MHZ - 1.2 GHZ	4012 49	-30.4	-19	Pass
Dort 1 EC ND Mult	i Corrier Test Cose 1	(731.5, 736.5 and 742.5 MHZ)	1.2 GHZ - 8 GHZ	4012.48	-30.4	-19	Pass
FULL, SGINK, MULL	Band n12 1550 1610 Mb	7					
	5 MHz Bandu	Z width					
	5 WHZ BAHO	OPSK Modulation					
		(731 5 736 5 and 742 5 MHz)	1 559 GHz - 1 61 GHz	1608.52	-62 7	-46	Pass
Port 2 5G NR Mult	i-Carrier Test Case 1	(10110, 10010 and 11210 mile)	1.000 ONE 1.01 ONE	1000.02	02.1	10	1 400
	Band n12, 1559 - 1610 MH	17					
	5 MHz Bandy	vidth					
		QPSK Modulation					
		(731.5, 736.5 and 742.5 MHz)	1 559 GHz - 1 61 GHz	1604 86	-62.6	-46	Pass
Port 1 5G NR Mult	i-Carrier Test Case 2	(10110, 10010 and 11210 mile)	1.000 ONE 1.01 ONE	1001.00	02.0	10	1 400
,, mai	Band n12, 729 - 745 Mhz.	Band n14 758 - 768 MHz					
	5 MHz Bandy	vidth					
		QPSK Modulation					
		(731.5, 736.5 and 765.5 MHz)	9 kHz - 150 kHz	0.01	-51.9	-39	Pass
		(731.5, 736.5 and 765.5 MHz)	150 kHz - 20 MHz	0.15	-49.6	-29	Pass
		(731.5, 736.5 and 765.5 MHz)	20 MHz - 1.2 GHz	806	-41.1	-19	Pass
		(731.5, 736.5 and 765.5 MHz)	1.2 GHz - 8 GHz	4033.52	-36.4	-19	Pass
Port 2, 5G NR, Mult	i-Carrier Test Case 2						
	Band n12, 729 - 745 Mhz,	Band n14 758 - 768 MHz					
	5 MHz Bandy	vidth					
		QPSK Modulation					-
		(731.5, 736.5 and 765.5 MHz)	9 kHz - 150 kHz	0.01	-52.2	-39	Pass
		(731.5, 736.5 and 765.5 MHz)	150 kHz - 20 MHz	0.15	-49.1	-29	Pass
		(731.5, 736.5 and 765.5 MHZ)	20 MHZ - 1.2 GHZ	806	-41.1	-19	Pass
Dort 1 EC ND 14 1	i Carrier Test Case 0	(731.5, 736.5 and 765.5 MHz)	1.2 GHZ - 8 GHZ	4014.93	-36.4	-19	Pass
FOR 1, 5G NR, Mult	Pand p12, 1550, 1040 MI	17					
	Banu 112, 1559 - 1610 MF	12 vidth					
	S MITZ BAND	OPSK Modulation					
	1	(731 5, 736 5 and 765 5 MHz)	1 550 GHz 1 61 GHz	1609.67	-62.7	-46	Pace
Port 2 5G NR Mult	i-Carrier Test Case 2	(101.0, 100.0 and 100.0 Wi12)	1.000 0112 - 1.01 0112	1000.07	-02.1	-40	1 000
1 0.1 2, 00 MIX, Mult	Band n12 1559 - 1610 MH	17					
	5 MHz Bandy	vidth					
	o mile Sundy	QPSK Modulation					
		(731.5, 736.5 and 765.5 MHz)	1.559 GHz - 1.61 GHz	1607.83	-62.6	-46	Pass
		· · · · · · · · · · · · · · · · · · ·					

Port 1, 5G NR, Multi-Carrier Test Case 1, Band n12, (731.5, 736.5 and 742.5 MHz), 5 MHz Bandwidth, QPSK Modulation						
Frequency	Measured	Max Value	Limit			
Range	Freq (MHz)	(dBm)	< (dBm)	Result		
150 kHz - 20 MHz	0.16	-48.91	-29	Pass		

L	RF	50 Ω DC	CORREC		5	ENSE:INT	/\A	LIGN OFF		07:59:1	5 AM Aug 05, 20
				PNO: Fast IFGain:Low	•••	Trig: Free Ru #Atten: 16 dE	in 3	Avg Type: Avg Hold: 1	RMS 100/100	TI	TYPE A WWW DET A NNN
B/div	Ref Offs Ref 11	et 27.7 dE . 70 dBm	3							Mkr1 ′ -48.	157.4 kl 910 dB
						Ť					
											DI 1 -29.00
1											
\						1					
Manager and			م و بالحضارة وما مالا المحمد الم				1				
					418473444	an a	a de la construcción de la constru	Hidoltipetheoric courses		and the second second	eletterigierter
rt 150	kHz									Stop 2	20.000 M

	Range		Freg (MHz)	(dBm)	< (dBm)	Result	
	20 MHz - 1.2 G	iHz	765	-37.91	-19	Pass	
	trum Analyzer - Element Materials T	echnology	•	•	-	•	X
XI RL	RF 50 Ω DC COR	REC	SENSE:INT	ALIGN AUTO	DMC	06:00:28 AM Aug 06,	2022
		PNO: Fast IFGain:Low	→ Trig: Free Run #Atten: 20 dB	Avg Hold:	100/100	TYPE A WW DET A N N	456 ////////////////////////////////////
10 dB/div	Ref Offset 41.6 dB Ref 43.60 dBm				N	lkr1 765.00 M -37.913 dl	Hz 3m
			The second secon				
33.6							
				TT .			
23.6							
13.6							
3.60							
-6.40							
0.40							
-16.4						DL1 -19.0) dBm
26.4							
-26.4				11.			
-36.4				(👷 '			
				entertioned Descention and			
-46.4							
start 0.020 #Res BW 1	0 GHZ	#	VBW 300 kHz*		#Sweep 1	Stop 1.2000 G 76.0 ms (30000	HZ pts)
MSG				STATUS			
Dort 1 C	C ND Multi Corrier Ter	t Casa 1 Barra	n10 /701 E 700 E				2
PUL 1, 5	Frequency	Case I, Dano	Measured	Max Value	Limit	, Grok wouldlo	1
	Range		Freq (MHz)	(dBm)	< (dBm)	Result	
	1.2 GHz - 8 G	Ηz	4011.12	-36.4	-19	Pass	

Keysight Sp	ectrum Ana	lyzer - Eleme	ent Material	s Technolo	gy							
LXI RL	RF	50 Ω	DC C	ORREC		S	ENSE:INT		ALIGN AUTO		06:14:48	3 AM Aug 06, 2022
				l II	PNO: Fast FGain:Low	- - -	Trig: Free #Atten: 22	Run dB	Avg Type: Avg Hold:	RMS 100/100	TF	ACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN
10 dB/div	Ref Of Ref 2	fset 27.6 9.60 dE	dB 3m								Mkr1 4.0 -36.	19 0 GHz 391 dBm
LUg												
19.6												
9.60												
-0.40												
-10.4												
20.4												DL1 -19.00 dBm
-20.4												
-30.4							∮ ¹					
-40.4					ľ		\sim		$\sim\sim$			
-50.4												
-60.4												
Start 1.20 #Res BW	0 GHz 1.0 MH	z			#	¢νвι	N 3.0 MHz	t		#Sweep	Stop 175.0 ms	8.000 GHz (15000 p <u>ts)</u>
MSG				12.12					STATUS			

Freque	ncy	Measured	Max Value	Limit		
Rang	e	Freq (MHz)	(dBm)	< (dBm)	Result	_
9 KHZ - 15	0 KHZ	0.01	-52.11	-39	Pass	
Keysight Spectrum Analyzer - Element Mate	rials Technology					P X
XX RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN OFF		08:29:47 AM Aug 0	5, 2022
	PNO: Wide ↔→→ IFGain:Low	Trig: Free Run #Atten: 12 dB	Avg Type: Avg Hold: 1	RMS 100/100	TRACE 1 2 TYPE A W DET A N	3 4 5 6 WWWW N N N N
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm					Mkr1 9.123 -52.112 c	kHz IBm
		Ť				
1 90						
-8 10						
-18.1						
-28.1						
-38.1					DL1 -39	1.00 dBm
-48.1 1						
tran .						
-58.1		A			Δ	
and the second s	man and a second					
-68.1	· · · · · · · · · · · · · · · · · · ·	human		Λ		
			en manun	how	man lan	00000
-78.1						
Start 9.00 kHz		k			Stop 150.00	kHz
#Res BW 1.0 kHz	#VB	W 3.0 kHz*		#Sweep	174.4 ms (8001	pts)
MSG			STATUS	in the second state states	0.000.000.000.000	005003

Port 2, 5G NR, Multi-Carrier Test Case 1, Band n12, (731.5, 736.5 and 742.5 MHz), 5 MHz Bandwidth, QPSK Modulation								
Frequency	Measured	Max Value	Limit					
Range	Freq (MHz)	(dBm)	< (dBm)	Result				
150 kHz - 20 MHz	0.15	-48.55	-29	Pass				

Keysigl	ht Spectrum A	Analyzer - Element I	Materials Technol	ogy						
LXI RL	RF	50 Ω DC	CORREC		SENSE:INT		ALIGN OFF	DMS	08:32:28	AM Aug 05, 2022
				PNO: Fast ++	. Trig: Free #Atten: 16	Run dB	Avg Hold: 1	00/100		
10 dB/d	Ref iv Ref	Offset 27.7 dE 11.70 dBm	3 1						Mkr1 1 -48.	50.0 kHz 545 dBm
						Í				
1.70										
-8.30										
-18 3										
10.0										
-28.3										DL1-29.00 dBm
-38.3										
10.0										
-40.5										
-58.3										
-68.3	Marketer at .				at an arthur an a					
78.2		an a			1	a familie and a familie a surface of the				
10.0										
Start 1	50 kHz	1	L		I,	<u>.</u>	<u> </u>		Stop 2	0.000 MHz
#Res E	3W 10 k	Hz		#VE	W 30 kHz*			#Swee	o 174.4 ms	s (8001 pts)
MSG	ingenie field	and the states of the	a for the state of the		weeks of the operation of	and the second second	STATUS	62028.202003	0.000.000.000.000	0.020000000000000

	Range	Freg (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 1.2 GHz	765	-30.41	-19	Pass
Keysight Spectrum Analyzer	- Element Materials Technology				
LXI RL RF	50 Ω DC CORREC	SENSE:INT	ALIGN AUTO	RMS	06:24:22 AM Aug 06, 2022 TRACE 1 2 3 4 5
	PNO: Fa IFGain:Le	st ↔ Trig: Free Run ow #Atten: 20 dB	Avg Hold:	100/100	
Ref Offse 10 dB/div Ref 43.6	t 41.6 dB 60 dBm			Mł	r1 765.00 MHz -30.405 dBm
Log		The second secon			
33.6					
23.6					
13.6					
3.60					
-6.40					
-16.4					DL1 -19.00 dBn
-26.4			1		
-36.4					
-46.4					
Start 0.0200 GHz					Stop 1.2000 GHz
#Res BW 100 kHz		#VBW 300 kHz*		#Sweep 17	6.0 ms (30000 pts
MSG			STATUS		
Port 2 5G NR M	ulti-Carrier Test Case 1 B	and n12 (731 5 736 5 an	nd 742 5 MHz) 5	MHz Bandwidth	OPSK Modulation
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	1.2 GHz - 8 GHz	4012.48	-36.4	-19	Pass

LXI RL RF	50 Ω DC CORRE	iC	SENSE:INT	ALIGN AUTO		06:20:15 AM Aug 06, 2022
		PNO: Fast ↔ IFGain:Low	Trig: Free #Atten: 22	Avg 1 Run Avg H dB	ype: RMS old: 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN
Ref Off 10 dB/div Ref 29	set 27.6 dB 9.60 dBm					Mkr1 4.037 1 GHz -36.394 dBm
10.0						
19.6						
9.60						
-0.40						
-10.4						DL1 -19.00 dBm
-20.4						
-30.4			• ¹			
-40.4					\sim	
-50.4						
-60.4						
Start 1.200 GHz #Res BW 1.0 MH	7	#V	BW/30MHz	,	#Sween	Stop 8.000 GHz
MSG				STAT	IS	(10000 (100)

1.559 GHz - 1.61 GHz 1608.52 -62.66 -46 Pass Keysight Spectrum Analyzer - Element Materials Technology 08:18:40 AM Augo 08:18:40 AM Augo Keysight Spectrum Analyzer - Element Materials Technology 08:18:40 AM Augo 08:18:40 AM Augo Keysight Spectrum Analyzer - Element Materials Technology 08:18:40 AM Augo Avg Type: RMS TRACE PNO: Fast → Trig: Free Run IFGain:Low Avg Type: RMS True Fast True Fast 0 dB/div Ref Offset 24.4 dB 04:100 ffset 24.4 dB 04:100 ffset 24.4 dB 04:100 ffset 24.4 dB 10 dB/div Ref - 0.60 dBm -62.657 c -62.657 c -00.6 -0.6 -0.6 -0.6 -0.6
Keysight Spectrum Analyzer - Element Materials Technology Image: Constraint of the sector of th
Ref Offset 224.4 dB Mkr1 1.608 521 0 0 dB/div Ref -0.60 dBm 0.6 -62.657 c 0.6 -
Ref Offset 24.4 dB Mkr1 1.608 521 0 (-62.657 c 106
30.6
40.6
-90.6

Range		Measured Freq (MHz)	Max value (dBm)	< (dBm)	Result
1.559 GHz - 1.61	GHz	1604.86	-62.62	-46	Pass
, Keysight Spectrum Analyzer - Element Materials Te RL RF 50 Ω DC CORR	ihnology EC SE	NSE:INT	ALIGN OFF	RMS	08:22:56 AM Aug 05, 2022 TRACE 1 2 3 4 5
	PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 6 dB	Avg Hold:	100/100	TYPE A WWWWW DET A NNNN
Ref Offset 24.4 dB 10 dB/div Ref -0.60 dBm				Mkr1 1	.604 864 3 GHz -62.618 dBm
-10.6					
-20.6					
-30.6					
-40.6					DL1 -46.00 dBn
-50.6					1
70.6					
-80.6					
-90.6					

Frequency	Me	asured Max Va	lue Limit	
Range	Fre	q (MHz) (dBm	n) < (dBm)	Result
9 kHz - 150 k	Hz	0.01 -51.86	6 -39	Pass
Keysight Spectrum Analyzer - Element Materials	echnology			
RL RF 50Ω DC CO	REC SENSE:INT	ALIGN AUT	TO RMS	03:56:19 AM Aug 06, 20 TRACE 1 2 3 4
	PNO: Wide +++ Trig: F IFGain:Low #Atten	ree Run Avg : 12 dB	Hold: 100/100	TYPE A WWW DET A N N N
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm			I	Mkr1 9.881 kH -51.855 dBı
		T T		
1 90				
-8 10				
-18.1				
-28.1				
-38.1				DL1 ~39.00 df
-48.1				
man and a	Δ			٨
-58.1				
	monter		Λ	
-00.1		and a second and the second se	month human	man hana
-78.1				
Start 9.00 kHz				Stop 150.00 kH
#Res BW 1.0 kHz	#VBW 3.0 k	Hz*	#Sweep 1	74.4 ms (8001 pt

Port 1, 5G NR, Multi-Carrier Test Case 2, Band n12 and	3and n14 (731.5, 7	36.5 and 765.5 N	IHz), 5 MHz Band	dwidth, QPSK Moo
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	0.15	-49.64	-29	Pass

RL	RF	50 Ω DC	CORREC		SENSE:INT		ALIGN AUTO		03:58:	09 AM Aug 06, 20
				PNO: Fast ↔ IFGain:Low	Trig: Fre #Atten: 1	e Run 6 dB	Avg Type: Avg Hold:	RMS 100/100	1	TYPE A WWWA DET A NNN
IB/div	Ref Off Ref 1	set 27.7 dE 1 .70 dBm	3		_				Mkr1 -49	155.0 kH .635 dB
										DI129.00
1										
Vir Virgen		the lands again	afathanna Afardanan	uharian pangaharan dara	h laren leiner harringen	ahaan ku dabaa	and the second secon	in an an attended and a state		the superior substances
rt 150									Stop	20.000-14
s BW	10 kHz			#V	BW 30 kHz	*		#Swe	en 174.4 m	20.000 IVI

I	Frequency	Measured	Max Value	Limit	Popult
20 1		806	(UBIII) -41.07	< (uBill)	Pass
201		000	-11.07	-15	1 433
Keysight Spectrum Analyzer - Eler	nent Materials Technology DC CORREC	SENSE:INT	ALIGN AUTO		04:11:35 AM Aug 06, 2022
	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Avg Hold:	RMS 100/100	TRACE 1 2 3 4 5 0 TYPE A WWWW DET A N N N N
Ref Offset 41. 10 dB/div Ref 43.60 d	6 dB IBm				Mkr1 806.00 MHz -41.071 dBm
Log					
33.6					
23.6					
10.0					
13.6					
3.60					
-6.40					
-16.4					DI 4, 40,00 4Ees
					DET -15.00 dBm
-26.4					
-36.4					
-46.4					
Start 0.0200 GHz #Res BW 100 kHz	#	/BW 300 kHz*		#Sweep	Stop 1.2000 GHz 176.0 ms (3000 <u>0 pts</u>
MSG			STATUS		

Port 1, 5	Port 1, 5G NR, Multi-Carrier Test Case 2, Band n12 and Band n14 (731.5, 736.5 and 765.5 MHz), 5 MHz Bandwidth, QPSK Modulation						
	Frequency	Measured	Max Value	Limit			
	Range	Freq (MHz)	(dBm)	< (dBm)	Result		
ĺ	1.2 GHz - 8 GHz	4033.52	-36.36	-19	Pass		

Keysight Spe	ctrum Analyzer - E	lement Materials	Technology							
KL	RF 50	Ω DC CO	RREC	SEN	ISE:INT]	ALIG		RMS	04:31:36 TR	AM Aug 06, 2022 ACE 1 2 3 4 5 6
	_		PNO: Fas IFGain:Lo	at ⊶⊶ w	Trig: Free R #Atten: 22 d	lun IB	Avg Hold: 1	100/100		
10 dB/div	Ref Offset 2 Ref 29.60	7.6 dB dBm							Mkr1 4.0 -36.	33 5 GHz 355 dBm
					Ĭ					
19.6										
9.60										
-0.40										
-10.4										
-20.4										DL1 -19.00 dBm
-30.4					1					
-40.4		v			\sim		\sim		\sim	~~~
-50.4										
-60.4										
Start 1.20	0 GHz								Stop	8.000 GHz
#Res BW	1.0 MHz			#VBW	3.0 MHz*			#Sweep	175.0 ms	(15000 pts)
MSG		land a start for	Constants at the		100 KA10 KA10	en den de la final	STATUS			and the second

Freq	uency	Measured	Max Value	Limit	
Ra	nge	Freq (MHz)	(dBm)	< (dBm)	Result
9 kHz -	150 kHz	0.01	-52.22	-39	Pass
Keysight Spectrum Analyzer - Element M	laterials Technology				- F
🗶 RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO	DMS	05:02:53 AM Aug 06, 2
	PNO: Wide IFGain:Low	Trig: Free Run #Atten: 12 dB	Avg Hold:	100/100	
Ref Offset 27.9 dB 10 dB/div Ref 11.90 dBm					Mkr1 9.758 k -52.221 dE
		Y Y			
1 90					
1.00					
-8.10					
-0.10					
10.1					
-10.1					
-28.1					
200.1					
-38.1					DL1 -39.00
-48.1 1					
-58.1		Δ			Λ
- manan	Martine and				
-68.1		and human		Δ	
			Marine Ma	mum	mond him
-78.1					
Start 9.00 kHz		A			Stop 150.00 k
#Res BW 1.0 kHz	#	VBW 3.0 kHz*		#Sweep 1	74.4 ms (8001 p

Port 2,	5G NR, Multi-Carrier Test Case 2, Band n12 and E	3and n14 (731.5, 7	36.5 and 765.5 M	Hz), 5 MHz Band	dwidth, QPSK Mo	lulati
	Frequency	Measured	Max Value	Limit		
	Range	Freq (MHz)	(dBm)	< (dBm)	Result	
	150 kHz - 20 MHz	0.15	-49.12	-29	Pass	

Keysight Spectrum Analyzer - Element Ma	terials Technology	L ana and L		
κι κ- 50Ω DC	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 16 dB	ALIGN AUTO Avg Type: RMS Avg Hold: 100/100	US:US:26 AM AUG U6, 20 TRACE 1 2 3 4 5 TYPE A WWWW DET A NNN
Ref Offset 27.7 dB dB/div Ref 11.70 dBm				Mkr1 150.0 k⊦ -49.115 dBi
2		Ĭ		
/0				
0				
3				
3				DL1-29.00
3				
1				
Martine Contraction				
	and the state of the second	Martin and Welton a party large party has a second	aflange tu name inter troch begyet bezendelet en ogen et bistor andjer god	a bert sig tangangan tinggan pilan taganlap tana aptinansi menjat
3				
rt 150 kHz es BW 10 kHz	#1	VBW 30 kHz*	#Swe	Stop 20.000 M
			STATUS	

Frequ	ency	Measured	Max Value	Limit	
Rar	ige	Freq (MHz)	(dBm)	< (dBm)	Result
20 MHz -	1.2 GHz	806	-41.06	-19	Pass
Keysight Spectrum Analyzer - Element Ma	terials Technology				
X RL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO	DMC	05:10:56 AM Aug 06, 2
	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Hold:	100/100	TYPE A WWW DET A NNN
Ref Offset 41.6 dB 10 dB/div Ref 43.60 dBm				М	kr1 806.00 MI -41.060 dB
		Y			
55.0					
22.6					
23.0					
13.6					
13.6					
2 60					
3.00					
6.40					
0.40					
-16.4					
					DL1 -19.00
-26.4					
-36.4			1 -		
-46.4					
Start 0.0200 GHz #Res BW(100 kHz		BIA(300 kHz*		#Sween_17	Stop 1.2000 G
	<i></i>	514-500-R112		"oweep II	

Port 2,	5G NR, Multi-Carrier Test Case 2, Band n12 and E	and n14 (731.5, 7	36.5 and 765.5 M	Hz), 5 MHz Band	width, QPSK Mo	dulation
	Frequency	Measured	Max Value	Limit		
	Range	Freq (MHz)	(dBm)	< (dBm)	Result	
	1.2 GHz - 8 GHz	4014.93	-36.4	-19	Pass	

Keysight Sp	ectrum Analyzer - Element Materials T	echnology	and a state of the				- # <mark>-</mark> X
CXI RL	RF 50 Ω DC COR	PNO: Fast ++- IFGain:Low	Trig: Free Run #Atten: 22 dB	ALIGN AUTO Avg Type: F Avg Hold: 1	RM S 00/100	05:20:13 TR T	AM Aug 06, 2022 ACE 1 2 3 4 5 6 YPE A WWWW DET A N N N N N
10 dB/div	Ref Offset 27.6 dB Ref 29.60 dBm					Mkr1 4.0 -36.3	14 9 GHz 395 dBm
19.6			Ĭ				
9.60							
-0.40							
-10.4							
-20.4							DL1 -19.00 dBm
-30.4			∳ ¹				
-40.4				~~~~	~~~	\sim	\sim
-50.4							
-60.4							
Start 1.20 #Res BW	00 GHz 1.0 MHz	#VB	W 3.0 MHz*		#Sweep	Stop 175.0 ms (8.000 GHz 15000 pts)
MSG				STATUS			

Freq Ra	uency nge	Measured Freq (MHz)	Max Value (dBm)	Limit < (dBm)	Result
1.559 GHz	- 1.61 GHz	1608.67	-62.65	-46	Pass
Keysight Spectrum Analyzer - Element M	aterials Technology	CENCEMNT			
	EURICE PNO: East	Trig: Free Run	Avg Type: AvgHold:	RMS 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWW
	IFGain:Low	#Atten: 6 dB			DET A N N N N N
Ref Offset 24.4 dB 10 dB/div Ref -0.60 dBm				Mkr1 1	.608 668 9 GHz -62.649 dBm
		The second se			
-10.6					
-20.6					
-30.6					
-40.6					
					DL1 -46.00 dBm
-50.6					
					1
-60.6					_
-70.6					
-80.6					
-90.6					
Start 1.55900 GHz					Stop 1.61000 GHz

F	requency Range	Measured Freq (MHz)	Max Value (dBm)	Limit < (dBm)	Result	
1.559 (GHz - 1.61 GHz	1607.83	-62.59	-46	Pass	
						_
Keysight Spectrum Analyzer - Elem	ent Materials Technology	CENCE-INT			05:25:21 AM Aug 06, 2022	
W NC 10 50 22	DC CONNEC	Teles Free Due	Avg Type:	RMS	TRACE 1 2 3 4 5 6	
	PNO: Fast IFGain:Low	#Atten: 6 dB	Avg Hold:	100/100	DETANNNN	
Ref Offset 24.4	ldB			Mkr1 1	.607 827 4 GHz	
10 dB/div Ref -0.60 dE	3m				-62.587 dBm	
		The second secon				
-10.6						
-20.6						
20.0						
-30.6						
-40.6						
					DL1 -46.00 dBm	
-50.6						
					1	
-6U.b						
-70.6						
-80.6						
-90.6						
Start 1.55900 GHz					Stop 1.61000 GHz	

End of Test Report