

Radio Test Report Application for a Permissive Change of Equipment Authorization FCC Part 27 Subpart C and IC RSS-130 729MHz – 745MHz

> FCC Part 90 Subpart R and IC RSS-140 758MHz - 768MHz

> > FCC ID: VBNAHLBBA-01 IC ID: 661W-AHLBBA

Nokia Solutions and Networks Airscale Base Transceiver Station Remote Radio Head Model: AHLBBA

Report: NOKI0047, Issue Date: September 28, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: August 8, 2022 Nokia Solutions and Networks EUT: Airscale Base Transceiver Station Remote Radio Head Model AHLBBA

Radio Equipment Testing

Standards

Specification	Method
Code of Federal Regulations (CFR) Title 47 Part 2 (Radio Standards specification) RSS-Gen Issue 5 CFR Title 47 Part 27 Subpart C Miscellaneous Wireless Communication Services CFR Title 47 Part 90 Subpart R – Private Land Mobile Radio RSS-130 Issue 2: February 2019 RSS-140 Issue 1 -April 2018	ANSI C63.26-2015 FCC KDB 971168 D01 v03r01 FCC KDB 662911D01 v02r01

Results

Test Description	Applied	Results	Comments
Ouput Power	Yes	Pass	
Occupied Bandwidth	Yes	Pass	
Frequency Stability	No	N/A	Not requested.
Average Power	Yes	Pass	
Peak to Average Power (PAPR)CCDF	Yes	Pass	
Power Spectral Density and EIRP	Voc	Pass	
Calcualation	Tes	r ass	
Band Edge Compliance	Yes	Pass	
Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

		SCOPE			
For details on the Scopes of our Accreditations, please visit:					
<u>California</u>	<u>Minnesota</u>	Oregon	Texas	Washington	

FACILITIES

California	Minnesota	Oregon	Texas	Washington			
Labs OC01-17	Labs MN01-11	Labs EV01-12	Labs TX01-09	Labs NC01-05			
41 Tesla	9349 W Broadway Ave.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120 th Ave NE			
Irvine, CA 92618	Brooklyn Park, MN 55445	Hillsboro, OR 97124	Plano, TX 75074	Bothell, WA 98011			
(949) 801-8918	(012)-030-5130	(503) 844-4000	(409) 304-5255	(423)984-0000			
		A2LA					
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
	Innovation, Sci	ence and Economic Develop	ment Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
		BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
VCCI							
A-0029	A-0109	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
LIS0158	US0175	LIS0017	LIS0191	LIS0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured
ValueMeasured
LevelReference
Level
Offset71.2=42.6+28.6

Near Field Test Fixture Measurements

42.6

28.6

+

71.2

=

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Company Name:	Nokia Solutions and Networks
Address:	3201 Olympus Blvd
City, State, Zip:	Dallas, TX 75019
Test Requested By:	Steve Mitchell
EUT:	Airscale Base Transceiver Station Remote Radio Head Model AHLBBA
First Date of Test:	July 29, 2022
Last Date of Test:	August 8, 2022
Receipt Date of Samples:	July 29, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Client and Equipment under Test (EUT) Information

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

A permissive change on the original filing is being pursued to add 5G NR technologies to the AirScale Base Transceiver Station Remote Radio Head Model AHLBBA FCC and ISED radio certifications. The original test effort includes testing for 4G LTE technologies. Please refer to the test report on the original certification for details on all required testing. "NOKI0013 issue date April 27, 2020"

All conducted RF testing performed for the original certification testing has been repeated using 5G NR carriers for this permissive change per correspondence/guidance from Nemko TCB. The same test methodology used in the original certification testing was used in this permissive change test effort. Tests performed under the change effort include RF power, PSD, CCDF, emission bandwidth (99% and 26 dB down), band edge spurious emissions, and conducted spurious emissions.

The testing was performed on the same hardware version (AHLBBA) as the original certification test. The base station and remote radio head software for this testing is an updated release that includes 5G NR support.

The radiated emissions and frequency stability measurements performed in the original certification were not repeated under this effort per TCB guidance. The radiated emission and frequency stability/accuracy results from the original certification had enough margin to preclude requiring additional testing. The frequency stability/accuracy radio design is the same for all radio technologies/modulation types.

Nokia Solutions and Networks AirScale Base Transceiver Station (BTS) Remote Radio Head (RRH) variant AHLBBA is being developed under this effort. The AHLBBA remote radio head is a multistandard multi-carrier radio module designed to support 4G LTE, 5G NR, narrow band IoT (internet of things) operations (in-band, guard band, standalone) and Dynamic Spectrum Sharing (DSS). The scope of testing in this effort is for 5G NR-FDD operations.

The AHLBBA RRH has four transmit/four receive antenna ports (4TX/4RX for Band n12, 4TX/4RX for Band n14). Antenna ports 1-4 support 3GPP 5G NR frequency band n12 (BTS Rx: 699 to 714 MHz/BTS TX: 729 to 745 MHz) and 3GPP 5G NR frequency band n14 (BTS Rx: 788 to 798 MHz/BTS TX: 758 to 768 MHz) at 80 watts/carrier. Antenna ports 1 & 4 support 3GPP frequency band 29 downlink (BTS TX: 718 to 728 MHz) at 25 watts/carrier; Band 29 is not supported for 5G NR

PRODUCT DESCRIPTION

operations at this time. The AHLBBA radio hardware has design variation between two antenna port set paths, antenna 1&4 have same hardware design, antennas 2&3 have same hardware design. The total output power with 5GNR FDD carriers is 80 watts for each antenna port 1, 2,3 & 4. The maximum RRH RF output power for all 5GNR antenna ports (1 - 4) is 320 Watts. The RRH can be operated as a 4x4 MIMO, 2x2 MIMO or as non-MIMO for Bands 12 & 14. The TX and RX instantaneous bandwidth cover the full operational bandwidth. The RRH supports radio bandwidths of 5, 10, 15MHz for 3GPP frequency band n12 and bandwidths of 5 and 10MHz for band n14. The RRH supports four 5G NR downlink modulation types (QPSK, 16QAM, 64QAM and 256QAM). Multi-carrier operation is supported.

The 5G NR carriers/modulation types for this testing are setup according to 3GPP TS 38.141-1 Test Models and are NR-FR1-TM 1.1 (QPSK modulation type), NR-FR1-TM 3.2 (16QAM modulation type), NR-FR1-TM 3.1 (64QAM modulation type), and NR-FR1-TM 3.1a (256QAM modulation type).

Single carriers are tested at the bottom, middle and top channels provided in Band n12 and Band n14 frequency channel tables. Multicarrier testing is performed at maximum port/carrier power per KDB 971168 D03v01 guidance.

The RRH has external interfaces including DC power (DC In), ground, transmit/receive (ANT), external alarm (EAC), optical CPRI/eCPRI (OPT) and remote electrical tilt (RET). The RRH with applicable installation kit may be pole or wall mounted.

Multicarrier/Multiband test cases have been developed as shown below:

Multi-Carrier Test Case 1 (3GPP Band n12 Multicarrier): Three NR5 carriers using two carriers (with minimum spacing between carrier frequencies) at the lower band (731.5MHz & 736.5MHz) and a third carrier with maximum spacing between the other two carrier frequencies (742.5MHz) at the upper band edge. The NR 5Mhz channel bandwidth was selected to maximize carrier power spectral density. The carriers are operated at maximum power for a total port power of 80 watts (~26.6W/Band n12 carriers).

Multi-Carrier Test Case 2 (3GPP Band n12 and Band n14 Multicarrier/Multiband): In the Band n12 _ Two NR 5MHz carriers at the lower band edge (731.5 & 736.5MHz). In Band n14 one NR 5MHz carrier at the upper band edge 765.5MHz. The carriers are operated at maximum power for a total port power of 80 watts (~26.6W/Band n12/n14 carriers).

<u>AHLBBA 3GPP Frequency Band n12 5GNR Downlink Band Edge ARFCNs</u> The 3GPP frequency band n12 (729 - 745 MHz) band edge downlink (BTS Transmit) ARFCNs for

5GNR channel bandwidths (5,10, and 15 MHz) are provided below. The ARFCN is defined as Absolute Radio Frequency Channel Number.

	Downlink Downlink		5GNR Channel Bandwidth					
	ARFCN	Frequency (MHz)	5 MHz	10 MHz	15 MHz			
	145800	729.0	Band Edge	Band Edge	Band Edge			
	146300	731.5	Bottom Ch					
	146800	734.0		Bottom Ch				
(4								
2, 3,	147300	736.5			Bottom Ch			
t 1,								
(An	147400	737	Middle Ch	Middle Ch	Middle Ch			
12								
nd r	147500	737.5			Top Channel			
Ba								
	148000	740		Top Channel				
	148500	742.5	Top Channel					
	149000	745.0	Band Edge	Band Edge	Band Edge			

AHLBBA Downlink Band Edge 5GNR Band n12 Frequency Channels

AHLBBA 3GPP Frequency Band n14 5GNR Downlink Band Edge ARFCNs

The 3GPP frequency band n14 (758-768 MHz) band edge downlink (BTS Transmit) ARFCNs for 5GNR channel bandwidths (5 and 10MHz) are provided below. The ARFCN is defined as Absolute Radio Frequency Channel Number.

	Downlink ARFCN	Downlink Frequency (MHz)	5GNR Channe	l Bandwidth
			5 MHz	10 MHz
	151600	758.0	Band Edge	Band Edge
(152100	760.5	Bottom Ch	
2, 3, ,				
l4 (Ant 1,	152600	763.0	Middle Ch	Bottom Ch Middle Ch Top Channel
and n]				
B	153100	765.5	Top Channel	
	153600	768.0	Band Edge	Band Edge

AHLBBA Downlink Band edge 5GNR Band n14 Frequency Channels

PRODUCT DESCRIPTION

I. AHLBBA Connector Layout

AHLBBA External Interfaces

Name	Qty	Connector Type	Purpose (and Description)
DC In	1	Quick Disconnect	2-pole Power Input Terminal
GND	1	Screw lug (2xM5/1xM8)	Ground
ANT	4	4.3-10	RF signal for Transmitter/Receiver (50 Ohm)
Unit	1	LED	Unit Status LED
EAC	1	MDR26	External Alarm Interface (4 alarms)
ΟΡΤ	2	SFP+ cage	Optical CPRI Interface up to 10 Gps.
RET	1	8-pin circular connector conforming to IEC 60130-9 – Ed.3.0	AISG 2.0 to external devices

Testing Objective:

A permissive change on the original filing is being pursued to add 5G NR operations to the Nokia Solutions and Networks AirScale Base Transceiver Station (BTS) Remote Radio Head (RRH) model AHLBBA FCC and ISED certifications.

Configuration NOKI0047-1

Software/Firmware Running during test						
Description	Version					
Radio Module Software:(FRM5)	RF.FRM5.trunk.20220621.022					
BTS Software Version:(22R4)	SBTS22R4 ENB 9999 22063 000003					

Equipment being tested (include Peripherals)								
Description	Manufacturer	Model/Part Number	Serial Number					
AMIA (BTS System Module)	Nokia Solutions and Networks	473098A.203	J818470035					
ASIB (BTS System Module)	Nokia Solutions and Networks	473764A.102	DH211165881					
ABIO (BTS System Module)	Nokia Solutions and Networks	475266A.102	L1205105845					
AHLBBA (Remote Radio Head)	Nokia Solutions and Networks	475082A.101	K9193514835					
Low Pass Filter	Mini-Circuits	VLFX-80+	RUU95701952					
Attenuator 150W/20dB	AeroflexWeinschel	66-20-33	BZ2075					
Attenuator 150W/10dB	AeroflexWeinschel	6375	BJ2483					
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023004CK					
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023002TA					
LENOVO T490	LENOVO	B2G14EC#ABA	CNU246B8XP					
Keysight- DC System power supply	Keysight	N8757A	US21D4053S					
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007170					
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC865					
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC066					
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC863					
Fiber Optic cable 0300 mm	Amphenol	E201648	2701M					
CAT5e data cable	LEONI L	64867m	146180					
WebEM- PC	LENOVO	T490 ThinkPad	PF26RVZ0					
3 Meter RF load cable	Alpha Wire	9214	RG214-1					
2 Meter RF load cable	Maketron	706	993437a					
1 Meter RF load cable	Maketron	706	993437a-2					
1 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_104	SN551123/4					
6 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_106	SN528836 /6					
GPS Receiver	Trimble	92626-60	71231431					
GPS cable	Nokia	FTSH 472577A.103	CA2029					

Cables (Peripheral)							
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2		
Amphenol Fiber Optic cable	N	7 meters	N	ABIO	AHLBBA		
Cat-5e cable	Y	7 meters	N	ASIB	WebEM- PC		
Times Microwave Systems	Y	2 meters	Ν	EUT [RRH] Ant port as per config 1-2, 3 and 4	250W -50ohm - Load		

Cables						
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2	
HS-SUCOFLEX_106	Y	3 meters	Ν	EUT [AHLBBA] Ant port #1,2	Attenuator 150W/20dB [BZ1165]	
Attenuator 150W/20dB	Y	NA	Ν	RF cable HS- SUCOFLEX_106	Attenuator 150W/10dB	
Attenuator 150W/10dB	Y	NA	Ν	Attenuator 150W/20dB [BZ2075]	Low Pass Filter 80MHz 10W	
Low Pass Filter 80MHz 10W	Y	NA	N	Attenuator 100W/10dB	RF cable HS- SUCOFLEX_104	
HS-SUCOFLEX_104	Y	1 meter	Ν	Low Pass Filter 80MHz 10W	Spectrum Analyzer	

RF Test Setup Diagram:

Configuration NOKI0047-2

Software/Firmware Running during test					
Description	Version				
Radio Module Software:(FRM5)	RF.FRM5.trunk.20220621.022				
BTS Software Version:(22R4)	SBTS22R4_ENB_9999_22063_000003				

Equipment being tested (include Peripherals)							
Description	Manufacturer	Model/Part Number	Serial Number				
AMIA (BTS System Module)	Nokia Solutions and Networks	473098A.101	RK182307104				
ASIB (BTS System Module)	Nokia Solutions and Networks	474021A.102	L1164105428				
ABIO (BTS System Module)	Nokia Solutions and Networks	474020A.102	L1164121378				
AHLBBA (Remote Radio Head)	Nokia Solutions and Networks	475082A.101	K9193514835				
Attenuator 500W/40dB	API Weinschel	253-40-33-LIM	UP093				
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023004CK				
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023002TA				
LENOVO T490	LENOVO	B2G14EC#ABA	CNU246B8XP				
Keysight- DC System power supply	Keysight	N8757A	US21D4053S				
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007170				
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC865				
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC066				
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC863				
Fiber Optic cable 0300 mm	Amphenol	E201648	2701M				
CAT5e data cable	LEONI L	64867m	146180				
WebEM- PC	LENOVO	T490 ThinkPad	PF26RVZ0				
3 Meter RF load cable	Alpha Wire	9214	RG214-1				
2 Meter RF load cable	Maketron	706	993437a				
1 Meter RF load cable	Maketron	706	993437a-2				
1 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_104	SN551123/4				
6 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_106	SN528836 /6				
GPS Receiver	Trimble	92626-60	71231431				
GPS cable	Nokia	FTSH 472577A.103	CA2029				

Cables (Peripheral)							
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2		
Amphenol Fiber Optic cable	N	7 meters	N	ASIB	AHLBBA		
Cat-5e cable	Y	7 meters	N	ASIB	WebEM- PC		
Times Microwave Systems	Y	2 meters	Ν	EUT [RRH] Ant ports as per config 1-2, 3 and 4	250W -50ohm - Load		

Cables							
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2		
HS-SUCOFLEX_106	Y	2 meters	Ν	EUT [AHLBBA] Ant port #1,2	Attenuator 500W/40dB		
Attenuator 500W/40dB	Y	NA	Ν	RF cable HS- SUCOFLEX_106	RF cable HS- SUCOFLEX_104		
HS-SUCOFLEX_104	Y	1 meter	Ν	Attenuator 250W/40dB	Spectrum Analyzer		

RF Test Setup Diagram:

Configuration NOKI0047-3

Software/Firmware Running during test					
Description	Version				
Radio Module Software:(FRM5)	RF.FRM5.trunk.20220621.022				
BTS Software Version:(22R4)	SBTS22R4_ENB_9999_22063_000003				

Equipment being tested (include Peripherals)							
Description	Manufacturer	Model/Part Number	Serial Number				
AMIA (BTS System Module)	Nokia Solutions and Networks	473098A.101	RK182307104				
ASIB (BTS System Module)	Nokia Solutions and Networks	474021A.102	L1164105428				
ABIO (BTS System Module)	Nokia Solutions and Networks	474020A.102	L1164121378				
AHLBBA (Remote Radio Head)	Nokia Solutions and Networks	475082A.101	K9193514835				
High Pass Filter 2W	RLC Electronics	F-14699	0050				
Attenuator 150W/20dB	AeroflexWeinschel	66-20-33	BZ2075				
Attenuator 100W/3dB	AeroflexWeinschel	47-3-33	CG5493				
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023004CK				
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023002TA				
LENOVO T490	LENOVO	B2G14EC#ABA	CNU246B8XP				
Keysight- DC System power supply	Keysight	N8757A	US21D4053S				
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007170				
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC865				
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC066				
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC863				
Fiber Optic cable 0300 mm	Amphenol	E201648	2701M				
CAT5e data cable	LEONI L	64867m	146180				
WebEM- PC	LENOVO	T490 ThinkPad	PF26RVZ0				
3 Meter RF load cable	Alpha Wire	9214	RG214-1				
2 Meter RF load cable	Maketron	706	993437a				
1 Meter RF load cable	Maketron	706	993437a-2				
1 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_104	SN551123/4				
6 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_106	SN528836 /6				
GPS Receiver	Trimble	92626-60	71231431				
GPS cable	Nokia	FTSH 472577A.103	CA2029				

Cables (Peripheral)							
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2		
Amphenol Fiber Optic cable	N	7 meters	N	ASIB	AHLBBA		
Cat-5e cable	Y	7 meters	N	ASIB	WebEM- PC		
Times Microwave Systems	Y	2 meters	N	EUT [RRH] Ant ports 1,2, 3 and 4	250W -50ohm - Load		

Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_106	Y	2 meters	Ν	EUT [AHLBBA] Ant port #1,2	Attenuator 150W/20dB [BZ1165]
Attenuator 150W/20dB [BZ2075]	Y	NA	Ν	RF cable HS- SUCOFLEX_106	Attenuator 100W/3dB
Attenuator 100W/3dB	Y	NA	Ν	Attenuator 150W/20dB [BZ2075]	High Pass Filter 2W
High Pass Filter 2W	Y	NA	N	Attenuator 100W/3dB	RF cable HS- SUCOFLEX_104
HS-SUCOFLEX_104	Y	1 meter	Ν	High Pass Filter 2W	Spectrum Analyzer

RF Test Setup Diagram:

Configuration NOKI0047-4

Software/Firmware Running during test							
Description	Version						
Radio Module Software:(FRM5)	RF.FRM5.trunk.20220621.022						
BTS Software Version:(22R4)	SBTS22R4_ENB_9999_22063_000003						

Equipment being tested (include Peripherals)								
Description	Manufacturer	Model/Part Number	Serial Number					
AMIA (BTS System Module)	Nokia Solutions and Networks	473098A.101	RK182307104					
ASIB (BTS System Module)	Nokia Solutions and Networks	474021A.102	L1164105428					
ABIO (BTS System Module)	Nokia Solutions and Networks	474020A.102	L1164121378					
AHLBBA (Remote Radio Head)	Nokia Solutions and Networks	475082A.101	K9193514835					
Carrier Blocking Filter	Nokia Solutions and Networks	TRI-BSBP	None					
Attenuator 500W/40dB	API Weinschel	253-40-33-LIM	UP093					
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023004CK					
SFP+ 9.8G,300M,850NM	Nokia	474900A.101	VF2023002TA					
LENOVO T490	LENOVO	B2G14EC#ABA	CNU246B8XP					
Keysight- DC System power supply	Keysight	N8757A	US21D4053S					
FPAC (DC-pwr supply)	Nokia	472438A.101	G7111007170					
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC865					
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC066					
250W -50ohm -Terminating Load	API Weinschel inc	1433-3-LIM	TC863					
Fiber Optic cable 0300 mm	Amphenol	E201648	2701M					
CAT5e data cable	LEONI L	64867m	146180					
WebEM- PC	LENOVO	T490 ThinkPad	PF26RVZ0					
3 Meter RF load cable	Alpha Wire	9214	RG214-1					
2 Meter RF load cable	Maketron	706	993437a					
1 Meter RF load cable	Maketron	706	993437a-2					
1 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_104	SN551426/4					
1 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_104	SN551432/4					
6 Meter RF cable	Huber + Suhner, Inc.	HS-SUCOFLEX_106	SN528836 /6					
GPS Receiver	Trimble	92626-60	71231431					
GPS cable	Nokia	FTSH 472577A.103	CA2029					

Cables (Peripheral)									
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2				
Amphenol Fiber Optic cable	N	7 meters	N	ASIB	AHLBBA				
Cat-5e cable	Y	7 meters	N	ASIB	WebEM- PC				
Times Microwave Systems	Y	2 meters	N	EUT [RRH] Ant ports as per config1-2, 3 and 4	250W -50ohm - Load				

Cables					
Description	Shield (Y/N)	Length (m)	Ferrite (Y/N)	Connection 1	Connection 2
HS-SUCOFLEX_106	Y	2 meters	Ν	EUT [AHLBBA] Ant port #1,2	Attenuator 500W/40dB
Attenuator 500W/40dB	Y	NA	N	RF cable HS- SUCOFLEX_106	Carrier Filter TRI-BSBP
Carrier Filter TRI-BSBP	Y	NA	N	Attenuator 500W/40dB	RF cable HS- SUCOFLEX_104
HS-SUCOFLEX_104	Y	1 meter	N	Carrier Filter TRI-BSBP	Spectrum Analyzer

RF Test Setup Diagram:

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-07-29	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-08-03	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-08-03	Peak to Average Power (PAPR)CCDF	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-08-04	Power Spectral Density and EIRP Calculation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-08-08	Average Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2022-08-08	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2022-08-08	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANC	2022-03-02	2023-03-02
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

RF conducted emissions testing was performed on all ports at 5 MHz middle channel with 256QAM modulation for both bands in order to prove the AHLBBA antenna ports are essentially electrically identical. Antenna port 1 and antenna port 2 were selected to perform the remainder of the conducted testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

								TbtTx 2022.06.03.0	XMit 2022.02.07.0
EUT	T: AHLBBA (C2PC/C3PC F	CC/ISED)					Work Order	NOKI0047	
Serial Numbe	r: K9193514835						Date	: 30-Jul-22	
Custome	r: Nokia Solutions and Net	tworks					Temperature	: 21.1 °C	
Attendees	s: Mitchel Hill						Humidity	: 56.3% RH	
Projec	t: None						Barometric Pres.:	: 1021 mbar	
Tested by	y: Marty Martin		Pov	wer: 54VDC			Job Site	: TX07	
TEST SPECIFICA	TIONS			Test Method					
FCC 27:2022				ANSI C63.26:2015					
FCC 90R:2022				ANSI C63.26:2015					
RSS-130 Issue 2:	2019 and RSS 140 Issue 1:	: 2018		ANSI C63.26:2015					
COMMENTS									
All measurement	path losses were account	ed for in the reference level o	ffset including attenuato	ors, cables, DC block an	d filter when in ι	se. The carriers were	enabled at maxi	mum power.	
DEVIATIONS FRO	OM TEST STANDARD								
None									
Configuration #	2	Signature	Monty	Marti					
				Initial Value dBm/Carrier BW	Duty Cycle Factor (dB)	Single Port dBm/Carrier BW	All Ports Value (dBm)	Limit (dBm)	Results
Port 1									
	Band n12, 729 - 745, 5 M	Hz Bandwidth							
	256 QAM M	lodulation							
-		Mid Ch. 737 MHz		49.07	0	49	N/A	Inside Tolerance	N/A
Port 2									
	Band n12, 729 - 745, 5 M 256 QAM M	Hz Bandwidth Iodulation							
-		Mid Ch. 737 MHz		48.93	0	48.9	N/A	Inside Tolerance	N/A
Port 3									
	Band n12, 729 - 745, 5 M 256 QAM M	Hz Bandwidth Iodulation							
5 / /		Mid Ch. 737 MHz		48.97	0	49	N/A	Inside Tolerance	N/A
Port 4	Band n12, 729 - 745, 5 M	Hz Bandwidth							
	256 QAM M	Indulation		40.05	0	40	N1/A	Incide Televence	N1/A
All Porto		Mid Ch. 737 MHZ		49.05	0	49	IN/A	Inside Tolerance	IN/A
AILFUILS	Band n12 729 - 745 5 M	Hz Bandwidth							
	256 QAM M	Indulation							
	200 00 00 101	Mid Ch. 737 MHz		N/A	0	N/A	55.02	N/A	N/A
Port 1									
10111	Band n14, 758 - 768, 5 M	Hz Bandwidth							
	256 QAM M	lodulation							
		Mid Ch. 763 MHz		48.97	0	49	N/A	Inside Tolerance	N/A
Port 2									
	Band n14, 758 - 768, 5 M	Hz Bandwidth							
	256 QAM M	Indulation		40.04	0	40.0	N1/A	la side Telesco es	N1/A
Dout 2		Mid Ch. 763 MHz		48.94	U	48.9	IN/A	Inside Tolerance	N/A
Роп 3	Dand n14 750 760 5 M	La Donducidth							
	Danu 1114, 756 - 700, 5 M								
	200 QAIVI W	Mid Ch. 763 MHz		48.91	0	49	N/A	Inside Tolerance	NI/A
Port 4					·		13// 5		19/7 5
	Band n14, 758 - 768, 5 M	Hz Bandwidth							
	256 QAM M	lodulation		(0.00		40			
All Danta		Mid Ch. 763 MHz		48.92	0	49	N/A	Inside Lolerance	N/A
All Ports	Band n14 758 - 769 5 M	Hz Bandwidth							
	256 OAM M								
	200 3/101 10	Mid Ch. 763 MHz		N/A	0	N/A	54.96	N/A	N/A

Channel Power

Power Spectral Density

49.05 dBm / 5 MHz

42.06 dBm /MHz

STATUS

	Band n12, 729	- 745, 5 MHz Ba	ndwidth, 256 QAM M	odulation, Mid Ch.	. 737 MHz	
	Initial Value	Duty Cycle	Single Port	All Ports	Limit	
	dBm/Carrier BW	Factor (dB)	dBm/Carrier BW	Value (dBm)	(dBm)	Results
	N/A	0	N/A	55.02	N/A	N/A
						-
		AVERAGE POWER	R PORT SUMMING			
	PORT 1	PORT 2	PORT 3	PORT 4	SUM TOTAL	
INITIAL VALUE (dBm)	49.1	48.9	49	49	N/A	
INITIAL VALUE (Watts)	81.28	77.62	79.43	79.43	317.76	

Band n14, 758 - 768, 5 MHz Bandwidth, 256 QAM Modulation, Mid Ch. 763 MHz								
Initial Value Duty Cycle Single Port All Ports Limit								
		dBm/Carrier BW	Factor (dB)	dBm/Carrier BW	Value (dBm)	(dBm)	Results	
		N/A	0	N/A	54.96	N/A	N/A	

AVERAGE POWER PORT SUMMING										
PORT 1 PORT 2 PORT 3 PORT 4 SUM TOTAL										
INITIAL VALUE (dBm)	48.97	48.94	48.91	48.92	N/A					
INITIAL VALUE (Watts)	78.88	78.34	77.8	77.98	313					
TOTAL VALUE (dBm)	N/A	N/A	N/A	N/A	54.96					

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17

TEST DESCRIPTION

The measurement was made using a direct connection beteen the RF output of the EUT and a spectrum analyzer. The emissions bandwidth was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.4 of ANSI C63.26 was used to make the measurement.

The spectrum analyzer settings were as follows:

• RBW is 1% - 5% of the occupied bandwidth

• VBW is \geq 3x the RBW

· Peak Detector was used

• Trace max hold was used

AHLBBA antenna ports 1&4 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

AHLBBA antenna ports 2&3 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 2 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs

5.2.5.3, 5.7.2i and 6.4.

FCC 27.53 defines the 26dB emission bandwidth requirement. RSS GEN Section 6.7 defines the 99% emission bandwidth requirement.

	FC	C and ISED	Emission De	signators for	r Port #1 Bai	nd n12 (729)	VIHz to 745N	/Hz)	
Ch	Radio	5G-NR	: QPSK	5G-NR:	16QAM	5G-NR:	64QAM	5G-NR: 2	256QAM
BW	Channel	FCC	ISED	FCC	ISED	FCC	ISED	FCC	ISED
	Low							4M85G7W	4M48G7W
5MHz	Mid	4M84G7W	4M48G7W	4M84G7W	4M51G7W	4M83G7W	4M48G7W	4M81G7W	4M48G7W
	High							4M83G7W	4M48G7W
	Low							9M89G7W	9M31G7W
10MHz	Mid	9M89G7W	9M30G7W	9M82G7W	9M24G7W	9M87G7W	9M29G7W	9M87G7W	9M31G7W
	High							9M86G7W	9M31G7W
	Low							14M9G7W	14M2G7W
15MHz	Mid	15M0G7W	14M1G7W	14M9G7W	14M2G7W	14M9G7W	14M1G7W	14M9G7W	14M1G7W
	High							14M9G7W	14M1G7W

	FC	C and ISED I	Emission De	signators for	r Port #2 Bar	nd n12 (729)	VIHz to 745N	/IHz)	
Ch	Radio	5G-NR	: QPSK	5G-NR:	16QAM	5G-NR:	64QAM	5G-NR: 2	256QAM
BW	Channel	FCC	ISED	FCC	ISED	FCC	ISED	FCC	ISED
	Low							4M84G7W	4M48G7W
5MHz	Mid	4M85G7W	4M47G7W	4M83G7W	4M50G7W	4M84G7W	4M48G7W	4M83G7W	4M49G7W
	High							4M83G7W	4M49G7W
	Low							9M88G7W	9M31G7W
10MHz	Mid	9M91G7W	9M29G7W	9M83G7W	9M24G7W	9M86G7W	9M29G7W	9M89G7W	9M30G7W
	High							9M88G7W	9M30G7W
	Low							14M9G7W	14M1G7W
15MHz	Mid	14M9G7W	14M2G7W	14M9G7W	14M2G7W	14M9G7W	14M1G7W	14M9G7W	14M1G7W
	High							14M9G7W	14M1G7W

EUT: AHLBBA (C2PC/C3PC FCC/ISED) Serial Number: K9193514835 Work Order: NOKI0047 Date: 30-Jul-22 Customer: Nokia Solutions and Networks Temperature: 20.6 °C Attendees: Mitchell Hill Humidity: 58.7% RH Barometric Pres.: 1020 mbar Project: None Tested by: Marty Martin TEST SPECIFICATIONS Power: 54VDC Test Method Job Site: TX07 Т ANSI C63.26:20 FCC 27:2022 RSS-130 Issue 2: 2019 ANSI C63.26:2015 FCC 90R:2022 ANSI C63.26:2015 COMMENTS All measurement path losses were accounted for in the reference level offset including attenuators, cables, DC block and filter when in use. The carriers were enabled at maximum power. DEVIATIONS FROM TEST STANDARD None Monty Marti Configuration # 2 Sianature Valu Val Limit 99 % (MHz) 26 dB (MHz) Result Port 1 5G NR Band n12, 729 - 745 Mhz 5 MHz Bandwidth QPSK Modulation Mid Channel, 737.0 MHz Pass 4.48 4.84 Within Band 16QAM Modulation Mid Channel, 737.0 MHz 4.84 Within Band 4.51 Pass 640AM Modulation Mid Channel, 737.0 MHz 4.48 Within Band 4.83 Pass 256QAM Modulation Low Channel, 731.5 MHz 4.48 4.85 Within Band Pass Mid Channel, 737.0 MHz 4.48 4.81 Within Band Pass High Channel, 742.5 MHz 4.48 4.83 Within Band Pass 10 MHz Bandwidth QPSK Modulation Mid Channel, 737.0 MHz 9.30 9.89 Within Band Pass 16QAM Modulation Mid Channel 737 0 MHz 9 24 9.82 Within Band Pass 64QAM Modulation Mid Channel, 737.0 MHz 9.29 9.87 Within Band Pass 256QAM Modulation Low Channel, 734 MHz 9.31 9.89 Within Band Pass Within Band Mid Channel, 737.0 MHz 9.31 9.87 Pass High Channel, 740 MHz 9.31 9.86 Within Band Pass 15 MHz Bandwidth **QPSK Modulation** Mid Channel, 737.0 MHz 14.1 15.0 Within Band Pass 16QAM Modulation Mid Channel, 737.0 MHz 14.2 Within Band 14.9 Pass 64QAM Modulation Mid Channel, 737.0 MHz Pass 14.1 14.9 Within Band 256QAM Modulation Low Channel, 736.5 MHz 14.2 14.9 Within Band Pass Mid Channel 737 0 MHz 14.1 14.9 Within Band Pass High Channel, 737.5 MHz 14.1 14.9 Pass Within Band Port 2 5G NR Band n12, 729 - 745 Mhz 5 MHz Bandwidth QPSK Modulation Mid Channel, 737.0 MHz 4.47 4.85 Within Band Pass 16QAM Modulation Mid Channel, 737.0 MHz Within Band 4.50 4.83 Pass 64QAM Modulation Mid Channel, 737.0 MHz 4 4 8 4 84 Within Band Pass 256QAM Modulation Low Channel, 731.5 MHz 4.48 4.84 Within Band Pass 4.49 4.49 Mid Channel, 737.0 MHz 4.83 Within Band Pass High Channel, 742.5 MHz 4 83 Within Band Pass 10 MHz Bandwidth **QPSK** Modulation Mid Channel, 737.0 MHz 9.29 9.91 Within Band Pass 16QAM Modulation Mid Channel, 737.0 MHz 9.24 9.83 Within Band Pass 64QAM Modulation Mid Channel, 737.0 MHz 9.29 9.86 Within Band Pass 256QAM Modulation Low Channel, 734 MHz 9.31 9.88 Within Band Pass Mid Channel 737 0 MHz 9.30 9.89 Within Band Pass High Channel, 740 MHz Pass 9.30 9.88 Within Band 15 MHz Bandwidth QPSK Modulation Mid Channel, 737.0 MHz 14.2 14.9 Within Band Pass 16QAM Modulation Mid Channel, 737.0 MHz 14 2 14.9 Within Band Pass 64QAM Modulation Mid Channel, 737.0 MHz 14.1 14.9 Within Band Pass 256QAM Modulation Low Channel 736 5 MHz 14 1 14.9 Within Band Pass Mid Channel, 737.0 MHz 14.1 14.9 Within Band Pass High Channel, 737.5 MHz 14.1 14.9 Within Band Pass

99 % (MHz) 26 dB (MHz) Limit Result 9.243 9.826 Within Band Pass			value	value		
9.243 9.826 Within Band Pass			99 % (MHz)	26 dB (MHz)	Limit	Result
			9.243	9.826	Within Band	Pass

FUILZ,	, Danu 1112, 729 -	745 WITZ, 10 WITZ	z Banuwiuth, 200	QAIN MOUUIATION,	LOW Ghannel, 73	
			Value	Value		
			99 % (MHz)	26 dB (MHz)	Limit	Result
			9.312 MHz	9.879 MHz	Within Band	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17

TEST DESCRIPTION

The measurement was made using a direct connection beteen the RF output of the EUT and a spectrum analyzer. The emissions bandwidth was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.4 of ANSI C63.26 was used to make the measurement.

The spectrum analyzer settings were as follows:

- RBW is 1% 5% of the occupied bandwidth
- VBW is ≥ 3x the RBW
- Peak Detector was usedTrace max hold was used

AHLBBA antenna ports 1&4 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

AHLBBA antenna ports 2&3 are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 2 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

FCC 2.1049 requires an emission bandwidth measurement. RSS GEN Section 6.7 defines the 99% emission bandwidth requirement.

	F	CC and ISED	Emission De	signators fo	r Port #1 Ba	nd n14 (758	MHz to 768N	ЛHz)	
Ch	Radio	5G-NR	: QPSK	5G-NR:	16QAM	5G-NR:	64QAM	5G-NR: 2	256QAM
BW	Channel	FCC	ISED	FCC	ISED	FCC	ISED	FCC	ISED
	Low							4M82G7W	4M48G7W
5MHz	Mid	4M82G7W	4M48G7W	4M83G7W	4M50G7W	4M84G7W	4M48G7W	4M82G7W	4M48G7W
	High							4M84G7W	4M47G7W
10MHz	Mid	9M86G7W	9M27G7W	9M83G7W	9M22G7W	9M84G7W	9M28G7W	9M87G7W	9M29G7W
Note: FCC	emission desigr	nators are based	d on 26dB emiss	sion bandwidth.	ISED emission	designators are	based on 99%	emission bandv	vidth.

	FC	C and ISED (Emission De	signators fo	r Port #2 Baı	nd n14 (758)	MHz to 768N	/IHz)	
Ch	Radio	5G-NR	: QPSK	5G-NR:	16QAM	5G-NR:	64QAM	5G-NR: 2	256QAM
BW	Channel	FCC	ISED	FCC	ISED	FCC	ISED	FCC	ISED
	Low							4M85G7W	4M48G7W
5MHz	Mid	4M84G7W	4M49G7W	4M83G7W	4M51G7W	4M84G7W	4M48G7W	4M84G7W	4M48G7W
	High							4M84G7W	4M48G7W
10MHz	Mid	9M88G7W	9M28G7W	9M84G7W	9M24G7W	9M87G7W	9M29G7W	9M87G7W	9M29G7W
Note: FCC e	emission design	ators are based	on 26dB emiss	ion bandwidth.	ISED emission	designators are	based on 99%	emission bandv	vidth.

EUT: AHLBBA (C2PC/C3PC FCC/ISED) Serial Number: K9193514835 Customer: Nokia Solutions and Networks Work Order: NOKI0047 Date: 3-Aug-22 Temperature: 21.1 °C Humidity: 55.4% RH Barometric Pres.: 1019 mbar Attendees: Mitchell Hill Project: None Tested by: Marty Martin TEST SPECIFICATIONS Power: 54VDC Test Method Job Site: TX07 RSS 140 Issue 1: 2018 ANSI C63.26:2015 FCC 90R:2022 COMMENTS All measurement path losses were accounted for in the reference level offset including attenuators, cables, DC block and filter when in use. The carriers were enabled at maximum power. DEVIATIONS FROM TEST STANDARD None Monty Marti Configuration # 2 Signature Value 99% (MHz) 26dB (MHz) Limit Result Port 1 5G NR Band n14, 758 - 768 Mhz 5 MHz Bandwidth **QPSK** Modulation Mid Channel, 763 MHz 4.48 4.82 Within Band Pass 16QAM Modulation Mid Channel, 763 MHz 4.50 4.83 Within Band Pass 64QAM Modulation Mid Channel, 763 MHz 4.48 4.84 Within Band Pass 256QAM Modulation Low Channel, 760.5 MHz 4.48 4.82 Within Band Pass Mid Channel, 763 MHz 4.48 4.82 Within Band Pass High Channel, 765.5 MHz 4.47 4.84 Within Band Pass 10 MHz Bandwidth QPSK Modulation Mid Channel, 763 MHz 9.27 9.86 Within Band Pass 16QAM Modulation Mid Channel, 763 MHz 9.22 9.83 Within Band Pass 64QAM N odulation Mid Channel, 763 MHz 9.28 9.84 Within Band Pass 256QAM Modulation Mid Channel, 763 MHz 9.29 9.87 Within Band Pass Port 2 5G NR Band n14, 758 - 768 Mhz 5 MHz Bandwidth **QPSK Modulation** Mid Channel, 763 MHz 4.49 4.84 Within Band Pass 16QAM Modulation Mid Channel, 763 MHz Within Band 4.51 4.83 Pass 64QAM Modulation Mid Channel, 763 MHz 4.48 4.84 Within Band Pass 256QAM Modulation Low Channel, 760.5 MHz 4.48 Within Band 4.85 Pass Mid Channel, 763 MHz 4 4 8 4 84 Within Band Pass High Channel, 765.5 MHz 4.48 4.84 Within Band Pass 10 MHz Bandwidth QPSK Modulation Mid Channel, 763 MHz 9.28 9.88 Within Band Pass 16QAM Modulation Mid Channel, 763 MHz 9.24 9.84 Within Band Pass 64QAM Modulation Mid Channel, 763 MHz 9.29 9.87 Within Band Pass 256QAM Modulation Mid Channel, 763 MHz 9 29 9.87 Within Band Pass

		Value	Value		
		99% (MHz)	26dB (MHz)	Limit	Result
		9.22	9.827	Within Band	Pass

		Value	Value		
		99% (MHz)	26dB (MHz)	Limit	Result
		4.507	4.833	Within Band	Pass

		99% (MHz)	26dB (MHz)	Limit	Result
		9.237	9.835	Within Band	Pass

