

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-20	27-Feb-21
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21

TEST DESCRIPTION

The antenna port spurious emissions were measured at the RF output terminal of the EUT through 4 different attenuation configurations which continues through to the RF input of the spectrum analyzer. Analyzer plots utilizing a resolution bandwidth called out by the client's test plan were made for each modulation type from 9 KHz to 22 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than the limits also called out by the client's test plan shown below.

The measurement methods are detailed in KDB971168 D01v03 section 6 and ANSI C63.26-2015.

Per FCC 2.1057(a)(1), the upper level of measurement is the 10th harmonic of the highest fundamental frequency.

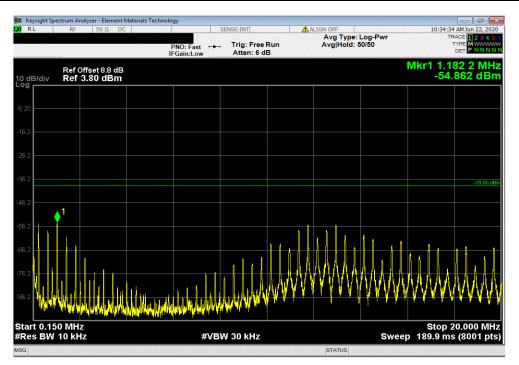
These measurements are for frequency band after the first 1.0 MHz bands immediately outside and adjacent to the frequency block.

Per section FCC 24.238(a), the power of any emission outside of the authorized operating frequency range cannot exceed - 13 dBm for a 1 MHz measurement bandwidth. The limit is adjusted to -19 dBm [-13 dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

The limit for the 9kHz to 150kHz frequency range was adjusted to -49dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 1MHz [i.e.: -49dBm = -19dBm -10log(1MHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to -39dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 1MHz [i.e.: - 39dBm = -19dBm -10log(1MHz/10kHz)]. The required limit of -19dBm with a RBW of > 1MHz was used for all other frequency ranges.

RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AHFIG) as the original certification test. The AHFIG antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 4 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraph 5.7.2i.

5G NR carrier bandwidths of 5MHz, 10MHz, 15MHz, and 20MHz with QPSK, 16QAM, 64QAM and 256QAM modulation types were verified under this effort. The 5G NR carriers/modulation types for this testing are set up according to 3GPP TS 38.141-1 Test Models and are NR-FR1-TM 1.1 (QPSK modulation type), NR-FR1-TM 3.1 (16QAM modulation type), NR-FR1-TM 3.1 (64QAM modulation type), and NR-FR1-TM 3.1a (256QAM modulation type).



						eleme
					TbtTx 2020.06.08.0 BETA	XMit 2020.
	AHFIG			Work Order:		
Serial Number:					22-Jun-20	
	Nokia Solutions and Networks			Temperature:		
	Mitchell Hill, John Rattanavong			Humidity:	51.8% RH	
Project:				Barometric Pres.:		
	Brandon Hobbs	Power: 54 VDC		Job Site:	TX05	
EST SPECIFICATION	ONS	Test Method				
CC 24E:2020		ANSI C63.26:2015				
COMMENTS						
All measurement pa	ath losses were accounted for in the reference level offest in	cluding any attenuators, filters and DC blocks. The	carrier was set to maximu	m for all testing.		
	I TEST STANDARD					
lone						
Seaffrance the seaff	1001	1 1 1				
Configuration #	1,2,3,4	2 Jan				
	Signature		Measured	Max Value	Limit	
		Frequency Range	Freq (MHz)	(dBm)	< (dBm)	Result
		Range	Freq (MHZ)	(авт)	< (abiii)	Result
	30 MHz - 1995 MHz 5 MHz - Denduidth					
1	5 MHz Bandwidth					
	QPSK Modulation Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	-71.09	40	Deer
					-49	Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	150 kHz - 20 MHz	1.18 2622.66	-54.86	-39 -19	Pass
		20 MHz - 3 GHz		-24.55	-19 -19	Pass
	Mid Channel 1962.5 MHz	3 GHz - 10 GHz	5887.5	-38.02	10	Pass
	Mid Channel 1962.5 MHz	10 GHz - 18 GHz	14316	-35.57	-19	Pass
	Mid Channel 1962.5 MHz	18 GHz - 22 GHz	21426	-26.12	-19	Pass
	16-QAM Modulation		0.01	71.20	40	Poss
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	-71.38	-49	Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	150 kHz - 20 MHz 20 MHz - 3 GHz	1.18	-55.02	-39	Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	20 MHZ - 3 GHZ 3 GHz - 10 GHz	2772.78 3924.88	-25.49 -37.51	-19 -19	Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	3 GHz - 10 GHz 10 GHz - 18 GHz	3924.88 14432	-37.51 -36.26	-19 -19	Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	10 GHz - 18 GHz 18 GHz - 22 GHz	14432 21766	-36.26 -25.45	-19 -19	Pass Pass
	64-QAM Modulation	10 GHZ - 22 GHZ	21700	-20.40	-19	Pass
	64-QAM Modulation Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	60 62	40	Boos
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	9 KHZ - 150 KHZ 150 kHz - 20 MHz	0.01 1.18	-69.63	-49 -39	Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	20 MHz - 20 MHz	2671.83	-54.81 -24.54	-39 -19	Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	20 MHZ - 3 GHZ 3 GHz - 10 GHz	3887.25	-24.54 -38.23	-19	Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	3 GHz - 10 GHz 10 GHz - 18 GHz	3887.25	-38.23 -36.47	-19	Pass Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	10 GHz - 18 GHz 18 GHz - 22 GHz	21765	-36.47 -26.37	-19	Pass Pass
	256-QAM Modulation	10 GHZ - 22 GHZ	21/00	-20.37	-19	Pass
	Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	-70.54	-49	Pass
	Mid Channel 1962.5 MHz	9 km2 - 150 km2 150 kHz - 20 MHz	1.18	-54.87	-39	Pass Pass
	Mid Channel 1962.5 MHz	20 MHz - 3 GHz	2622.29	-24.81	-39	Pass
	Mid Channel 1962.5 MHz	3 GHz - 10 GHz	3772.63	-24.61	-19	Pass
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	3 GHz - 10 GHz 10 GHz - 18 GHz	14371	-37.45 -35.96	-19	Pass Pass
	Mid Channel 1962.5 MHz	18 GHz - 18 GHz	21849.5	-26.13	-19	Pass
	10 MHz Bandwidth	10 GHZ - 22 GHZ	21049.0	-20.13	-19	Fass
1	256-QAM Modulation					
	Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	-69.81	-49	Pass
	Mid Channel 1962.5 MHz	150 kHz - 20 MHz	1.18	-54.95	-49	Pass
	Mid Channel 1962.5 MHz	20 MHz - 3 GHz	2604.03	-24.84	-39	Pass
	Mid Channel 1962.5 MHz	3 GHz - 10 GHz	3859.25	-38.32	-19	Pass
	Mid Channel 1962.5 MHz	10 GHz - 18 GHz	13809	-35.81	-19	Pass
	Mid Channel 1962.5 MHz	18 GHz - 22 GHz	21638	-25.37	-19	Pass
1	15 MHz Bandwidth		21000	-20.01	-13	1 005
	256-QAM Modulation					
	Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	-71.26	-49	Pass
	Mid Channel 1962.5 MHz	150 kHz - 20 MHz	12.57	-54.75	-39	Pass
	Mid Channel 1962.5 MHz	20 MHz - 3 GHz	2734.04	-24.36	-19	Pass
	Mid Channel 1962.5 MHz	3 GHz - 10 GHz	3798	-37.43	-19	Pass
	Mid Channel 1962.5 MHz	10 GHz - 18 GHz	14897	-35.97	-19	Pass
	Mid Channel 1962.5 MHz	18 GHz - 22 GHz	19434	-26.36	-19	Pass
1	20 MHz Bandwidth					
	256-QAM Modulation					
	Mid Channel 1962.5 MHz	9 kHz - 150 kHz	0.01	-71.03	-49	Pass
	Mid Channel 1962.5 MHz	150 kHz - 20 MHz	12.55	-54.63	-39	Pass
	Mid Channel 1962.5 MHz	20 MHz - 3 GHz	2626.76	-24.63	-19	Pass
				-27.00	- 10	1 0 3 5
				-38 38	-19	Page
	Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz Mid Channel 1962.5 MHz	3 GHz - 10 GHz 10 GHz - 18 GHz	3784.88 15656	-38.38 -35.61	-19 -19	Pass Pass

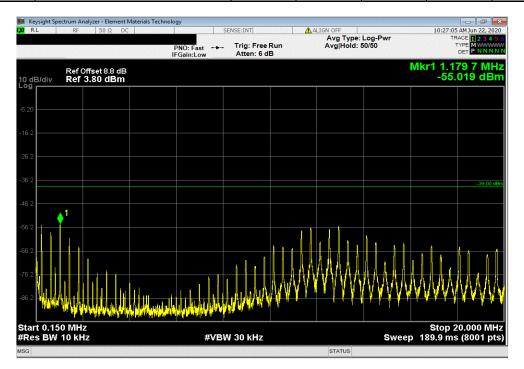
Freque Rang		Measured Freq (MHz)	Max Value (dBm)	Limit < (dBm)	Result
9 kHz - 1		0.01	-71.09	-49	Pass
		0.01	11.00		1 400
📜 Keysight Spectrum Analyzer - Element Mate	rials Technology				- 6 -
RL RF 50 Ω DC	inals recimology	SENSE:INT	ALIGN OFF		10:21:18 AM Jun 22, 2020
		🛏 Trig: Free Run	Avg Type: Avg Hold:		TRACE 1 2 3 4 5
	PNO: Wide ↔ IFGain:Low	Atten: 6 dB	Avginoid.	00/00	DET P NNNN
					Mkr1 9.370 kH
Ref Offset 9.7 dB 10 dB/div Ref 4.70 dBm					-71.093 dBn
-5.30					
-15.3					
-25.3					
-35.3					
-45.3					
-40.5					-49.00 dBi
-55.3					
-55.5					
-65.3 - 1					
-75.3					
Mary My Mary Market	0 0				
-85.3	WWWWWWWWWWWWW	n n 0010 Å n			Λ
-75.3 MMAYMWWWAMWWA		and a second from the	man manner	moundar	Stop 150 00 kH
Start 9.00 kHz					Stop 150.00 kH
#Res BW 1.0 kHz	#V	BW 3.0 kHz		Sweep 1	34.9 ms (8001 pts
MSG			STATUS		

Port 4, Band n25, 1930 MHz - 1995 MHz , 5	MHz Bandwidth,	QPSK Modulation	n, Mid Channel 19	962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	1.18	-54.86	-39	Pass

PU	t 4, Band n25, 1930 MH Frequency	z - 1995 MHz	, 5 MHZ Bandwidth, C Measured	Max Value	Limit	1962.5 IVIHZ
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 3 GHz		2622.66	-24.55	-19	Pass
	n Analyzer - Element Materials Tech	iology				
LXI RL F	RF 50 Ω DC		SENSE:INT	ALIGN OFF Avg Type: I	RMS	10:48:43 AM Jun 22, 2020 TRACE 1 2 3 4 5 6
		PNO: Fast ++ IFGain:Low	Trig: Free Run #Atten: 22 dB	Avg Hold: 1	00/100	DET A NNNN
_		II Galil.LOW			MI	kr1 2.622 7 GHz
10 dB/div Re	ef Offset 41.6 dB ef 50.60 dBm					-24.549 dBm
Log						
40.6				<mark>,</mark>		
30.6						
20.6						
10.6						
10.6						
0.600						
-9.40						
						-19.00 dBm
-19.4						
-29.4		No. of the second second second		and the second second second		
-39.4						
Start 0.020 G						Stop 3.000 GHz
#Res BW 1.0	MHZ	#VE	3W 3.0 MHz*		Sweep 3	8.733 ms (8001 pts)
MSG				STATUS		
Por	t 4, Band n25, 1930 MH	z - 1995 MHz	, 5 MHz Bandwidth, (QPSK Modulation	, Mid Channel 1	1962.5 MHz
	Frequency		Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
I	3 GHz - 10 GHz		5887.5	-38.02	-19	Pass
Keysight Spectrum	n Analyzer - Element Materials Tech	ology				
	RF 50 Ω DC		SENSE:INT	ALIGN OFF		10:51:44 AM Jun 22, 2020
		PNO: Fast 🔸	_ Trig: Free Run	Avg Type: I Avg Hold: 5	_og-Pwr 0/50	TRACE 1 2 3 4 5 6 TYPE MWWWW
			#Atten: 6 dB			DET P NNNN

Start 3.000 GHz ¢Res BW 2.0 MHz se	#VBW 6.0 MI	1Z	Steep 11.73	op 10.000 GH 3 ms (8001 pt
68.1				
58.1				
48.1			a hi dunin gadah sidi dan bahata	and a set of a set o
36.1	▲ 1			
28.1				
18.1				-19.00 c
3.10				
1.90				
11.9				
Ref Offset 26.9 dB 0 dB/div Ref 21.90 dBm			Mkr1 5.8	387 500 GH 38.023 dB
	PNO: Fast Trig: Fre IFGain:Low #Atten:			DET P NNN

	Frequency		Measu	red	Max Value	Limit		
	Range		Freq (N	1Hz)	(dBm)	< (dBm)	Re	esult
	10 GHz - 18 GHz		1431	6	-35.57	-19	F	ass
Markeysight Spectrum Analy	yzer - Element Materials Techno	logy						
LXIRL RF	50 Ω DC		SENSE:INT		ALIGN OFF			6 AM Jun 22, 2020
		PNO: Fast +++	Trig: Free	Run	Avg Type: Avg Hold:			RACE 1 2 3 4 5 6 TYPE MWWWW
		IFGain:Low	#Atten: 6 d					DET P NNNN
Bof Off	fset 30.8 dB						Mkr1 14	.316 GHz
10 dB/div Ref 2	5.80 dBm						-35	.572 dBm
Log								
15.8								
5.80								
-4.20								
-14.2								
								-19.00 dBm
-24.2								
				1				
-34.2								
. In strendlight all line	i de la company de la contra de l	ti lin il pingi alcali alcali da il a	alas destado de la la calega de l				Notice and the second	had to the state
-44.2								
-54.2								
-64.2								
Start 10.000 GHz							01	18.000 GHz
#Res BW 2.0 MH		#VB	W 6.0 MHz			Sween		18.000 GHZ s (8001 pts)
MSG	2	#00	99-0.0 191112		STATUS	Gweep	19:33 111	5 (666 F pts)


Port 4, Band n25, 1930 MHz - 1995 MHz	, 5 MHz Bandwidth,	QPSK Modulatio	n, Mid Channel 1	962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
18 GHz - 22 GHz	21426	-26.12	-19	Pass

RL	R	F 50 Ω	DC	Reality Constraints (Constraints)	SENSE:INT	ALIGN OFF		11:03:47	AM Jun 22, 202
				PNO: Fast ← IFGain:Low	► Trig: Free #Atten: 6	Avg Type: Avg Hold: (1	ACE 1 2 3 4 5 YPE M DET P NNNN
) dB/di		f Offset 42. f 37.60 d					Μ	kr1 21.4 -26.	26 0 GH 118 dBi
-									
.7.6									
7.6									
.60									
.40									
2.4									
2.4								1	-19.00 d
2.4	terretti tileretti						la de a band de dife r di dire a la	in the state of th	
2.4									
2.4 —									
	8.000 (W 1.0				BW 3.0 MHz			Stop 2 6.933 ms	2.000 GH

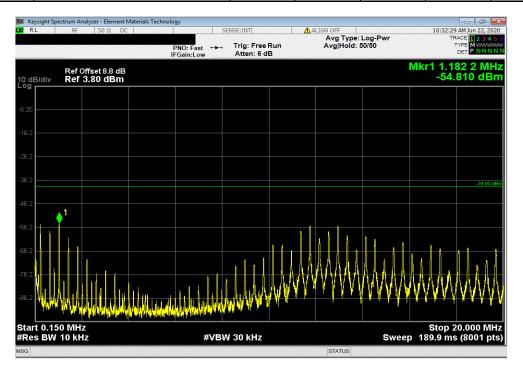
Frequency		Measured	Max Value	Limit	Desult
Range	_	Freq (MHz)	(dBm)	< (dBm) -49	Result
9 kHz - 150 kH	Z	0.01	-71.38	-49	Pass
Keysight Spectrum Analyzer - Element Materials Tec Μ RL RF 50 Ω DC		CHOC ANT	A 41454 055		
ฬ RL RF 50Ω DC	3	ENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	10:24:50 AM Jun 22, 2020 TRACE 1 2 3 4 5
	PNO: Wide ↔→ IFGain:Low	Trig: Free Run Atten: 6 dB	Avg Hold:	50/50	
					Mkr1 9.370 kHz
Ref Offset 9.7 dB 10 dB/div Ref 4.70 dBm					-71.377 dBm
Log					
-5.30					
-15.3					
-25.3					
-35.3					
-45.3					-49.00 dBr
-55.3					
-65.3 - 1					
-75.3 4 A A A A A A A A A A A A A A A A A A					
WWWWWWWWWW	1				
-85.3	Wwwwwwwwwwwww	Thomas Maria a			Λ
-75.3			Man Mar Manner	annympagene.	manny mon
Start 9.00 kHz #Res BW 1.0 kHz	#\/B\	N 3.0 kHz		Sween	Stop 150.00 kHz 34.9 ms (8001 pts
MSG	#VDV	V SAV NHZ	STATUS	aweeh	ionis (sour pis

Port 4, Band n25, 1930 MHz - 1995 MHz , 5 M	1Hz Bandwidth, 1	6-QAM Modulatic	on, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	1.18	-55.02	-39	Pass

10	ort 4, Band n25, 1930 MHz - 1995 N Frequency	Measured	Max Value	Limit	002.0 WII 12
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 3 GHz	2772.78	-25.49	-19	Pass
	trum Analyzer - Element Materials Technology RF 50 Ω DC PNO: Fa		ALIGN OFF Avg Type: Avg Hold:		10:46:38 AM Jun 22, 2020 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N
	IFGain:L Ref Offset 41.6 dB Ref 50.60 dBm	ow #Atten: 22 db		Mkr	1 2.772 8 GHz -25.490 dBm
40.6					
30.6					
20.6					
10.6					
0.600					
-9.40					
-19.4					- <u>19.00 dBm</u>
-29.4			ng di sa Basi yang di sa		
-39.4					
Stort 0.020					Stan 2 000 Olla
Start 0.020 #Res BW 1		#VBW 3.0 MHz*		Sweep 3.7	Stop 3.000 GHz 733 ms (8001 pts)
MSG			STATUS		
Po	ort 4, Band n25, 1930 MHz - 1995 N Frequency	1Hz , 5 MHz Bandwidth, 1 Measured	6-QAM Modulatio Max Value	n , Mid Channel 1 Limit	962.5 MHz
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	3 GHz - 10 GHz	3924.88	-37.51	-19	Pass

RL	RF 50 Ω D0			SENSE:INT		ALIGN OFF		10:54:43	3 AM Jun 22, 20
			PNO: Fast 🔸	. Trig: Free #Atten: 6 c		Avg Type: Avg Hold:			RACE 1 2 3 4 1 TYPE M DET P N N N
dB/div	Ref Offset 26.9 dl Ref 21.90 dBn	3 1					Mk	r1 3.924 -37.	875 GH 506 dB
.9									
90									
10									
.1									-19.00
.1	1								
state brids have	AND				iliti kalua kayitik	and the sector shall be	a di kana di kana di kata di ka Kata di kata di		
.1									
.1									
art 3.00								Ston	
	0 GHZ 2.0 MHZ		#VB	W 6.0 MHz			Sweep	Stop 11.73 ms	10.000 GI s (8001 p
						STATUS			

	Frequency		Measured		ax Value	Limit		
	Range		Freq (MHz)	(dBm)	< (dBm)	-	sult
	10 GHz - 18 GHz		14432		-36.26	-19	Pa	ass
Keysight Spectrum Analyzer	- Element Materials Technolog	Ъ						
LXI RL RF	50 Ω DC		SENSE:INT	<u>^</u>	ALIGN OFF			AM Jun 22, 2020
			Trig: Free Run		Avg Type: Avg Hold:		TR	
		NO: Fast +++ Gain:Low	#Atten: 6 dB		Avginoid.	00/00		
							Mkr1 14	432 GHz
Ref Offse	t 30.8 dB							260 dBm
10 dB/div Ref 25.8	su abm				1	, ,	-00.	200 0011
15.8								
10.0								
5.80								
0.C								
-4.20								
-14.2								-19.00 dBm
								-19.00 dbii
-24.2								
				. 1				
-34.2				_ <u>•</u> :				
and the plant dealers and the		a Material and a feature	in the state of the state of the state	and the second second			الالد الجام وحق الاستخار	line of stables of the f
-44.2			the second s					
-54.2								
-64.2								
Start 10.000 GHz								8.000 GHz
#Res BW 2.0 MHz		#VB\	A/ 6.0 MHz			Sweep	13.33 ms	; (8001 pts)
MSG					STATUS			


Port 4, Band n25, 1930 MHz - 1995 MHz , 5	MHz Bandwidth, '	16-QAM Modulatio	n, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
18 GHz - 22 GHz	21766	-25.45	-19	Pass

RL RF 50 Ω DC	S	SENSE:INT	ALIGN OFF	Call State State State State	11:05:17 AM Jun 22, 202
	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 6 dB	Avg Type: Lo Avg Hold: 50		TRACE 1 2 3 4 9 TYPE M WWW DET P NNNI
Ref Offset 42.6 dB dB/div Ref 37.60 dBm				MI	kr1 21.766 0 GH -25.446 dBi
7.6					
7.6					
60					
40					
.4					-19.00 c
2.4					1
2.4 A state of the	na katina di ka Ujili ku dan kati ku ka da Anga ka ja tang akatin kati pangang da		ار (1) بینانداد، این این این این این این این از از استارین بالاستانی از را بیا معادی معاون استار ا		h ling filter forse felse og find platekser fil blandet st gegense av på der konser for passa fil pomisiset passa gegense av på der konser for på state for forset og state
art 18.000 GHz tes BW 1.0 MHz	#VB\	₩ 3.0 MHz		Sweep	Stop 22.000 GH 6.933 ms (8001 pt

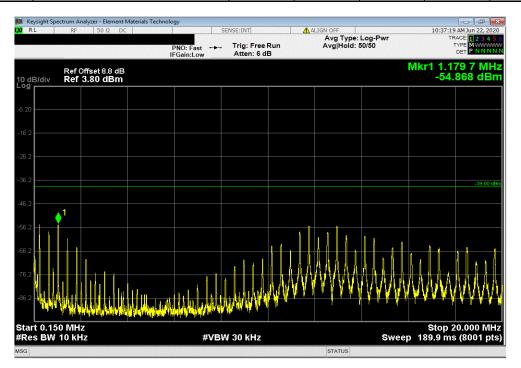
Frequency			Limit	
Range	Freq (MHz		< (dBm)	Result
9 kHz - 150 k	Hz 0.01	-69.63	-49	Pass
Keysight Spectrum Analyzer - Element Materials R RF 50 Ω DC Ref Offset 9.7 dB Cog Ref 4.70 dBm -5.30 -5.30 -15.3 -5.30	echnology PNO: Wide →→ Trig: Free Run IFGain:Low Atten: 6 dB	ALIGN OFF Avg Type: Avg Hold:	50/50	10:30:30 AM Jun 22, 2020 TRACE 12:34 5 TYPE WINNIN kr1 11.133 kH -69.631 dBn
-35.3				-49.00 dB
-65.3 -75.3 -85.3 Start 9.00 kHz	*^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MMMMMM	humman	Mm/Mm/ Stop 150.00 kH
#Res BW 1.0 kHz	#VBW 3.0 kHz	STATUS	Sweep 13	34.9 ms (8001 pts

Port 4, Band n25, 1930 MHz - 1995 MHz , 5 M	/Hz Bandwidth, 6	4-QAM Modulatio	on, Mid Channel 1	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	1.18	-54.81	-39	Pass

	Frequency	MHz , 5 MHz Bandwidth, 6 Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 3 GHz	2671.83	-24.54	-19	Pass
	analyzer - Element Materials Technology				
LXIRL RF	50 Ω DC	SENSE:INT	ALIGN OFF Avg Type: I	RMS	10:43:33 AM Jun 22, 2020 TRACE 1 2 3 4 5 6
	PNO: Fa IFGain:L		Avg Hold: 1	00/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N
Ref	Offset 41.6 dB			Mk	r1 2.671 8 GHz -24.544 dBm
10 dB/div Ref	′ 50.60 dBm				-24.044 (10)
40.6					
30.6					
20.6					
20.0					
10.6					
0.600					
-9.40					
					-19.00 dBm
-19.4					•1
-29.4	والمواجع والمراجع والمتاسية ومراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		and the second	enter ander and and and and	
-39.4					
Start 0.020 GH #Res BW 1.0 M		#VBW 3.0 MHz*		Sween 3	Stop 3.000 GHz 733 ms (8001 pts)
MSG	m12		STATUS	oncep o.	r 35 m3 (800 r pt3)
mod			pinioo		
Port 4	, Band n25, 1930 MHz - 1995 I	MHz , 5 MHz Bandwidth, 6	4-QAM Modulatio	n, Mid Channel 1	962.5 MHz
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	3 GHz - 10 GHz	3887.25	-38.23	-19	Pass
W Kawisht Sast	Analyzer - Element Materials Technology				
RL RF		SENSE:INT	ALIGN OFF		10:57:16 AM Jun 22, 2020 TRACE 1 2 3 4 5 6

RL	RF	50 Ω DC			SENSE:INT		LIGN OFF			AM Jun 22, 202
				PNO: Fast ↔ FGain:Low	Trig: Free I #Atten: 6 d		Avg Type: Avg Hold: {			
	Ref Offs	et 26.9 dE	;					Mk	r1 3.887	250 GH 228 dB
dB/div	Ref 21.	.90 dBm		1		I	l	1	-00.	
.9										
30										
10										
.1										-19.00 (
.1										
		1								
.1										
dame.	landa		البلي بالمحاجلة	all and a second second	والألبادي والمتواللي	to all the surface of the	naha Mara lahira takén,	a dama attal	to the second states of the	ntekrateri da bila
.1	the later			a fragilit	Contraction of the second s	And all the same finite	and the second second second second	ويوانيدانون روغا كالقعم		(Dista) Astronomical
	· · ·									
.1										
.1										
art 3.00									Stop	0.000 GH
	2.0 MHz			#VI	3W 6.0 MHz			Sweep	ວເວຍ 11.73 ms	
ì							STATUS			
C STORAGE STREET							All the second s			

	Frequency		Measured	Max Value	Limit	Desult	
	Range 10 GHz - 18 GHz		Freq (MHz) 15430	(dBm) -36.47	< (dBm) -19	Result Pass	
	10 GHZ - 18 GHZ		15430	-30.47	-19	Pass	
	alyzer - Element Materials Techr			• ·····			
K RL RF	50 Ω DC	1	SENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	10:58:29 AM Jun 22, 202 TRACE 1 2 3 4 5	
		PNO: Fast +++	Trig: Free Run	Avg Hold:		TYPE MWWWW DET P N N N N	AA4
		IFGain:Low	#Atten: 6 dB				
Ref O	ffset 30.8 dB				M	kr1 15.430 GH	
	25.80 dBm					-36.466 dBr	n
Log							
45.0							
15.8							
5.80							
-4.20							
-14.2						-19.00 dE	
-24.2							
				1			
-34.2			a ba b a ab .de	1.0.10.00.001		and the second	
<mark>a ha ik ha birda karat</mark>		فالبار المعرية والمتحل المتحل أخطاه				a sel la del parte difficiente de la constante Nombre de la constante de la constante de la constante Nombre de la constante de la constante de la constante de	
-44.2							
-54.2							
-64.2							
Start 10.000 GH	z					Stop 18.000 GH	z
#Res BW 2.0 Mi		#VB\	N 6.0 MHz		Sweep 1	3.33 ms (8001 pt	
MSG				STATUS			


1 oft 1, Bana 1120, 1000 finite 10000	in in , o in in Danianiani, c	, a, an moudaida	on, ma onanior	
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
18 GHz - 22 GHz	21765	-26.37	-19	Pass

RL	RF 50	0Ω DC	Sector Constants	SENSE:INT	4	ALIGN OFF		11:06:4	4 AM Jun 22, 202
			O: Fast ↔ ain:Low	, Trig: Free #Atten: 6 d		Avg Type: Avg Hold:			RACE 1234 TYPE M DET PNNN
) dB/div	Ref Offset Ref 37.60						N	lkr1 21.7 -26	'65 0 GH .365 dBi
9									
7.6									
7.6									
.60									
40									
2.4									-19.00 c
2.4									1 −
2.4	a da la la de desta da la desta da la desta de la d En la desta de l	<mark>heter (hij) heter het heter heter het</mark>			daha (kandu) ada kapangan (kandu)	ية المراجع (1993) ويقد الرائض المحال المحرج والمراجع والمحال		ية إن أور طلال التي أن علما والأ وريد علم معادة عنه إسروني وا	and the second s
2.4									
2.4									
tart 18.0	00 GHz								22.000 GH
Res BW	1.0 MHz		#VE	3W 3.0 MHz			Sweep	6.933 m	s (8001 pt

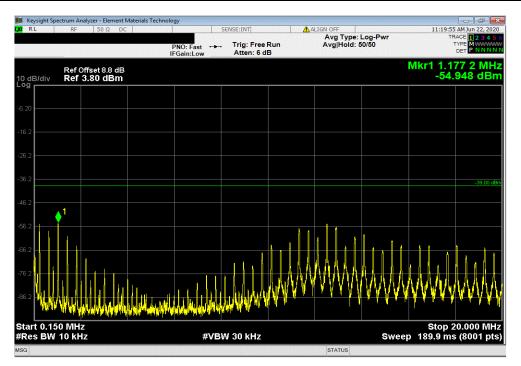
Frequ		Measured	Max Value	Limit	Bernit
Rar		Freq (MHz)	(dBm) -70.54	< (dBm)	Result
9 kHz - 1	150 KHZ	0.01	-70.54	-49	Pass
📜 Keysight Spectrum Analyzer - Element Ma					
RL RF 50 Ω DC	S	ENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	10:36:07 AM Jun 22, 2020
	PNO: Wide ↔ IFGain:Low	Trig: Free Run Atten: 6 dB	Avg Hold: (TRACE 12345 TYPE MWWWW DET PNNNN
Ref Offset 9.7 dB				Ν	/kr1 10.727 kH -70.537 dBn
10 dB/div Ref 4.70 dBm				,	-70.007 0.001
-5.30					
-15.3					
13.3					
25.2					
-25.3					
-35.3					
-45.3					-49.00 dB
-55.3					
-65.3 -1					
-75.3					
Morth on the or					
-85.3	www.www.what				۵
-75.3 444444444444444444444444444444444444		Mr. Marken Marken	Manman	March Margania	antron Manage
Start 9.00 kHz #Res BW 1.0 kHz	#VBV	V 3.0 kHz		Sweep	Stop 150.00 kHz 134.9 ms (8001 pts
MSG			STATUS		

Port 4, Band n25, 1930 MHz - 1995 MHz , 5 M	IHz Bandwidth, 2	56-QAM Modulati	on, Mid Channel	1962.5 MHz	
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBm)	< (dBm)	Result	
150 kHz - 20 MHz	1.18	-54.87	-39	Pass	

	Frequency Range	MHz , 5 MHz Bandwidth, 2 Measured Freq (MHz)	Max Value (dBm)	Limit < (dBm)	Result
	20 MHz - 3 GHz	2622.29	-24.81	< (автт) -19	Pass
.					
	nalyzer - Element Materials Technology 50 Ω DC	SENSE:INT	ALIGN OFF		📼 🗗 🗗 🔜 10:41:38 AM Jun 22, 2020
	PNO: IFGain	Fast ↔→ Trig: Free Run :Low #Atten: 22 dB	Avg Type: Avg Hold: 1	RMS 100/100	TRACE 1 2 3 4 5 (TYPE A WWWW DET A NNNN
Ref 10 dB/div Ref	Dffset 41.6 dB 50.60 dBm			Mk	r1 2.622 3 GHz -24.812 dBm
40.6			<mark>.</mark>		
30.6					
20.6					
20.6					
10.6					
0.600					
-9.40					
0.40					
-19.4					-19.00 dBm
					Name and the state of the state
-29.4					
-39.4					
Start 0.020 GH #Res BW 1.0 N		#VBW 3.0 MHz*		Sweep 3	Stop 3.000 GHz 733 ms (8001 pts
MSG			STATUS	•	
Port 4,	Band n25, 1930 MHz - 1995	MHz , 5 MHz Bandwidth, 2 Measured	56-QAM Modulati Max Value	on, Mid Channel Limit	1962.5 MHz
	Frequency Range	Measured Freq (MHz)	Max value (dBm)	< (dBm)	Result
	3 GHz - 10 GHz	3772.63	-37.45	-19	Pass
	nalyzer - Element Materials Technology 50 Ω DC	SENSE:INT	ALIGN OFF		10:59:45 AM Jun 22, 2020

			PNO: Fast 🔸	Trig: Free #Atten: 6 c	Avg Type: Avg Hold: (Log-Pwr 50/50	т	RACE 1 2 3 4 5 TYPE M DET P NNNN
0 dB/div	Ref Offset 26.9 d Ref 21.90 dBr					MI		2 625 GH .451 dBr
11.9								
.90								
.10								
8.1								-19.00 df
8.1								
8.1	∮ ¹							
8.1		فالإليبي أخز الخاصية		a the second			a lang at a dibahain . Is	
8.1								
8.1								
tart 3.00 Res BW	0 GHz 2.0 MHz		#VB	W 6.0 MHz		Swee	Stop p 11.73 m	10.000 GH s (8001 pt
SG					STATUS			

	Frequency		Measured	I M	ax Value	Limit		
	Range		Freq (MHz	:)	(dBm)	< (dBm)	Result	
	10 GHz - 18 GH	Ηz	14371		-35.96	-19	Pass	
Keysight Spectrum	Analyzer - Element Materials Te	chnology						X
LXI RL RF			SENSE:INT	<u>^</u>	ALIGN OFF		11:01:04 AM Jun 22,	2020
					Avg Type:		TRACE 1 2 3	456
		PNO: Fast ++- IFGain:Low	 Trig: Free Run #Atten: 6 dB 		Avg Hold:	50/50	TYPE M	NNN
		II Galil.LOW	<i>"</i> /				kr1 14.371 G	-
	Offset 30.8 dB					IV	-35.959 di	
10 dB/div Ref	f 25.80 dBm						-35.959 u	DIII
5								
15.0								
15.8								
5.80								
-4.20								
-14.2								
								00 dBm
-24.2								
-34.2				▲1				
	a and the state of	and the second second	. Headle to store and a	دفر جار الغرار	الأرب الطب بمعارية فالله	المرافع والمرافع المرافع	interdent open bei ein beiten beiten.	
ليرجعه أأحمص وبالقاطين وا	a dan bertakan dari bertak Bertakan dari bertakan dari			La Hiller Handler	Internet and a second party of		the stand part of the stand stand	Lating
-44.2								
-54.2								
-64.2								
Start 10.000 G						S	Stop 18.000 (
#Res BW 2.0 I	VINZ	#VB	W 6.0 MHz			Sweep	13.33 ms (8001	prs)
MSG					STATUS			


Port 4, Band n25, 1930 MHz - 1995 MHz , 5 N	/Hz Bandwidth, 2	56-QAM Modulati	on, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
18 GHz - 22 GHz	21849.5	-26.13	-19	Pass

RL	RF	50 Ω [DC	Construction (Construction)	S	ENSE:INT		ALIGN OFF		11:08:2	9 AM Jun 22, 202
				PNO: Fast IFGain:Low	•••	Trig: Free #Atten: 6 d		Avg Type: Avg Hold: (RACE 1234 TYPE MWWW DET PNNN
) dB/div		set 42.6 d 7.60 dB							N	1kr1 21.8 -26	49 5 GH 132 dBi
7.6											
7.6											
.60											
40											
2.4											
2.4											<u>-19.0</u> 0 d
	n da en di etal	lad Day kay Dipad Responsed to the		, a fail de thai a			Les plantités de la surre d Les poster de la surre de la	an in the second se	a alah sa farahasi sa k	ار المربية المراجلية المراجلية المراجلية المراجلية المراجلية المراجلية المراجلية المراجلية المراجلية المراجلية محمد المراجلية المراجل	
2.4											
2.4											
art 18.0 Res BW						V 3.0 MHz	1		Swoo	Stop 2 0 6.933 m	22.000 GH

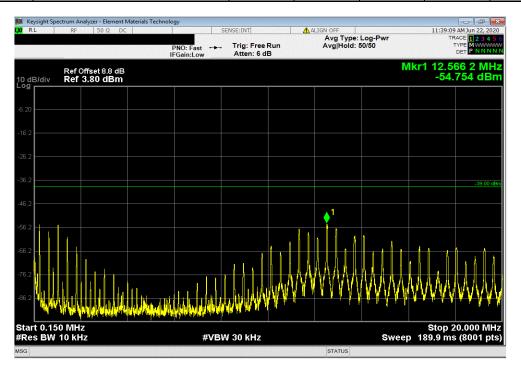
	Frequency		Measur		Max Value	Limit < (dBm)	Result	
	Range 9 kHz - 150 kH	7	Freq (M 0.01	nz)	(dBm) -69.81	< (автт) -49	Pass	1
	9 KHZ - 150 KH	2	0.01		-09.01	-49	F d S S	
								-
Keysight Spectrum An	alyzer - Element Materials Tec 50 Ω DC	hnology	SENSE:INT		ALIGN OFF		11:18:38 AM Jun 22, 20	
	00 S2 DC		JENJE.INI		Avg Type:		TRACE 1 2 3 4	5.6
		PNO: Wide 🔸	 Trig: Free R Atten: 6 dB 		Avg Hold:	50/50	TRACE 1 2 3 4 TYPE MWWW DET P N N N	N N N
		IFGain:Low	Attent 6 db					2.102.0
Ref O	ffset 9.7 dB						Mkr1 9.000 kl -69.812 dB	
10 dB/div Ref	4.70 dBm						-09.012 UE	
Ŭ								
-5.30								
-15.3								
10.0								
-25.3								
-20.0								
25.2								
-35.3								
-45.3							-49.00	dBm
-55.3								
-65.3								
Man								
-75.3 * WWWWWWW	м							
	month MM marchel.	به ۵ م ۱۹						
-85.3	1	A turbary MMA	WWWWWWWW AN	Lama .	h. m			
	Monor And American		1	Annual AM	who we who way we	in hour way	when how how	MA.
Start 9.00 kHz							Stop 150.00 k	
#Res BW 1.0 kH	Iz	#VE	W 3.0 kHz			Sweep	134.9 ms (8001 p	
MSG					STATUS			

Port 4, Band n25, 1930 MHz - 1995 MHz , 10 N	/Hz Bandwidth, 2	56-QAM Modulat	tion, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	1.18	-54.95	-39	Pass

	t 4, Band n25, 1930 MHz - 1995 MHz Frequency	Measured	Max Value	Limit	1002.0 11112
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 3 GHz	2604.03	-24.84	-19	Pass
Keysight Spect R L	trum Analyzer - Element Materials Technology RF 50 Ω DC	SENSE:INT	ALIGN OFF		11:22:46 AM Jun 22, 2020
N.C.	10 30 32 00		Avg Type:	RMS	TRACE 1 2 3 4 5 0 TYPE A WWWWW DET A NNNN
	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 22 dB	Avg Hold: 1	100/100	
	Ref Offset 41.6 dB			Mk	r1 2.604 0 GHz
10 dB/div Log	Ref 50.60 dBm				-24.842 dBm
40.6					
30.6					
20.6					
10.0					
10.6					
0.600					
-9.40					
					-19.00 dBm
-19.4					1
		and a second statement of the second	and the second second second		
-29.4					
-39.4					
Start 0.020	GHz				Stop 3.000 GHz
#Res BW 1		VBW 3.0 MHz*		Sweep 3.	733 ms (8001 pts
MSG			STATUS		
Por	t 4, Band n25, 1930 MHz - 1995 MHz	10 MHz Bandwidth 2	56-QAM Modulat	ion Mid Channel	1962 5 MHz
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	3 GHz - 10 GHz	3859.25	-38.32	-19	Pass
					
Keysight Spect	rum Analyzer - Element Materials Technology RF 50 Ω DC	SENSE:INT	ALIGN OFF		11:25:04 AM Jun 22, 2020
	PNO: Fast IFGain:Low	Teles Free Due	Avg Type: Avg Hold: {	Log-Pwr 50/50	TRACE 1 2 3 4 5 0 TYPE MWWWW DET P NNNN

		IF	Gain:Low	#Atten: 6 c	В				DET
) dB/div	Ref Offset 26.9 dB Ref 21.90 dBm						Mł	(r1 3.859 -38.	250 GF 324 dB
^{/g}									
1.9									
.90									
10									
3.1									-19.00
3.1	<u>1</u>								
8.1 		in this is a line of the second	And the second second	alatica, tarihti	i daga ka baharing	al deres ha stalle et en set		Magan and a start	ile la chiefean
3.1			and a star of a start of a start	and the sub-	indegen, provide a con faithfull	ىر چەلەستەرلەيلامىي يىل ۋاتىيا	a a selection of a se	ن بعد سامالات القرار <u>مر</u> ينا	Den Brookspill
3.1									
3.1									
tart 3.00	0 GHz 2.0 MHz		#\/B	W 6.0 MHz			Swoor	Stop 1 0 11.73 ms	10.000 GH
G DW	2.0 WHZ		#VD			STATUS	oweet		r toon i hi

	Frequency		Measured	Max Value	Limit		
	Range		Freq (MHz)	(dBm)	< (dBm)	Result	
1	0 GHz - 18 GHz		13809	-35.81	-19	Pass	
Keysight Spectrum Analyzer -	Element Materials Technology						X
IXI RL RF 50	DC DC	S	SENSE:INT	ALIGN OFF		11:26:23 AM Jun 22,	
	DN		Trig: Free Run	Avg Type Avg Hold:	: Log-Pwr 50/50	TRACE 1 2 3 TYPE MWA	WAAAAA
		O: Fast ↔→ ain:Low	#Atten: 6 dB			DET P N N	INNN
B (95)	20.0 ID					Mkr1 13.809 G	GHz
10 dB/div Ref 25.80	30.8 dB 0 dBm					-35.809 d	
Log							
15.8							
5.80							
-4.20							
-14.2							
							00 dBm
-24.2							
-34.2			<u> </u>				
ST.2	An an a har a large day and the second second	المعالم المعالم	LUCE CONTRACTOR OF THE	and stability as a laboral sector of the	والمتحد والقراف والمراد والتقاديان	ومستور ومسطو فالخرأة فأفراد ورورو والمواط والمراجعة	addease
-44.2	والمتحديق والمتحافظ والمتحد والمتحد	date of a second second	Constant of the state of the st	a hittig for a feat white a stability made to	المحمقا والقنامة لري ومنه بالألتانية أفريا	Within the state of the state of the	del an
-54.2							
-04.2							
64.9							
-64.2							
Start 10.000 GHz						Stop 18.000	GHz
#Res BW 2.0 MHz		#VB\	N 6.0 MHz		Sweep	13.33 ms (8001	pts)
MSG				STATUS			


Port 4, Band n25, 1930 MHz - 1995 MHz , 10	MHz Bandwidth, 2	56-QAM Modulat	ion, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
18 GHz - 22 GHz	21638	-25.37	-19	Pass

RL	RF 50 Ω D	C	Constant Constant Constant	SENSE:INT		ALIGN OFF		11:28:43	AM Jun 22, 202
			PNO: Fast ↔ FGain:Low	Trig: Free #Atten: 6 c	Run	Avg Type: I Avg Hold: 5		т	ACE 1 2 3 4 1 YPE M DET P N N N
dB/div	Ref Offset 42.6 d Ref 37.60 dBr						Μ	kr1 21.6 -25.	38 0 GH 373 dBi
-									
'.6 									
'.6 									
60									
40									
.4									
.4									▲ <u>1 -19.00 c</u>
	al al a la suite de la suit			alative helds to be a describe	ار والالار وأو الالار الإورامية والالار والالار		alland states with	til forsøde <mark>ls stil produ</mark> Hennesse	
.4									
2.4									
art 18.0	00 GHz 1.0 MHz		-44.1	BW 3.0 MHz			0	Stop 2 6.933 ms	2.000 GH

Frequency Range		Measured Freq (MHz)	Max Value (dBm)	Limit < (dBm)	Result
9 kHz - 150 kH	17	0.01	-71.26	-49	Pass
3 KHZ - 130 KH		0.01	-71.20	-43	1 435
鱦 Keysight Spectrum Analyzer - Element Materials Teo	chnology				
LXI RL RF 50Ω DC		SENSE:INT	ALIGN OFF Avg Type:	Les Dur	11:38:01 AM Jun 22, 2020
	PNO: Wide +++	Trig: Free Run Atten: 6 dB	Avg Hold:		TRACE 1 2 3 4 5 TYPE M WWW DET P N N N N
Ref Offset 9.7 dB 10 dB/div Ref 4.70 dBm					Mkr1 9.934 kHz -71.256 dBm
Log					
-5.30					
-15.3					
-10.0					
-25.3					
-35.3					
-45.3					-49.00 dBn
-55.3					
-65.3 - 1					
-75.3					
10.5 March all with which which are a					
-75.3 WWWWWWWWWWWWWWW -85.3 Start 9.00 kHz	walker war have been and the	man and an the former and the former	Mr. Monun	M.M.M.M.	MMANN
Start 9.00 kHz			N		Stop 150.00 kHz
#Res BW 1.0 kHz	#VB	N 3.0 kHz	STATUS	Sweep	134.9 ms (8001 pts

Port 4, Band n25, 1930 MHz - 1995 MHz , 15 M	/Hz Bandwidth, 2	56-QAM Modulat	ion, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	12.57	-54.75	-39	Pass

1.011	4, Band n25, 1930 MHz - 1995 M Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 3 GHz	2734.04	-24.36	-19	Pass
	rm Analyzer - Element Materials Technology RF 50 Ω DC	SENSE:INT	ALIGN OFF		11:41:49 AM Jun 22, 2020
			Avg Type:	RMS	TRACE 1 2 3 4 5 (
	PNO: Fa IFGain:L	st Trig: Free Run ow #Atten: 22 dB	Avg Hold: 1	00/100	TYPE A WWWWW DET A NNNN
R	Ref Offset 41.6 dB			Mł	r1 2.734 0 GHz -24.359 dBm
10 dB/div R	Ref 50.60 dBm				-24.559 dBm
40.6					
30.6					
20.6					
10.6					
0.600					
0.000					
-9.40					
-19.4					-19.00 dBm
				and the life of the state of the state	with the provident of the providence in the prov
-29.4			the second s		
20.4					
-39.4					
Start 0.020 0 #Res BW 1.0		#VBW 3.0 MHz*		Sweep 3	Stop 3.000 GHz .733 ms (8001 pts)
MSG			STATUS		
Port	4, Band n25, 1930 MHz - 1995 M Frequency	Hz , 15 MHz Bandwidth, 2 Measured	256-QAM Modulati Max Value	ion, Mid Channe Limit	1962.5 MHz
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	3 GHz - 10 GHz	3798	-37.43	-19	Pass
	rm Analyzer - Element Materials Technology RF 50 Ω DC	SENSE:INT	ALIGN OFF		11:43:57 AM Jun 22, 2020
	in prese ere l	UNITED INTO A	Avg Type:	og-Pwr	TRACE 1 2 3 4 5 (

			PNO: Fast 🔸	. Trig: Free #Atten: 6 c		Avg Type: Avg Hold: 5			ACE 1 2 3 4 5 TYPE M DET PNNN
0 dB/div	Ref Offset 26.9 df Ref 21.90 dBm	3 1					Mk	r1 3.798 -37.	000 GH 434 dBr
-									
1.9									
.90									
10									
3.1									-19.00 c
8.1									
3.1		A Dila sette diffa en de las							
8.1			the state of the second se		in dilla di propi con di di Statuti di stato di stato di stato Stato di stato di stato di stato di stato di stato				
3.1									
3.1									
tart 3.00 Res BW	0 GHz 2.0 MHz		#VB	W 6.0 MHz			Sweep	Stop 1 11.73 ms	0.000 GH
G						STATUS			

	Frequency		Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	10 GHz - 18 GH:	7	14897	-35.97	-19	Pass
	Analyzer - Element Materials Tech	nology) @- -
LX/RL RF	50 Ω DC		SENSE:INT	ALIGN OFF Avg Type:		11:45:10 AM Jun 22, 2020
		PNO: Fast +++	Trig: Free Run	Avg Type: Avg Hold:		TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
		IFGain:Low	#Atten: 6 dB			DET PNNNN
					M	kr1 14.897 GH
10 dB/div Ref	Offset 30.8 dB * 25.80 dBm					-35.972 dBn
Log	20.00 0.011					
15.8						
5.80						
-4.20						
-4.20						
-14.2						-19.00 dBr
-24.2						
				<u>^</u> 1		
-34.2						
		المرجاة والأحجا والألق وأحقه الألجا	and dealer the last of the second			
-44.2						
-54.2						
-64.2						
Start 10.000 G						Stop 18.000 GHz
#Res BW 2.0 N	ЛНz	#VB\	W 6.0 MHz		Sweep 1	3.33 ms (8001 pts
MSG				STATUS		


	1 off 1, Dana 120, 1000 11112 1000 11112, 10	in in Daniani, 1		aon, ma onamio	1002.0 1111.12
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
[18 GHz - 22 GHz	19434	-26.36	-19	Pass

RL RF 50 Ω DC	SENSE	E:INT A	ALIGN OFF	11:47:14 AM Jun 22, 202
		rig: Free Run Atten: 6 dB	Avg Type: Log-Pwr Avg Hold: 50/50	TRACE 1 2 3 4 5 TYPE M WWWW DET P NNNN
Ref Offset 42.6 dB dB/div Ref 37.60 dBm				Mkr1 19.434 0 GH -26.356 dBi
7.6				
7.6				
60				
40				
2.4				
2.4	1			-19.00 c
n karan an ar madaarid it dan dan bahar da bahar	tali da internationale de la contrata de la contra	e het general en de statistiche en faite de statiste de st	il liver de provide des sons la prime de la constantion de la destata	a bill ad te sa attact attack attack attack and distance
2.4 (1997) - 1997 (1997) - 199		و سميري بي من من من بي		
2.4				
2.4				
tart 18.000 GHz Res BW 1.0 MHz	#VBW 3			Stop 22.000 GF p 6.933 ms (8001 pt

	Freque		Measu			Limit		
	Rang		Freq (M			< (dBm)	Result	_
	9 kHz - 15	50 kHz	0.01	-71.0	3	-49	Pass	
Keysight Spectrum	Analyzer - Element Mate	rials Technology					[]-é	P 23
XIRL RI	F 50 Ω DC		SENSE:INT	🔥 ALIGN OF			11:57:08 AM Jun 22	
			Telev Free F		g Type: Log			3 4 5
		PNO: Wide IFGain:Lov			Hold: 50/5	U		NNN
		n Gam.Lov					Mkr1 9.000	
Ret	f Offset 9.7 dB						-71.033 d	
10 dB/div Re	ef 4.70 dBm						-71.0550	ЮШ
-5.30								
-15.3								
-25.3								
-35.3								
-33.3								
-45.3							-49	9.00 dBm
-55.3								
-65.3 - 1								
-75 3 Am AM								
10 414 M	America marca							
	1 W WY WY	WWW LANDON A	1					
-85.3		A MANAGE AND	Work Margaret	more more a made			. 1	
				a hou had an a	MANAMAN	monon	mound be	he dre
Start 9.00 kHz	7		۳۳ ۳۷BW 3.0 kHz				Stop 150.00	kHz
#Res BW 1.0	kHz		#VBW 3.0 kHz			Sweep 1	34.9 ms (8001	pts)
MSG				TZ	ATUS			
				51.	AIUS			

Port 4, Band n25, 1930 MHz - 1995 MHz , 20 M	/Hz Bandwidth, 2	256-QAM Modulat	tion, Mid Channel	1962.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	12.55	-54.63	-39	Pass

1 011	Frequency	2 - 1995 10172	, 20 MHz Bandwidth, 2 Measured	Max Value	Lion, Mid Channe	1902.3 10112
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 3 GH	lz	2626.76	-24.63	-19	Pass
🗾 Keysight Spectr	um Analyzer - Element Materials Te	chnology				
LXI RL	RF 50 Ω DC		SENSE:INT	ALIGN OFF Avg Type:	RMS	12:00:00 PM Jun 22, 2020 TRACE 1 2 3 4 5 6
		PNO: Fast IFGain:Low	Trig: Free Run #Atten: 22 dB	Avg Hold:	100/100	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N
10 dB/div	Ref Offset 41.6 dB Ref 50.60 dBm				Mk	r1 2.626 8 GHz -24.634 dBm
	Kei Jo.oo ubiii					
40.6				<u>,</u>		
30.6						
20.6						
10.6						
0.600						
-9.40				<mark> </mark>		
-19.4						-19.00 dBm
-15.4						
-29.4		an in the second se	والاجادة ومودة والقروط فالمتراز والمحمر والموافق فللمع	approximation and a subset		
-39.4						
Start 0.020						Stop 3.000 GHz
#Res BW 1.	0 MHz	#	VBW 3.0 MHz*		Sweep 3	.733 ms (8001 pts)
MSG				STATUS		
Port	: 4, Band n25, 1930 MH	z - 1995 MHz	. 20 MHz Bandwidth, 2	56-QAM Modulat	tion. Mid Channe	1962.5 MHz
	Frequency		Measured	Max Value	Limit	
-	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	3 GHz - 10 GH	IZ	3784.88	-38.38	-19	Pass
🗾 Keysight Spectr	um Analyzer - Element Materials Te	chnology				
L <mark>XI</mark> RL	RF 50 Ω DC		SENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	12:02:00 PM Jun 22, 2020 TRACE 1 2 3 4 5 6
		PNO: Fast	Trig: Free Run	Avg Hold:		TYPE MWWWWW DET PNNNNN

	PNO: Fast	Trig: Free Run #Atten: 6 dB	Avg Type: Log-I Avg Hold: 50/50	TYP	12345 MWWWW PNNNN
Ref Offset 26.9 dB 0 dB/div Ref 21.90 dBm				Mkr1 3.784 8 -38.38	75 GH 34 dBr
11.9					
.90					
.10					
8.1					-19.00 d
8.1					
8.1					
8.1					
8.1					
tart 3.000 GHz				Stop 10.	000 GH
Res BW 2.0 MHz	#VBW	6.0 MHz		Sweep 11.73 ms (

	Frequency		Measured	Max Value	Limit	
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	10 GHz - 18 GH	Z	15656	-35.61	-19	Pass
📕 Keysight Spectrum	Analyzer - Element Materials Tech	nology				- 6 -
XI RL RF	F 50 Ω DC		SENSE:INT	ALIGN OFF		12:03:45 PM Jun 22, 2020
		PNO: Fast	Trig: Free Run	Avg Type: Avg Hold:		TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
		IFGain:Low	#Atten: 6 dB			
Ref	f Offset 30.8 dB				N	lkr1 15.656 GHz
10 dB/div Re	f 25.80 dBm					-35.609 dBm
Log						
15.8						
5.80						
-4.20						
-14.2						
						-19.00 dBn
-24.2						
					.1	
-34.2						
n and share to be			الماجعة وتعاول والمأكر وعدادك		والمتحدث ويتقاده والمراجع	u se al la la chifte des des té la tite
-44.2		and the second second	a formation of the second s			. as here a second
-54.2						
-64.2						
						84
Start 10.000 G #Res BW 2.0 I		#\/B)	W 6.0 MHz		Swoon	Stop 18.000 GHz 13.33 ms (8001 pts
	WIN2	#VD	W 0.0 WINZ		Sweep	13.33 IIIs (8001 pts
MSG				STATUS		

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
18 GHz - 22 GHz	21820	-26.18	-19	Pass

RL RF 50 Ω DC	A SIGNAL SCHOOL ST	SENSE:INT	<u>∧</u> ∧	LIGN OFF		12:07:55	5 PM Jun 22, 202
	PNO: Fast ++	. Trig: Free #Atten: 6 d		Avg Type: Log-Pwr Avg Hold: 50/50		TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN	
Ref Offset 42.6 dB 0 dB/div Ref 37.60 dBm					Μ	kr1 21.8 -26.	20 0 GH 176 dB
~3							
27.6							
7.6							
.60							
.40							
.40							
2.4							-19.00 d
2.4							1
	lasi déntekéné in	litti a ta a da	a da da se se da se da da se	اليميان والأول المحادث والأراد المحادث والمراد والمحادث	با میں اور میں اور	a di kia kana kata di shina kia Kana kata da mana kata da kata	
A sector of the							
2.4							
2.4							
tart 18.000 GHz						Stor	2 000 01
Res BW 1.0 MHz	#\/P	W 3.0 MHz			Sween	6.933 ms	22.000 GH