

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-20	27-Feb-21
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Generator - Signal	Agilent	N5173B	TIW	5-Jul-17	5-Jul-20

TEST DESCRIPTION

The antenna port spurious emissions were measured at the RF output terminal of the EUT through 3 different attenuation configurations which continues through to the RF input of the spectrum analyzer. Analyzer plots utilizing a resolution bandwidth called out by the client's test plan were made for each modulation type from 9 KHz to 8 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to ensure they were less than the limits also called out by the client's test plan shown below.

The measurement methods are detailed in KDB 971168 D01v03 section 6 and ANSI C63.26-2015.

Per FCC 2.1057(a)(1) and RSS Gen 6.13, the upper level of measurement is the 10th harmonic of the highest fundamental frequency.

These measurements are for the frequency band after the first 1.0 MHz bands immediately outside and adjacent to the frequency block.

Per section 27.53(g) and RSS 130 4.7, the power of any emission outside of the authorized operating frequency range cannot exceed -13 dBm for a 100kHz measurement bandwidth. The limit is adjusted to -19 dBm [-13 dBm -10 log (4)] per FCC KDB 662911D01 v02r01 because the BTS may operate as a 4 port MIMO transmitter.

The limit for the 9kHz to 150kHz frequency range was adjusted to –39dBm to correct for a spectrum analyzer RBW of 1kHz versus required RBW of 100kHz [i.e.: -39dBm = -19dBm -10log(100kHz/1kHz)]. The limit for the 150kHz to 20MHz frequency range was adjusted to –29dBm to correct for a spectrum analyzer RBW of 10kHz versus required RBW of 100kHz [i.e.: - 29dBm = -19dBm -10log(100kHz/10kHz)]. The required limit of -19dBm with a RBW of > 100kHz was used for all other frequency ranges.

RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AHBOA) as the original certification test. The AHBOA antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraph 5.7.2i.

						TbtTx 2020.06.08.0 BETA	XMit 2020.03.25.0
EUT: Air	scale Base Transcei	ver Station Remote Radio He	ad Model AHBOA		Work Order:	NOKI0017	
Serial Number: BL	1943X1001				Date:	9-Jun-20	
Customer: No	kia Solutions and Ne	etworks			Temperature:	22.5 °C	
Attendees: Mit	chell Hill, John Ratta	anavong			Humidity:	42.5% RH	
Project: No	ne				Barometric Pres.:	1009 mbar	
Tested by: Bra	andon Hobbs		Power: 54 VDC		Job Site:	TX05	
TEST SPECIFICATION	S		Test Method				
FCC 27:2020			ANSI C63.26:2015				
RSS-130:2019			RSS-Gen:2019				
COMMENTS							
All measurement path	losses were account	ted for in the reference level of	offset including any attenuators, filters and DC blocks. The car	rier power was set to ma	ximum for all testir	ng.	
DEVIATIONO EDON TE	OT OT AND A DD						
DEVIATIONS FROM TE	SI SIANDARD						
None							
Configuration #	123		2 /1 1				
oomgalation#	1,2,0	Signature	for for				
		Signature	Frequency	Massured	Max Value	Limit	
			Range	Freq (MHz)	(dBm)	< (dBm)	Result
Port 1 Pond 71 617 ML			Kange	ried (Miliz)	(ubili)	< (ubili)	Result
FULLI, Dallu / I, UL/ MF	12 - 002 MITIZ						
510	OPSK Mod	ulation					
		Mid Chappel 634 5 MHz	9 kHz - 150 kHz	0.01	57 20	-30	Pass
		Mid Channel, 634.5 MHz	9 KHZ - 150 KHZ 150 KHZ - 20 MHZ	0.01	-57.29	-39	Pass
		Mid Channel, 634.5 MHz	150 KHZ - 20 MHZ	425.00	-09.49	-29	Pass
		Mid Channel 634 5 MHz	600 MHz - 800 MHz	7/3.83	-42.01	-10	Dass
		Mid Channel, 634 5 MHz	800 MHz 1 2 CHz	922.45	-42.01	-13	Booo
		Mid Channel 634.5 MHz	1.2 GHz - 8 GHz	3855.40	-36.40	-19	Pass
	16 OAM M	dulation	1.2 012 - 0 012	3033.40	-30.30	-13	1 435
		Mid Channel 634 5 MHz	9 kHz - 150 kHz	0.01	57 70	-30	Pass
		Mid Channel 634 5 MHz	150 kHz - 20 MHz	8 71	-59 39	-29	Pass
		Mid Channel 634 5 MHz	20 MHz - 600 MHz	429 56	-35.12	-19	Pass
		Mid Channel 634 5 MHz	600 MHz - 800 MHz	754 43	-41 64	-19	Pass
		Mid Channel 634 5 MHz	800 MHz - 1 2 GHz	820.85	-38.93	-19	Pass
		Mid Channel 634 5 MHz	1 2 GHz - 8 GHz	3839.25	-35.51	-19	Pass
	64-QAM Mc	dulation		0000.20	00.01	10	1 400
		Mid Channel, 634.5 MHz	9 kHz - 150 kHz	0.01	-56.93	-39	Pass
		Mid Channel, 634.5 MHz	150 kHz - 20 MHz	8.71	-59.46	-29	Pass
		Mid Channel, 634.5 MHz	20 MHz - 600 MHz	429.71	-34.67	-19	Pass
		Mid Channel, 634.5 MHz	600 MHz - 800 MHz	747.68	-41.21	-19	Pass
		Mid Channel, 634.5 MHz	800 MHz - 1.2 GHz	813.55	-38.61	-19	Pass
		Mid Channel, 634.5 MHz	1.2 GHz - 8 GHz	3772.10	-36.38	-19	Pass
	256-QAM N	Nodulation					
		Mid Channel, 634.5 MHz	9 kHz - 150 kHz	0.01	-57.05	-39	Pass
		Mid Channel, 634.5 MHz	150 kHz - 20 MHz	8.70	-59.49	-29	Pass
		Mid Channel, 634.5 MHz	20 MHz - 600 MHz	408.25	-35.16	-19	Pass
		Mid Channel, 634.5 MHz	600 MHz - 800 MHz	745.23	-41.02	-19	Pass
		Mid Channel, 634.5 MHz	800 MHz - 1.2 GHz	835.90	-38.03	-19	Pass
		Mid Channel, 634.5 MHz	1.2 GHz - 8 GHz	3853.70	-36.73	-19	Pass
10	MHz Bandwidth						
	256-QAM N	Iodulation					
		Mid Channel, 634.5 MHz	9 kHz - 150 kHz	0.01	-57.07	-39	Pass
		Mid Channel, 634.5 MHz	150 kHz - 20 MHz	8.71	-59.51	-29	Pass
		Mid Channel, 634.5 MHz	20 MHz - 600 MHz	418.06	-34.47	-19	Pass
		Mid Channel, 634.5 MHz	600 MHz - 800 MHz	747.38	-40.75	-19	Pass
		Mid Channel, 634.5 MHz	800 MHz - 1.2 GHz	809.95	-38.17	-19	Pass
_		Mid Channel, 634.5 MHz	1.2 GHz - 8 GHz	3904.70	-36.49	-19	Pass
15	MHz Bandwidth						
	256-QAM N	Iodulation					
		Mid Channel, 634.5 MHz	9 kHz - 150 kHz	0.01	-57.16	-39	Pass
		Mid Channel, 634.5 MHz	150 kHz - 20 MHz	8.71	-59.48	-29	Pass
		Mid Channel, 634.5 MHz	20 MHz - 600 MHz	402.11	-34.48	-19	Pass
		Mid Channel, 634.5 MHz	600 MHz - 800 MHz	755.03	-41.69	-19	Pass
		Mid Channel, 634.5 MHz	800 MHz - 1.2 GHz	807.65	-38.76	-19	Pass
		Mid Channel, 634.5 MHz	1.2 GHz - 8 GHz	3726.20	-36.60	-19	Pass
20	MHz Bandwidth	A . d. d. M					
	256-QAM N	nodulation		0.04	F7 F4	00	D
		wid Channel, 634.5 MHz	9 KHZ - 150 KHZ	0.01	-57.54	-39	Pass
		Mid Channel, 634.5 MHz	150 KHZ - 20 MHZ	8.71	-59.52	-29	Pass
		Mid Channel, 634.5 MHZ	20 MHZ - 600 MHZ	413.03	-35.18	-19	Pass
		wid Channel, 634.5 MHz	600 MHZ - 800 MHZ	/54.30	-40.97	-19	Pass
		Mid Channel, 634.5 MHz	800 MHz - 1.2 GHz	827.70	-38.37	-19	Pass
		wid Channel, 634.5 MHz	1.2 GHz - 8 GHz	3796.75	-30.99	-19	Pass

Frequenc	у	Measured	Max Value	Limit	Beault
	/H7		(UBIII)	< (ubiii)	Pass
0 1112 100		0.01	01.20	00	1 400
Keysight Spectrum Analyzer - Element Materials	Technology	CENCEANT			
	PNO: Wide	→ Trig: Free Run #Atten: 6 dB	Avg Type: Avg Hold:	RMS 200/200	TRACE 1 2 3 4 5 TYPE A WWWW DET A P P P
Ref Offset 31 dB 10 dB/div Ref 10.00 dBm	II Gain.Low				Mkr1 9.000 kH -57.286 dBr
Log					
0.00					
49.9					
-10.0					
-20.0					
-30.0					
-40.0					-39.00 d8
F0.0					
-50.0					
-60.0	Δ				
70.0	\sim				
-70.0	the second secon	man man	mm	A	Λ
-80.0					and work from
Start 9.00 kHz #Res BW 1.0 kHz	_#\	/BW 3.0 kHz*		Sweep	Stop 150.00 kH 174.4 ms (80 <u>01 pt</u>
MSG			STATUS		

Port 1, Band 71, 617 MHz - 652 MHz, 5 M	/IHz Bandwidth, Q	PSK Modulation,	Mid Channel, 634	4.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	8.71	-59.49	-29	Pass

L	RF	50 Ω DC			SENSE:INT	1	ALIGN OFF		02:	08:43 PM Jun 09, 2
				PNO: Fast ↔ IFGain:Low	Trig: Free F #Atten: 6 d	Run B	Avg Type: Avg Hold: 2	RMS 200/200		TRACE 1 2 3 4 TYPE A WWW DET A P P 1
3/div	Ref Off Ref 7	set 28.46 c 46 dBm	IB						Mkr1 8	8.705 4 M 59.486 dE
										-29.0
					1					
. And the	a frank skyle		a and the second se	at of principal states and states of		. No. 19 agenti dable			na an a	-sector through the sector of
t 0.15	0 MHz			#\/	B)A(30 kHz*			Swe	Sto	p 20.000 N

	Frequency		Measured Freq (MHz)	Max Value (dBm)	Limit	Resu	ilt
	20 MHz - 600 MH	z	435.99	-33.15	-19	Pass	5
Keysight Spectrum Analy	zer - Element Materials Tech	nology	anne nal	• · · · · · · · · · · ·			
KL RF	50 Ω DC		SENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	U2:34:02 PM TRACE	Jun 09, 2020
		PNO: Fast ++ IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	TYPE	M ************************************
Ref Offs	set 40.3 dB					Mkr1 435.9	99 MHz
10 dB/div Ref 11	.30 dBm			1		-33.10	павт
1.30							
-8.70							
-18.7							-19.00 dBm
-28.7					<u>_</u> 1		
				الماريد الم	Add and the lose of		
-38.7	an at and the terminal I and the horses of the	L malare actorizatio	والأفارية المتعادية والمتعادية والمعاركة			and the state of the second states	alari di telebita di
10.7			a ba da da baltim producida da la constitución de			and the second	and the part of the lat
-++-0.7							
-58.7							
-68.7							
70.7							
-/8.7							
Start 20.0 MHz #Res BW 100 kHz	,	#V	BW 300 kHz		Sween	Stop 60 56.00 ms (12	0.0 MHz
MSG				STATUS	p		
				STATUS			

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
600 MHz - 800 MHz	743.83	-42.01	-19	Pass

	Range		Freg (MHz)	(dBm)	< (dBm)	Result
	800 MHz - 1.2 (GHz	822.45	-38.45	-19	Pass
Keysight Spectrum	n Analyzer - Element Materials T	chnology				
💢 RL 🛛 F	RF 50 Ω DC		ENSE:INT		Log-Pwr	02:37:46 PM Jun 09, 2020 TRACE 1 2 3 4 5
		PNO: Fast 🔸	Trig: Free Run	Avg Hold:	200/200	
		IFGain:Low	#Atten: 10 dB			
Re 10 dB/div Re	ef Offset 40.4 dB ef 40.40 dBm				MI	-38.446 dBm
30.4						
20.4						
10.4						
0.400						
9.60						
-5.66						
-19.6						-19.00 dBn
-29.6						
-39.6 Hiterate		and Marchester, and Music construction	الطرافة ومعالفه والتعط فروسا التاريج	والمتر فعرة اللقوم أسره والمتعساه	athone politic dimethod	Advertised in a sublicity of the state
49 F		and a state of the second	An han is shown much design as a short of sh	at han ben fatatalah di karan ni dahat yang	. Haddenment i ministration attenti parat ca	n filman a stadower i dan dag ta faith diese is stad
-49.0						
Start 0.8000 (GHZ	#\/B)	AL 300 KHZ		Swoon 2	Stop 1.2000 GHz
#Res BW 100	-M12	#VDI	A 200 KHZ	CTATIC	Sweep 3	8.40 ms (8001 pts
130				STATUS		

Frequency	Measured	Max Value	Limit							
Range	Freq (MHz)	(dBm)	< (dBm)	Result						
1.2 GHz - 8 GHz	3855.4	-36.9	-19	Pass						

RI PE 50.0 DC		CENCE-INT	A ALIGN OFF		02:57:07	DM Jun 00, 202
	PNO: Fast +++	Trig: Free Run #Atten: 10 dB	Avg Type: Avg Hold:	Log-Pwr 200/200	102.57.07 TR T	ACE 1 2 3 4 5 TYPE MWWWW DET P P P P P
Ref Offset 24.2 dB dB/div Ref 24.20 dBm				М	kr1 3.85 -36.	5 40 GH 895 dBn
1.2						
20						
80						
5.8						-19.00 a
5.8						
5.8	ulkakan unit di Alekaka	1 ¹ in, salitainaisini (dited	in an	ul., I theintimeter.	alaura du baidheileil	and beautions
5.8 Hereiter (et al. 1997)			And the party of the second		And the second sec	line an an Anna Andrian a marsa
5.8						
5.8						
art 1.200 GHz Res BW 2.0 MHz	#VB	W 6.0 MHz		Sweep	Stop 11.73 ms	8.000 GF

Frequency	/	Measured	Max Value	Limit	Posult
9 kHz - 150 k	Hz	0.01	-57.7	-39	Pass
Keysight Spectrum Analyzer - Element Materials	Technology				
K RL RF 50Ω DC		SENSE:INT	ALIGN OFF		02:13:18 PM Jun 09, 202
	PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 6 dB	Avg Type: Avg Hold:	RMS 200/200	TRACE 1 2 3 4 5 TYPE A WWWW DET A P P P P
Ref Offset 31 dB 10 dB/div Ref 10.00 dBm					Mkr1 9.317 kH -57.697 dBr
208					
0.00					
-10.0					
20.0					
-20.0					
-30.0					
-40.0					-39.00 dE
-50.0					
2					
-60.0	Δ				
-70.0	manul	mmm m		Δ	
-80.0			mont	mm h	man
Start 9.00 kHz #Res BW 1.0 kHz	#VI	BW 3.0 kHz*		Sweep	Stop 150.00 kH 174.4 ms (8001 pts
MSG			STATUS		

Port 1, Band 71, 617 MHz - 652 MHz, 5 MH	Iz Bandwidth, 16	-QAM Modulation	, Mid Channel, 63	84.5 MHz	
Frequency	Measured	Max Value	Limit		
Range	Freq (MHz)	(dBm)	< (dBm)	Result	
150 kHz - 20 MHz	8.71	-59.39	-29	Pass	

	RF	50 Ω DC			SENSE:INT	ALIGN OFF		02:15:	47 PM Jun 09, 2
				PNO: Fast ↔ IFGain:Low		Avg Type Avg Hold	: RMS : 200/200		TYPE A WWW DET A P P F
/div	Ref Off Ref 7	set 28.46 d 46 dBm	зB					Mkr1 8.7 -59	705 4 M 0.390 di
									-29.0
ANN INN	And the state of the second	and the submodel and the	a subscription of the second distance of the	****		ster presented in the state of the	i septy stall op redaction		
0.15				#\/	RIM 30 kHz*	ļ.	Swa	Stop	20.000 N

	Frequency Range		Measured Freg (MHz)	Max Value (dBm)	Limit < (dBm)	Re	sult
	20 MHz - 600 MHz		429.56	-35.12	-19	Pa	ass
📁 Keysight Spectrum Ar	nalyzer - Element Materials Technol	ogy					
LXI RL RF	50 Ω DC	S	ENSE:INT	ALIGN OFF	Lea Dur	02:40:19	PM Jun 09, 2020
		PNO: Fast +++ FGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	T	
Ref C 10 dB/div Ref	Offset 40.3 dB 11.30 dBm					Mkr1 42 -35.	9.56 MHz 124 dBm
Log							
1.30							
-8.70							
-18.7							-19100 dbm
-28.7					<u>_</u> 1		
				والمرادية الدربي المراجع	and the back see		
-38.7	a townships the state of a last shift was shown		inen distant maaraalaa			Net de la banda de la	Level and reality of the
and purchased the state	n pe din pinenti, a identitia di stato destinita instando in si di b	المراجع بالمراجع والمراجع المراجع (المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم المراجع المراجع	and the second			and the second	
-40.7							
50.7							
-30.7							
co 7							
-00.7							
79.7							
-70.7							
Start 20.0 MHz						Stop	600.0 MHz
#Res BW 100 k	(Hz	#VBV	V 300 kHz		Sweep	56.00 ms	(12000 pts)
MSG				STATUS			

Port 1, Band 71, 617 MHz - 652 MHz, 5 M	Hz Bandwidth, 16	-QAM Modulation	i, Mid Channel, 63	34.5 MHz
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
600 MHz - 800 MHz	754 43	_11.64	-10	Pass

	Frequency Range		Measured Freg (MHz)	Max Value (dBm)	Limit < (dBm)	Result
	800 MHz - 1.2 GH	Z	820.85	-38.93	-19	Pass
Keysight Spectrum A	nalyzer - Element Materials Techr	ology		.		
KL RF	50 Ω DC	5	ENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	02:43:20 PM Jun 09, 2020 TRACE 1 2 3 4 5
		PNO: Fast ++++ IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	DET PPPP
Ref (10 dB/div Ref	Offset 40.4 dB 40.40 dBm				М	kr1 820.85 MHz -38.932 dBm
30.4						
20.4						
10.1						
10.4						
0.400						
-9.60						
-19.6						-19.00 dBr
10.0						
-29.6						
↓ 1						
-39.6 Histophysic (man)		ني بد المتعلم <mark>ا</mark> و الاراليدي	ind his the still of a prior because of	ويعاددون أرأه أله والمحالية والمعاد	ويعطيه أولج ومتعاول والعرور والأرام	والمعادة فمقارته فلمأوا أوتاء وتلتما
-49.6						
Start 0.8000 GI	Hz					Stop 1.2000 GHz
#Res BW 100 k	Hz	#VBV	V 300 kHz		Sweep 3	8.40 ms (8001 pts
MSG				STATUS		

Fort 1, Dahu 71, 017 Minz - 052 Minz, 5 Minz Dahuwiuth, 10-QAW Moutiation, Miu Ghanner, 054.5 Minz							
Frequency	Measured	Max Value	Limit	Limit			
Range	Freq (MHz)	(dBm)	< (dBm)	Result			
1.2 GHz - 8 GHz	3839.25	-35.51	-19	Pass			

RL	RF	50 Ω DC		Collection and the	SENSE:INT		ALIGN OFF	A CONTRACTOR OF THE	02:58:59	PMJun 09, 20
			I	PNO: Fast ↔ FGain:Low	. Trig: Free #Atten: 10	Run dB	Avg Type: Avg Hold: 2	Log-Pwr 200/200	T	ACE 1 2 3 4 TYPE M DET P P P P
dB/div	Ref Off Ref 24	set 24.2 dE 1.20 dBm	\$						Mkr1 3.83 -35.	9 25 GI 512 dB
·										
-										
U										
)										
3										-19.00
3					1					
					Malak da sana sana	المعاقلين مناقلهم				
	under and the	ng kalenga siya ang k	e na kang pining kang pining kang pang pang pang pang pang pang pang p					in the second		
rt 1.20	0 GHz	7		#\/E				Swee	Stop	8.000 G

Frequene Range	Sy	Measured Freg (MHz)	Max Value (dBm)	Limit < (dBm)	Result
9 kHz - 150	kHz	0.01	-56.93	-39	Pass
Keysight Spectrum Analyzer - Element Material	s Technology	e mai	A		
μ RL RF 50Ω DC	SENS	E:INI	ALIGN OFF Avg Type:	RMS	02:18:00 PM Jun 09, 2020 TRACE 1 2 3 4 5 (
	PNO: Wide	rig: Free Run Atten: 6 dB	Avg Hold: :	200/200	TYPE A WWWW DET A P P P P
Ref Offset 31 dB 10 dB/div Ref 10.00 dBm					Mkr1 9.000 kHz -56.932 dBm
Log					
0.00					
0.00					
-10.0					
-20.0					
-30.0					
					-39.00 dBr
-40.0					
-50.0					
-60.0	Λ				
manna a					
-70.0	mond from	0.000		Δ	
		- more m	- marine	monthy have	marken
-80.0					
Start 9.00 kHz		A 1.11-1			Stop 150.00 kHz
#Res BW 1.0 KHZ	#VBW :	S.V KHZ*	i	Sweep 1	74.4 ms (8001 pts
MSG			STATUS		

Frequency	Measured	Max Value	Limit					
Range	Freq (MHz)	(dBm)	< (dBm)	Result				
150 kHz - 20 MHz	8.71	-59.46	-29	Pass				

. RF 50 Ω DC		SENSE:INT	ALIGN OFF	02:20:06 PM Jun 09.1
	PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 6 dB	Avg Type: RMS Avg Hold: 200/200	TRACE 1 2 3 TYPE A WW DET A P P
Ref Offset 28.46 dB Idiv Ref 7.46 dBm				Mkr1 8.705 4 M -59.455 dl
		• '		
Mildle Martin Martin Constant and Constant				

t 0.150 MHz				Stop 20.000 M
BW 10 kHz	#VB	W 30 kHz*	Sw	eep 245.3 ms (8001

Frequ	Jency	Measured	Max Value	Limit	Pocult
20 MHz -	600 MHz	429.71	-34.67	-19	Pass
Keysight Spectrum Analyzer - Element M	aterials Technology	ence and			
	PNO: Fast ↔ IFGain:Low	→ Trig: Free Run #Atten: 10 dB	Avg Type: Avg Hold: :	Log-Pwr 200/200	02:44:51 PMJUh 09, 2020 TRACE 1 2 3 4 5 TYPE MWWWW DET PPPPP
Ref Offset 40.3 dB 10 dB/div Ref 11.30 dBm				MI	kr1 429.71 MHz -34.666 dBm
1.30					
-8.70					
-18.7					-19.00 dBm
-28,7					
-38.7 n entry factority of a straight and the real of the straight and the real of the straight and the str		ta na dialata pero da kala da pada bati kana da pada kana da pada ta pada ta pada ta pada ta pada ta pada ta pa			<mark>den selan jun dan pada an ing kanala ing kan Kanala ing kanala ing ka</mark>
-58.7					
-68.7					
-78.7					
Start 20.0 MHz #Res BW 100 kHz	#VI	300 kHz		Sweep 56	Stop 600.0 MHz .00 ms (12000 pts
MSG			STATUS		

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
600 MHz - 800 MHz	747.68	-41.21	-19	Pass

Free	luency	Measured Freq (MHz)	Max Value (dBm)	Limit	Result
800 MH	z - 1.2 GHz	813.55	-38.61	-19	Pass
					· · · ·
📕 Keysight Spectrum Analyzer - Element	Naterials Technology				
LXI RL RF 50Ω DC		SENSE:INT	ALIGN OFF Avg Type:	Log-Pwr	02:47:34 PM Jun 09, 2020 TRACE 1 2 3 4 5 6
	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	TYPE MWWWWW DET PPPPP
Ref Offset 40.4 dl	3			М	kr1 813.55 MHz -38.606 dBm
Log					
20.4					
-20.4					
20.4					
10.4					
0.400					
-9.60					
-19.6					-19.00 dBm
-29.6					
-39.6	and the later of the state				
			in her te liter platter, in		
-49.6					
Start 0.8000 GHz					Stop 1.2000 GHz
#Res BW 100 kHz	#VI	300 kHz		Sweep 3	8.40 ms (8001 pts)
MSG			STATUS		

		in iz Danawiani, 04			J4.5 WII 12
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
Γ	1.2 GHz - 8 GHz	3772.1	-36.38	-19	Pass

RL	RF	50 Q DC	STREET CONTRACTOR OF STREET	AND STREET AND DOOR	SENSE:INT	A	ALIGN OFF		03:00:4	5 PM Jun 09, 20
			PI IFC	NO: Fast 🔸	Trig: Free #Atten: 10	Run dB	Avg Type: Avg Hold: :	Log-Pwr 200/200	т	RACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div	Ref Off Ref 24	set 24.2 dB 4.20 dBm							Mkr1 3.77 -36	2 10 GI .378 dE
2										
;										10.0
				● ¹						
alloanat	ار المراجعة الم				den an de terre de te		in the second			and for the state
rt 1.20	0 GHz 2 0 MH	7		#VB	W 6 0 MHz			Swee	Stop n 1173 m	8.000 G

Frequent	су	Méasurea Freg (MHz)	Max value (dBm)	Limit	Result	
9 kHz - 150	kHz	0.01	-57.05	-39	Pass	
		·				
🗾 Keysight Spectrum Analyzer - Element Materia	s Technology					x
KI RF 50Ω DC		SENSE:INT	ALIGN OFF	DMC	02:22:06 PM Jun 09, 20	J20
	PNO: Wide IFGain:Low		Avg Hold:	200/200	TYPE A WWW DET A P P P	D b ₩₩ P P
Ref Offset 31 dB 10 dB/div Ref 10.00 dBm					Mkr1 9.141 kl -57.045 dB	lz m
0.00						
-10.0						
-20.0						
-30.0						
-40.0					-39.00	dBm
-50.0 -						
-60.0	Λ					
a manufacture of						
-70.0				Δ		
		· · · · · · · · · · · · · · · · · · ·	mm	mm	man	
-80.0						
Start 9.00 kHz	1			11	Stop 150.00 kl	ΗZ
#Res BW 1.0 kHz	#\	VBW 3.0 kHz*		Sweep	174.4 ms (8001 p	ts)
MSG			STATUS			

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	8.7	-59.49	-29	Pass

L	RF	50 Ω DC			SENSE:INT	Sec. States	ALIGN OF	FF		02:2	24:22 PM Jun 09,
				PNO: Fast ↔ IFGain:Low	, Trig: Free #Atten: 6	Run dB	Ave	g Type: R g Hold: 20	MS 00/200		TRACE 1 2 3 TYPE A WW DET A P P
3/div	Ref Off Ref 7	set 28.46 d 46 dBm	IB							Mkr1 8 -{	.702 9 N 59.488 di
											-29.0
					1						
	. Here .										
	the mark when the	and the state of t	Name of Street of Street of Street		lan ang ang ang ang ang ang ang ang ang a	e piete enderer					51 m
t 0.15 c BIM	0 MHz		1	#\/					Swee	Sto	p 20.000 N

	Frequency		Measured Freq (MHz)	Max Value	Limit	Posult
[20 MHz - 600 MH	lz	408.25	-35.16	-19	Pass
l					· · · ·	
🗾 Keysight Spectrum Ar	nalyzer - Element Materials Tech	nology				
LXIRL RF	50 Ω DC	S	ENSE:INT		- Log-Dur	02:49:03 PM Jun 09, 2020
		PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	TYPE M WWWWW DET P P P P P
Ref	Offset 40.3 dB				M	Ikr1 408.25 MH
10 dB/div Rei	11.30 dBm					-55.101 451
1.30						
-8.70						
						419.00.dE
-18.7		Aller			/ The second	
20.7		Aller				
-20.7		Anger			/ The second sec	
-38.7				a land the share	anather all the second	
Adapt description (Adapt	d then the back distribution line and	Alala Constellaritation		day is not a statistical day		
-48.7						
-58.7						
-68.7						
70.7						
-78.7						
Start 20.0 MHz #Res BW 100 k	kHz	#VB)	N 300 kHz		Sweep 5	Stop 600.0 MHz 6.00 ms (12000 pts
MSG				STATUS		

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
600 MHz - 800 MHz	745.23	-41.02	-19	Pass

	Frequency		Measured	Max Value	Limit	Popult
	800 MHz - 1.2 G	iHz	835.9	-38.03	-19	Pass
Keysight Spectrum /	Analyzer - Element Materials Te	chnology				
LXI RL RF	50 Ω DC	5	SENSE:INT	ALIGN OFF	Log Pur	02:51:57 PM Jun 09, 2020
		PNO: Fast +++	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	TYPE MWWWW DET P P P P P
Ref 10 dB/div Ref	Offset 40.4 dB 7 40.40 dBm				М	kr1 835.90 MH; -38.030 dBn
Log						
30.4						
30.4						
20.4						
10.4						
o. (00)						
0.400						
-9.60						
-19.6						-19.00 dBr
-29.6	1					
-39.6 states it it at a						
This has a far a far part of			telefori di sisteri della si la solo solo de la	ni n		a hay na shi ka shi ka shi na ka
-49.6						
Start 0.8000 G	Hz					Stop 1.2000 GHz
#Res BW 100	kHz	#VB\	W 300 kHz		Sweep 3	38.40 ms (8001 pts
MSG				STATUS		

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
1.2 GHz - 8 GHz	3853.7	-36.73	-19	Pass

RL I	RF	50 Q D	IC		SENSE:INT		ALIGN OFF		03:02:5	5 PM Jun 09, 20
				PNO: Fast ↔ IFGain:Low	Trig: Free #Atten: 10	Run dB	Avg Type: Avg Hold: 2	Log-Pwr 00/200	TI	ACE 1 2 3 4 TYPE MWWW DET P P P P
dB/div	Ref Off Ref 2	fset 24.2 d 4.20 dBr	iB n			1		1	Mkr1 3.85 -36	3 70 GI 729 dE
2										
ı 										
										-19.0
					1 Milton and the		A			
	a mhanni a il la	الالطب فلاطرون	ilije de la serie					and the second secon	in a state in the second state of the second s	
rt 1.20	0 GHz								Stop	8.000 G

	Frequency		Measured Freq (MHz)	Max Value (dBm)	Limit	Result
91	Hz - 150 kHz		0.01	-57.07	-39	Pass
📜 Keysight Spectrum Analyzer - Ele	ment Materials Technolog	Ŋ				
LA RE 50Ω	DC		SENSE:INI	ALIGN OFF Avg Type:	RMS	TRACE 1 2 3 4 5 (
	Pi IF	NO: Wide ↔ Gain:Low	. Trig: Free Run #Atten: 6 dB	Avg Hold:	200/200	DET A P P P P F
Ref Offset 31 10 dB/div Ref 10.00	dB d B m					Mkr1 9.000 kHz -57.072 dBm
0.00						
-10.0						
-20.0						
-30.0						
-40.0						-39.00 dBm
-50.0						
-60.0						
mon	~~~~	A				
-70.0	m	mont la	~		Δ	
				mmm	month	mmml
-80.0						
Start 9.00 kHz #Res BW 1.0 kHz		#VB	W/30kHz*		Sween	Stop 150.00 kHz 174 4 ms (8001 nts)
MSG			W 3.3 KHZ	STATUS	oweep	11 4.4 mis (666 i prs)

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	8.71	-59.51	-29	Pass

L	RF	50 Q DC			SENSE:INT	Sector States	ALIGN OFF		03:17	:04 PM Jun 09, 20
		0032 00		PNO: Fast ↔ IFGain:Low	Trig: Fre #Atten: 0	e Run 6 dB	Avg T Avg H	ype: RMS old: 200/200		TRACE 1 2 3 4 TYPE A WWW DET A P P P
B/div	Ref Offs Ref 7.4	et 28.46 c 6 dBm	IB						Mkr1 8. -5	705 4 MI 9.509 dB
										-29.0
					<u></u> 1					
					•					
Non-shirts	والمراجع والمراجع والمعاري	lender/tildes@eeg	مەربەيەر بەردارىيە				dense af junjan av a fail, at friga av fr			
t 0.150	MHz			#\/	BW 30 KH2	*			Stop	20.000 M

	Frequency		Measured	Max Value	Limit	Pocult
	20 MHz - 600 MHz		418.06	-34.47	-19	Pass
	0000000		110100	0.111	10	1 400
Keysight Spectrum Analyzer	- Element Materials Technol	ogy				
LXIRL RF !	50 Ω DC	5	ENSE:INT	ALIGN OFF	Log-Pwr	03:19:22 PM Jun 09, 2020
		PNO: Fast +++	Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	TYPE MWWWWW DET PPPPP
D.(0#		Guilleow			M	(r1 418.06 MHz
10 dB/div Ref 11.3	140.3 dB 10 dBm					-34.467 dBm
Log						
1.30						
-8.70						
-18.7						-19.00 dBm
20.7						
-28.7					1	
-38.7				وألفانها والأنبائه وتسميه مداراته		
				an and a first of the local data and the	and the second second	
-48.7						
-58.7						
-68.7						
-00.1						
-78.7						
Start 20.0 MHz						Stop 600.0 MHz
#Res BW 100 kHz		#VB\	N 300 kHz		Sweep 56	.00 ms (12000 pts)
MSG				STATUS		

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
600 MHz - 800 MHz	747.38	-40.75	-19	Pass

Freque	ncy	Measured	Max Value	Limit	Pocult
800 MHz -	1.2 GHz	809.95	-38.17	-19	Pass
					· 1
📕 Keysight Spectrum Analyzer - Element Mate	rials Technology				
LXI RE 50Ω DC		SENSE:INT	ALIGN OFF	Log-Pwr	03:21:58 PM Jun 09, 2020
	PNO: Fast • IFGain:Low	→ Trig: Free Run #Atten: 10 dB	Avg Hold:	200/200	TYPE MWWWWW DET PPPPPP
Ref Offset 40.4 dB 10 dB/div Ref 40.40 dBm				Mł	r1 809.95 MHz -38.168 dBm
Log					
30.4					
20.4					
10.4					
0.400					
0.400					
-9.60					
-19.6					-19.00 dBm
-29.6					
-33.0 Short the first state and stat	elektronico di tetik periodeka periodeka	i phi, para i di data malalali, dare com	فليجاذبون الالجار والجار والجرالات	والتناو فبالمؤاد وأسطنه متعاوله	وتناصر بتعارجه فريته فاردته المارت والتري
-49.6					
Start 0 8000 GHz					Stop 1 2000 GHz
#Res BW 100 kHz	#\	/BW 300 kHz		Sweep 3	3.40 ms (8001 pts)
MSG			STATUS		

		nz Danawidin, 20			504.0 IVIT IZ
	Frequency	Measured	Max Value	Limit	
	Range	Freq (MHz)	(dBm)	< (dBm)	Result
[1.2 GHz - 8 GHz	3904.7	-36.49	-19	Pass

	Frequency	Measu Freg (I	ured Max Valu	e Limit	Result
91	Kange KHz - 150 kHz	0.0	1 -57.16	-39	Pass
		•			•
📕 Keysight Spectrum Analyzer - Ele	ment Materials Technology				
LXI RL RF 50 Ω	DC	SENSE:INT		Type: RMS	03:37:46 PM Jun 09, 2020 TRACE 2 3 4 5
	PNO: V IFGain	Vide 🛶 Trig: Free Low #Atten: 6 d	Run Avg H dB	old: 200/200	TYPE A WWWW DET A P P P P
Ref Offset 31	dB d Bm				Mkr1 9.000 kHz -57.155 dBm
Log					
0.00					
-10.0					
20.0					
-20.0					
-30.0					
-40.0					-39.00 dBm
-50.0					
-60.0					
and					
-70.0		- Ann		0	
			mann	month	
-80.0					
Start 9.00 kHz #Res BW 1.0 kHz		#VBW 3.0 kHz*	ĸ	Sweep	Stop 150.00 kHz
MSG			STATU	JS	

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	8.71	-59.48	-29	Pass

L	RF	50 Ω DO			S	ENSE:INT	<u>A</u>	ALIGN OFF			03:39:54	PMJun 09,
				PNO: Fast IFGain:Low		Trig: Free Run #Atten: 6 dB		Avg Type: Avg Hold: 2	RMS 200/200		TR	ACE 1 2 3 TYPE A WW DET A P P
3/div	Ref Off Ref 7.	set 28.46 d 46 dBm	зВ							Mkr	1 8.7 -59.	05 4 M 477 dl
						- 1						
						•						
The second	a half and a second	Mr. Manualas	Likura La									
					*****	hili yina balan kasi pinya na angangan	wjW/1	*****	n had we det an of the second of	landar gerundurten op		
t 0.150	MHz			#		N 30 KH2*			C.u.	1000 24	Stop 2	0.000

Port	1, Band 71, 617 MHz - 6	52 MHz, 15 Mł	Hz Bandwidth, 2	56-QAM Modulatio	n, Mid Channe	el, 634.5 MHz
	Frequency		Measured	Max Value	Limit	,
	Range		Freq (MHz)	(dBm)	< (dBm)	Result
	20 MHz - 600 MHz		402.11	-34.48	-19	Pass
1						
Keysight Spectrum A	Analyzer - Element Materials Technolo	gy SE	NSEIINT	ALIGN OFF		03:42:26 PM Jun 09, 202
	503£ 0C	1 30		Avg Type:	Log-Pwr	TRACE 1 2 3 4 5
		NO: Fast	#Atten: 10 dB	Avg Hold:	200/200	DET PPPP
Def						Mkr1 402.11 MH
10 dB/div Ref	f 11.30 dBm					-34.478 dBr
					1	
4.00						
1.30						
-8 70						
-0.70						
-18.7						-19.00 dE
-28.7						
				• • • •		
-38.7			la teda	is to a statistical in the statistical data	i di ini ini paga da s	ilitida a tano di a ta anta hatallarat a a
	يل ويتبتر وحليقان المتحد وتنا والترسانيان ورواساتها. مربوع ومنه مربوع وماسية منه منه ومربوع ومراقا	الما فالدين المراجعة المراجع ا المراجع المراجع		Contracticity in the second second		and the second states of the second states of
-48.7						
-58.7						
-68.7						
-78.7						
-10.1						
Start 20.0 MHz	Z		200 641-		0	Stop 600.0 MH
#Res BW 100	KHZ	#VBW	300 KHZ	1	sweep	56.00 ms (12000 pt
MSG				STATUS		
Port	1 Band 71 617 MHz - 6	52 MHz 15 MH	Hz Bandwidth 2	56-QAM Modulatio	n Mid Channe	el 634 5 MHz
1 011	Frequency	<i>2</i> 10112, 10 101	Measured	Max Value	Limit	01, 001.0 11112
	Banga		Erog (MUT)	(dBm)	(dBm)	Bosult

	Fort 1, Danu 71, 017 Minz - 052 Minz, 15 Minz Danuwiuth, 250-QAM Modulation, Miu Channer, 054.5 Minz										
	Frequency	Measured	Max Value	Limit							
_	Range	Freq (MHz)	(dBm)	< (dBm)	Result						
	600 MHz - 800 MHz	755.03	-41.69	-19	Pass						

,	Frequency	Measured	Max Value	Limit	Booult
800	MHz - 1 2 GHz	807.65	-38.76	< (dBm) -19	Pass
EX Keysight Spectrum Analyzer - File	ment Materials Technology		00.10		
XI RL RF 50 Ω	DC DC	SENSE:INT	ALIGN OFF		03:45:21 PM Jun 09, 2020
	PNO: Fasi IFGain:Lo	t ↔ Trig: Free Run w #Atten: 10 dB	Avg Type: Avg Hold: 2	Log-Pwr 200/200	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P
Ref Offset 40 10 dB/div Ref 40.40 d	.4 dB iBm			Mk	r1 807.65 MHz -38.759 dBm
30.4					
30.4					
10.4					
0.400					
-9.60					
-19.6					-19.00 dBm
-29.6					
-39.6	intel estate al delivered cost and estate biological	en hag daaren orden bestere aan	ana ka palika je ku ka ka na ka ka j <mark>e</mark> la je	a, papalah dara data ya ila ata a <mark>hi</mark> da	surplationstantications of the second
-49.6		ter det en en die geste der die geste die die geste die die die die die die die die die di	Linderic Martin de Martin de Conserva	11 and a 40 kelon and a state of the state of parts	n sehend som, if all store photosoft desselber ander ander ander
Start 0.8000 GHz					Stop 1.2000 GHz
#Res BW 100 KHz		#VBW 300 KHZ	STATUS	Sweep 38	.40 ms (8001 pts)

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
1.2 GHz - 8 GHz	3726.2	-36.6	-19	Pass

Freq	uency	Measured Freq (MHz)	Max Value	Limit	Result
9 kHz -	150 kHz	0.01	-57.54	-39	Pass
				•	
🗾 Keysight Spectrum Analyzer - Element N	laterials Technology				
LXI RL RF 50Ω DC		SENSE:INT	ALIGN OFF	RMS	04:04:02 PM Jun 09, 2020 TRACE 1 2 3 4 5
	PNO: Wide ↔		Avg Hold:	200/200	TYPE A WWWW DET A P P P P
Ref Offset 31 dB	i dunicen				Mkr1 9.141 kHz
10 dB/div Ref 10.00 dBm					-57.555 (15)
0.00					
-10.0					
-20.0					
-20.0					
-30.0					
					-39.00 dBa
-40.0					
FO 0					
-50.0					
-60.0					
anner					
-70.0	harmon h	A		۸	
		· ····································	mont	m	A
-80.0					
Start 9.00 kHz				a	Stop 150.00 kHz
#Res BW 1.0 KHz	#VI	3W 3.0 KHZ*	STATUS	Sweep	174.4 ms (8001 pts
MSG			STATUS		

1 off 1, Bana 1 1, off mile 002 mile, 20 m	nie Banannann, 20	o do um modulation	in, inna ornannion, i	00 1.0 1.1. IL
Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
150 kHz - 20 MHz	8.71	-59.52	-29	Pass

	RF 50 Ω	DC		SENSE:INT	ALIGN OFF		04:07:	58 PM Jun 09,
			PNO: Fast ↔ IFGain:Low	, Trig: Free Ru #Atten: 6 dB	Avg Ty n Avg Ho	pe: RMS Id: 200/200	1	TYPE A WM DET A P P
R Idiv R	ef Offset 28 ef 7.46 dl	.46 dB Bm					Mkr1 8.7 -59	705 4 M .524 d
				1				
Mangin James and Part	Manager of States from Julius		un alerteini dan kener perioteningan dan perioteningan kenergi an kenergi an kenergi an kenergi an kenergi an k		an a	and started for all party and a started as		
0.150 N	/Hz			20 64-*			Stop	20.000

Port	t 1, Band 71, 617 MHz - 6	652 MHz, 20 M	Hz Bandwidth, 25	6-QAM Modulatio	n, Mid Chann	el, 634.5 MHz	
	Frequency	,	Measured	Max Value	Limit	,	
	Range		Freq (MHz)	(dBm)	< (dBm)	Result	-
	20 MHz - 600 MHz		413.03	-35.18	-19	Pass	L
Keysight Spectrum	Analyzer - Element Materials Techno	logy	ENCLUNT				2020
	F 50 12 DC	5	ENSEINT	ALIGN OFF	Log-Pwr	TRACE 1 2 3	1020 4 5 6
		PNO: Fast +++	Trig: Free Run #Atten: 10 dB	Avg Hold: 2	200/200	TYPE MWWW DET P P P	PPP
		II GUILLON				Mkr1 413.03 M	HZ
10 dB/div Re	f 11.30 dBm					-35.183 dE	3m
Log							
4.00							
1.30							
9.70							
-0.70							
-18.7						-19.00	0 dBm
-28.7							
				• • • • • • • • • • • • • • • • • • •			
-38.7						delle also consulation contract a their a	
and a share of the state of the		والمائية فالمتعرب وأرفقا والتعا		A Data Andreas		A STATISTICS AND AND A STATISTICS AND A STATISTICS	ine in
-48.7							
-58.7							
-68.7							
-78.7							
-70.7							
Start 20.0 MH	Z		N 200 KU-		0	Stop 600.0 N	IHZ
#Res BW 100	MD2	#VBV	V 300 KH2	CTATIC	sweep	50.00 ms (12000 j	ns)
MSG				STATUS			
Port	t 1, Band 71, 617 MHz - 6	652 MHz, 20 M	Hz Bandwidth, 25	6-QAM Modulatio	n, Mid Chann	el, 634.5 MHz	
	Frequency		Measured	Max Value	Limit		
	Range		Fred (MHz)	(dBm)	< (dBm)	Result	

	POIL I, Daliu / I, 017 IVIDZ - 052 IVIDZ, 20 IV	Inz banuwiuth, 25	b-QAIN MODULALIO	n, miù Channel, t	554.5 IVINZ
	Frequency	Measured	Max Value	Limit	
_	Range	Freq (MHz)	(dBm)	< (dBm)	Result
	600 MHz - 800 MHz	754.3	-40.97	-19	Pass

	Frequency		Measured Freg (MHz)	Max Value (dBm)	Limit	Result
	800 MHz - 1.2 GHz	Z	827.7	-38.37	-19	Pass
					•	
🗾 Keysight Spectrum Analy	yzer - Element Materials Techno	ology				
LX RL RF	50 Ω DC		SENSE:INT	ALIGN OFF	l og Pur	04:14:21 PM Jun 09, 2020
		PNO: Fast 🔸	. Trig: Free Run	Avg Hold:	200/200	
		IFGain:Low	#Atten: 10 dB			DET
Ref Off 10 dB/div Ref 40	5et 40.4 dB 0.40 dBm				M	kr1 827.70 MH: -38.373 dBn
30.4						
20.4						
10.4						
0.400						
-9.60						
-19.6						-19.00 dBr
10.0						
-29.6						
<u>_</u> 1						
-39.6 and district the meriding	and the state of the	Lationistic discussion	the arrest the states are	Contractor data data data data data data data dat	القرب والمساللة ومرجوع ومرا	and an and the state of the state of the
Mandel Mark I mark interesting a side of	and a set of the set of					
-49.6						
Start 0.8000 GHz						Stop 1.2000 GHz
#Res BW 100 kH	Z	#VB	W 300 kHz		Sweep 3	38.40 ms (8001 pts
MSG				STATUS		

Frequency	Measured	Max Value	Limit	
Range	Freq (MHz)	(dBm)	< (dBm)	Result
1.2 GHz - 8 GHz	3796.75	-36.99	-19	Pass

RL	RF	50 Ω DC	Sector States and	SENSE:INT		ALIGN OFF		04:17:41	PMJun 09, 20
	-		PNO: Fast ↔ FGain:Low	. Trig: Free #Atten: 10	Run dB	Avg Type: Avg Hold: 2	Log-Pwr 200/200	TF	ACE 1 2 3 4 TYPE M WWW DET P P P P
dB/div	Ref Off Ref 2	fset 24.2 dB 4.20 dBm	1	1	-			/kr1 3.79 -36.	6 75 GI 987 dB
2									
									49.00
									-13.00
			•						
Jun auth		(alatin and the life	in the second		and the statement	la shan tabi shi sa baki			
rt 1.20	0 GHz 2 0 MH	7	#VP	W 6 0 MHz			Swee	Stop	8.000 G