OUTPUT POWER - LOWERED POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11
Block - DC	Fairview Microwave	SD3379	AMM	2020-09-21	2021-09-21
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

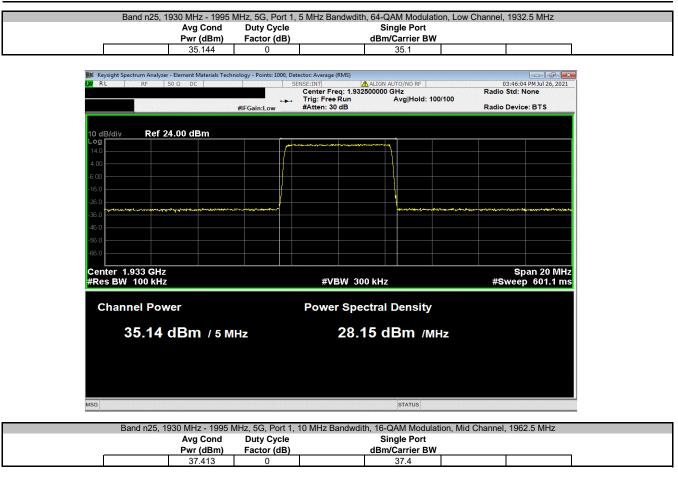
The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

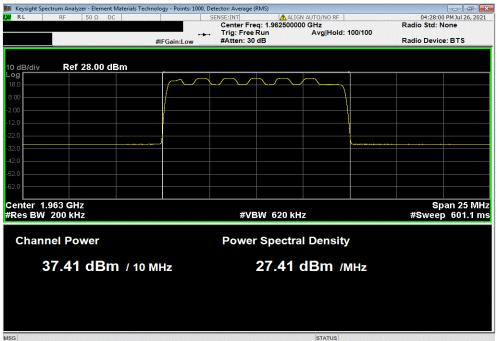
RF conducted emissions testing was performed on one port. The AAFB antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification report) and port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4. The total average transmit power of all antenna ports was determined per ANSI C63.26-2015 paragraph 6.4.3.1.

As shown in the EIRP calculation table in the "PSD and EIRP Calculations" report section, the highest AAFB antenna port 1 PSD level that will not cause the calculated EIRP to exceed the EIRP limit is 29.1 dBm/MHz. The NR5 and NR10 maximum carrier power levels were reduced by 3.0dB and 0.4 dB respectively by changing the carrier power parameters in the base station configuration file to comply with the EIRP limit (62.15 dBm/MHz).

The AAFB base station configuration file parameters set for maximum carrier output power (37.9dBm) gives a measured maximum NR5 PSD/port result of 32.0dBm/MHz and a worst case calculated EIRP that is 2.85dB over the EIRP limit (62.15dBm/MHz). To show compliance with the EIRP limit (62.15dBm/MHz), the AAFB base station configuration file parameters setting for NR5 carrier output power was set to 34.9dBm (reduced 3.0 dB from maximum) that gives a measured maximum NR5 PSD/port result of 28.9dBm/MHz and a worst case calculated EIRP that is 0.2dB below the EIRP limit (62.15dBm/MHz).

The AAFB base station configuration file parameters set for maximum carrier output power (37.9dBm) gives a measured maximum NR10 PSD/port result of 29.2dBm/MHz and a worst case calculated EIRP that is 0.05dB over the EIRP limit (62.15dBm/MHz). To show compliance with the EIRP limit (62.15dBm/MHz), the AAFB base station configuration file parameters setting for NR10 carrier output power was set to 37.5dBm (reduced 0.4 dB from maximum) that gives a measured maximum NR10 PSD/port result of 28.8dBm/MHz and a worst case calculated EIRP that is 0.3dB below the EIRP limit (62.15dBm/MHz).


OUTPUT POWER - LOWERED POWER



						TbtTx 2021.03.19.1	XMit 2020.12.30.0
	AAFB (FCC/ISED C2PC)				Work Order:		
Serial Number:	BL2032H23PI			Date:	31-Jul-21		
Customer:	Nokia Solutions and Net	works			Temperature:	21.5 °C	
Attendees:	David Le, Mitchell Hill				Humidity:		
Project:					Barometric Pres.:		
	Brandon Hobbs		Power: 54 VDC		Job Site:	TX09	
TEST SPECIFICAT	IONS		Test Method				
FCC 24E:2021			ANSI C63.26:20	15			
RSS-133 Issue 6:20	013+A1:2018		RSS-133 Issue	6:2013+A1:2018			
COMMENTS							
All measurement p	ath losses were accounte	d for in the reference level offest inclu	iding any attenuators, filters and I	C blocks. The output	power was measured for a single car	rier over the carrier ch	annel
bandwidth on port	1. The NR5 and NR10 car	rier power levels were reduced to dem	onstrate compliance with EIRP lin	nits shown elsewhere	in this report.		
DEVIATIONS FROM	M TEST STANDARD						
None							
Configuration #	2	Signature	Jal				
			Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Single Port dBm/Carrier BW		
Band n25, 1930 MH	z - 1995 MHz, 5G						
	Port 1						
	5 MHz Bandy	wdith					
		64-QAM Modulation					
		Low Channel, 1932.5 MHz	35.144	0	35.1		
	10 MHz Band	dwdith 16-QAM Modulation					
		Mid Channel, 1962.5 MHz	37.413	0	37.4		

OUTPUT POWER - LOWERED POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17
Block - DC	Fairview Microwave	SD3379	AMM	2020-09-21	2021-09-21

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission power spectral density was measured using the channels and modes as called out on the following data sheets.

The method of ANSI C63.26-2015 section 5.2.4.5 was used to make this measurement.

The RF conducted emission testing was performed on one port. The AAFB antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the "Output Power - All Ports" report section) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i, and 6.4.

The total PSD for all antenna ports (at the radio output) were determined per ANSI C63.26-2015 paragraph 6.4.3.2.4. The EIRP calculations are based upon ANSI C63.26-2015 paragraphs 6.4 and 6.4.6.3.

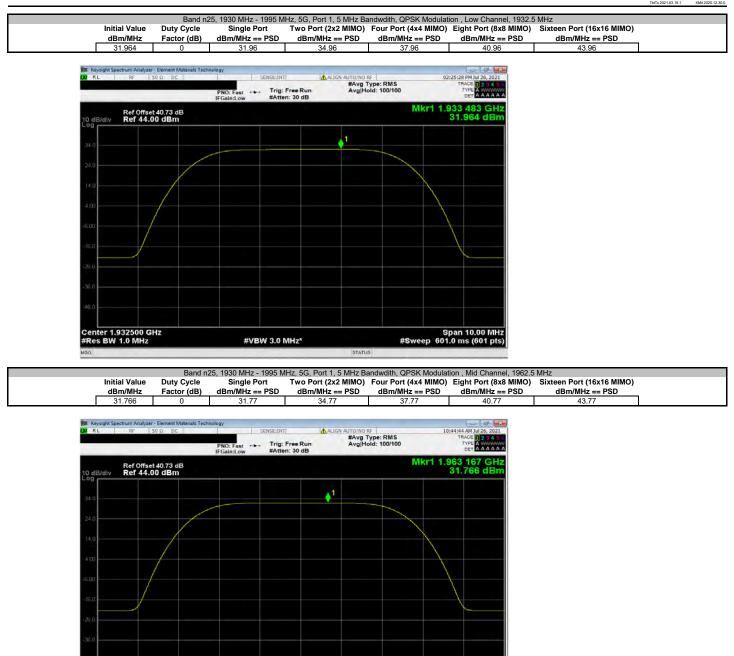
EIRP Requirements:

FCC Requirements: Part 24.232 Power and antenna height limits.

(a)(2) Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below. (a)(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see Tables 1 and 2 of this section.

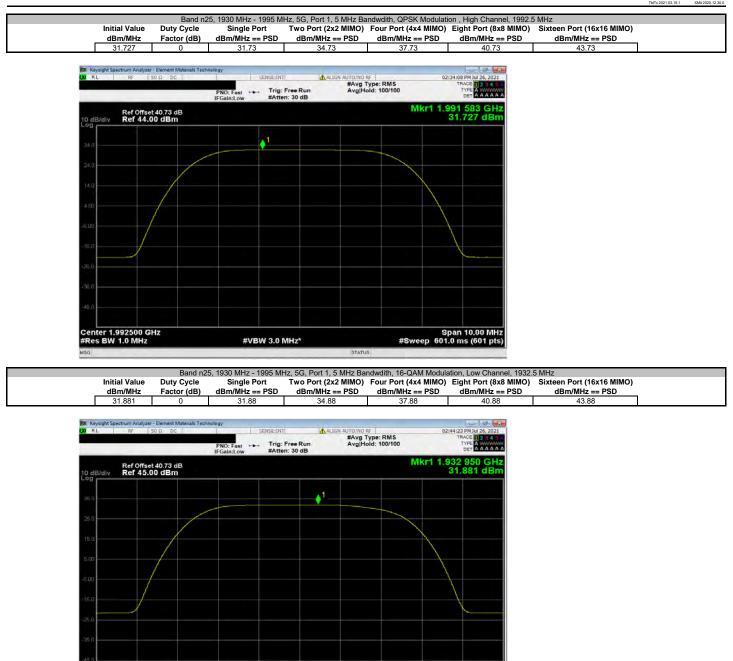
(b)(2) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth greater than 1 MHz are limited to 3280 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

ISED Requirements RSS-133 Section 6.4/SRSP-510 section 5.1.1:


SRSP-510 section 5.1 Radiated power and antenna height limits for base stations

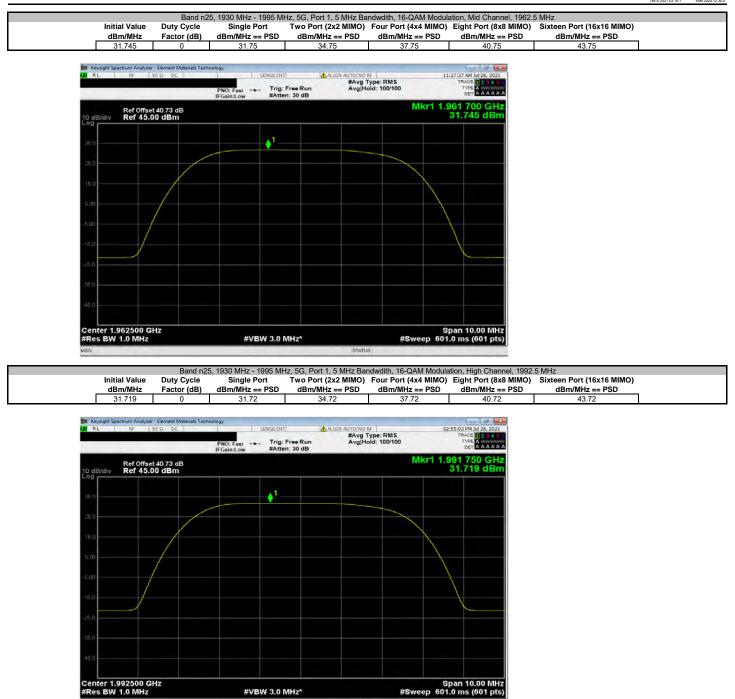
For base stations with a channel bandwidth greater than 1 MHz, the maximum e.i.r.p. is limited to 3280 watts/MHz e.i.r.p. (i.e., no more than 3280 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres. Fixed or base stations operating in urban areas are limited to a maximum allowable e.i.r.p. of 1640 watts/MHz e.i.r.p. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table:

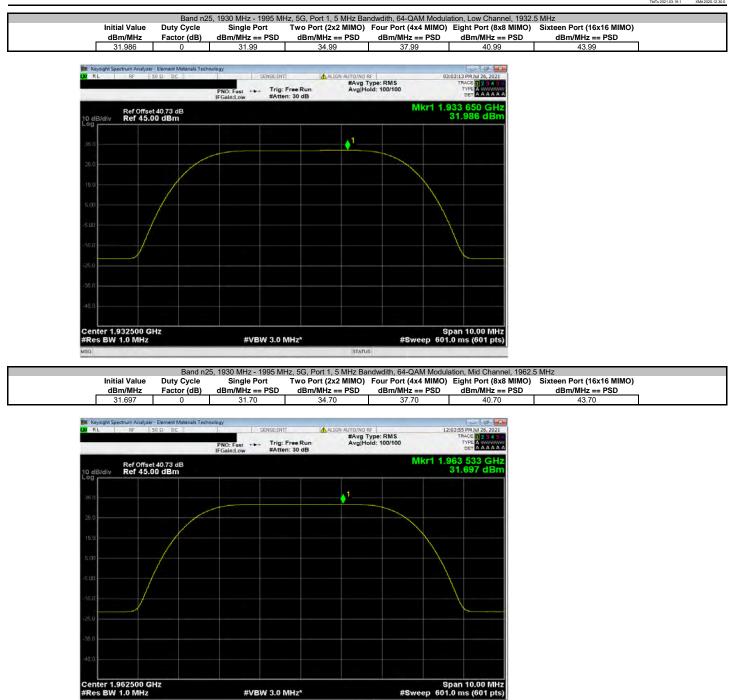
								TbtTx 2021.03.19.1	XMt 2020.12.30.0
EUT:	AAFB (FCC/ISED C2PC	:)					Work Order:		xmit 2020.12.30.0
Serial Number:								23-Jul-21	
Customer:	Nokia Solutions and N	etworks					Temperature:	21.4 °C	
Attendees:	David Le, Mitchell Hill						Humidity:	55.7% RH	
Project:							Barometric Pres.:		
Tested by:	Brandon Hobbs		Power:	54 VDC			Job Site:	TX09	
TEST SPECIFICATI	IONS			Test Method					
FCC 24E:2021				ANSI C63.26:201					
RSS-133 Issue 6:20	013+A1:2018			RSS-133 Issue 6	:2013+A1:2018				
COMMENTS									
transmitting one ca single port PSD +3	arrier on Port 1. The tot dB [i.e. 10 Log(2)]. The	nted for in the reference level offest includi al PSD for multiport (2x2 MIMO, 4x4 MIMO, total PSD for four port operation is single p ne carrier power was set to maximum for al	8x8 MIMO & 16x ort PSD +6dB [i	16 MIMO) operati	on was determinded	based upon ANSI 63.2	6 clause 6.4.3.2.4 (10 Lo	g Nout). The total PSD	or two port operation is
	I TEST STANDARD								
None									
Configuration #	2	Signature	Zant H	Jar					
			Initial Value dBm/MHz	Duty Cycle Factor (dB)	Single Port dBm/MHz == PSD	Two Port (2x2 MIMO) dBm/MHz == PSD	Four Port (4x4 MIMO) dBm/MHz == PSD	Eight Port (8x8 MIMO) dBm/MHz == PSD	Sixteen Port (16x16 MIMO) dBm/MHz == PSD
Band n25, 1930 MH	łz - 1995 MHz, 5G								
	Port 1								
	5 MHz Bar								
		QPSK Modulation							
		Low Channel, 1932.5 MHz	31.964	0	32.0	35.0	38.0	41.0	44.0
		Mid Channel, 1962.5 MHz	31.766	0	31.8	34.8	37.8	40.8	43.8
		High Channel, 1992.5 MHz	31.727	0	31.7	34.7	37.7	40.7	43.7
		16-QAM Modulation							
		Low Channel, 1932.5 MHz	31.881	0	31.9	34.9	37.9	40.9	43.9
		Mid Channel, 1962.5 MHz	31.745	0	31.7	34.7	37.7	40.7	43.7
		High Channel, 1992.5 MHz	31.719	0	31.7	34.7	37.7	40.7	43.7
		64-QAM Modulation							
		Low Channel, 1932.5 MHz	31.986	0	32.0	35.0	38.0	41.0	44.0
		Mid Channel, 1962.5 MHz	31.697	0	31.7	34.7	37.7	40.7	43.7
		High Channel, 1992.5 MHz	31.713	0	31.7	34.7	37.7	40.7	43.7
		256-QAM Modulation							
		Low Channel, 1932.5 MHz	31.949	0	31.9	34.9	37.9	40.9	43.9
		Mid Channel, 1962.5 MHz	31.688	0	31.7	34.7	37.7	40.7	43.7
		High Channel, 1992.5 MHz	31.684	0	31.7	34.7	37.7	40.7	43.7
	10 MHz Ba								
		QPSK Modulation							
		Mid Channel, 1962.5 MHz	28.526	0	28.5	31.5	34.5	37.5	40.5
		16-QAM Modulation	00.5.7		07.7	05.5	07.7	0.5 -	
		Mid Channel, 1962.5 MHz	29.245	0	29.2	32.2	35.2	38.2	41.2
		64-QAM Modulation							
		Mid Channel, 1962.5 MHz	28.509	0	28.5	31.5	34.5	37.5	40.5
		256-QAM Modulation	00 500		00.5	04.5			10.5
	45 100 0	Mid Channel, 1962.5 MHz	28.538	0	28.5	31.5	34.5	37.5	40.5
	15 MHz Ba								
		QPSK Modulation	26 712	0	26.7	20.7	20.7	25.7	29.7
		Mid Channel, 1962.5 MHz	26.712	0	26.7	29.7	32.7	35.7	38.7
		16-QAM Modulation	27.666	0	07.7	20.7	22.7	26.7	30.7
		Mid Channel, 1962.5 MHz	27.666	0	27.7	30.7	33.7	36.7	39.7
		64-QAM Modulation Mid Chappel 1062 5 MHz	26.693	0	26.7	29.7	32.7	35.7	38.7
		Mid Channel, 1962.5 MHz	20.093	U	20.7	29.7	32.1	30.7	38.7
		256-QAM Modulation Mid Channel, 1962.5 MHz	26.681	0	26.7	29.7	32.7	35.7	38.7
	20 MHz Ba		20.001	U	20.7	29.1	32.1	33.1	30.7
	20 MHZ Ba								
		QPSK Modulation	25.54	0	25 5	20 5	24 5	24 5	37.5
		Mid Channel, 1962.5 MHz	25.51	U	25.5	28.5	31.5	34.5	37.5
		16-QAM Modulation	07.15	0	27.2	20.2	22.0	26.0	20.2
		Mid Channel, 1962.5 MHz	27.15	0	27.2	30.2	33.2	36.2	39.2
		64-QAM Modulation	25 525	0	0E E	20.5	24.5	24.5	27.5
		Mid Channel, 1962.5 MHz 256-QAM Modulation	25.535	U	25.5	28.5	31.5	34.5	37.5
		256-QAM Modulation Mid Channel, 1962.5 MHz	25.406	0	25.4	28.4	31.4	34.4	37.4
		wild Granner, 1902.5 MHZ	20.400	0	20.4	20.4	01.4	04.4	57.4



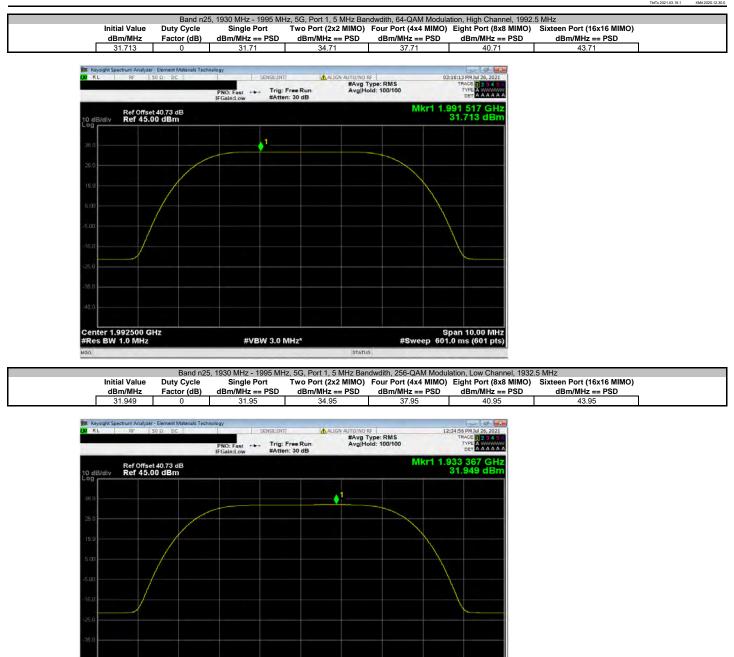
Span 10.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.962500 GHz #Res BW 1.0 MHz



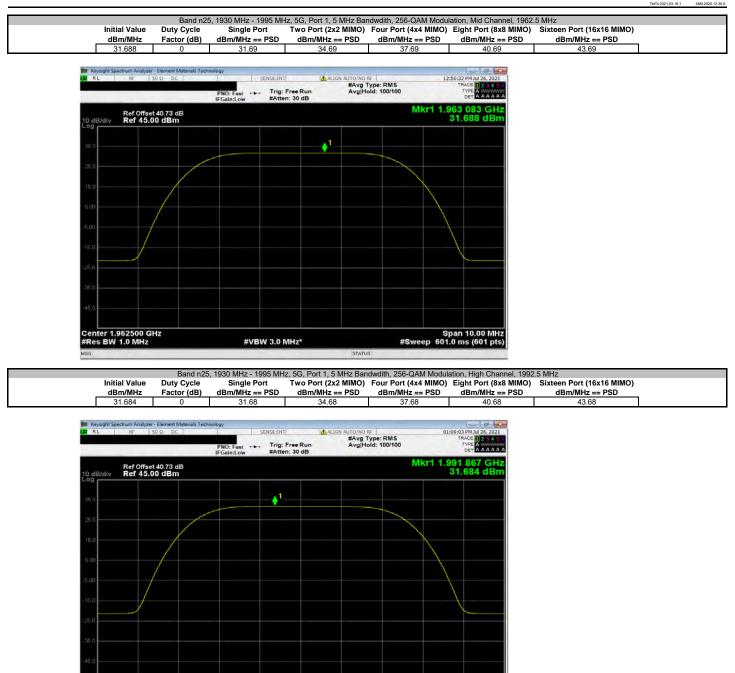

Span 10.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.932500 GHz #Res BW 1.0 MHz



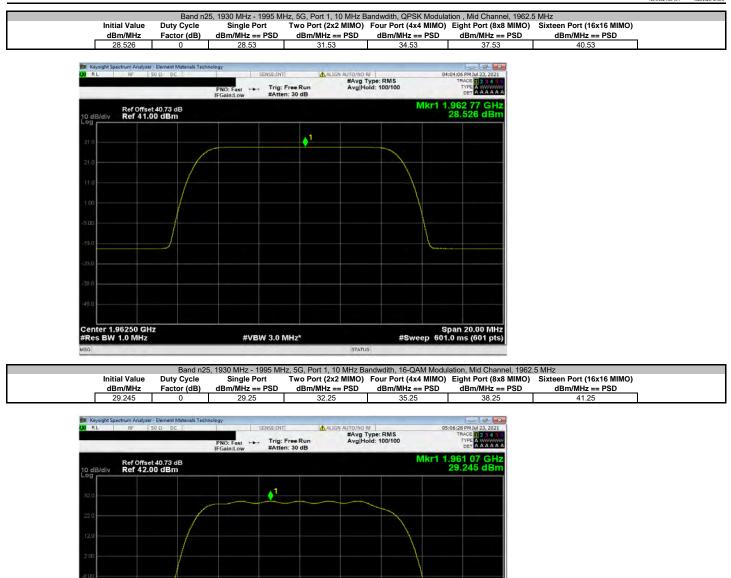
#VBW 3.0 MHz*

Span 10.00 MHz #Sweep 601.0 ms (601 pts)



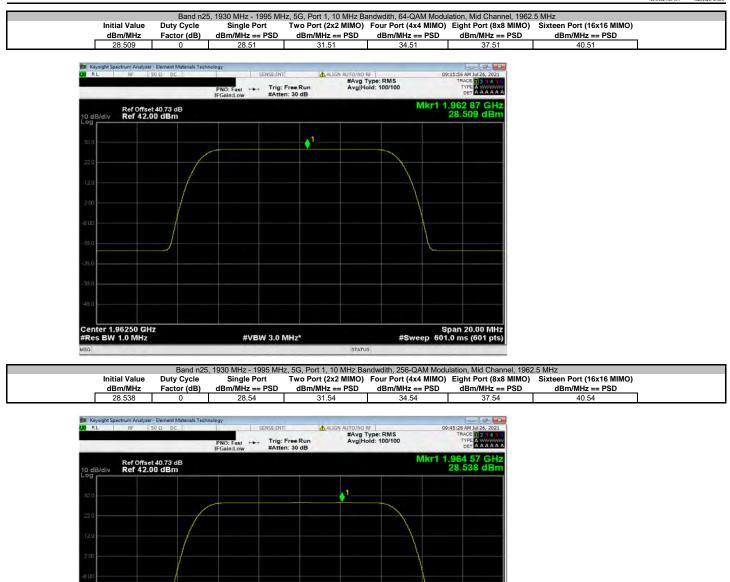
Span 10.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.932500 GHz #Res BW 1.0 MHz



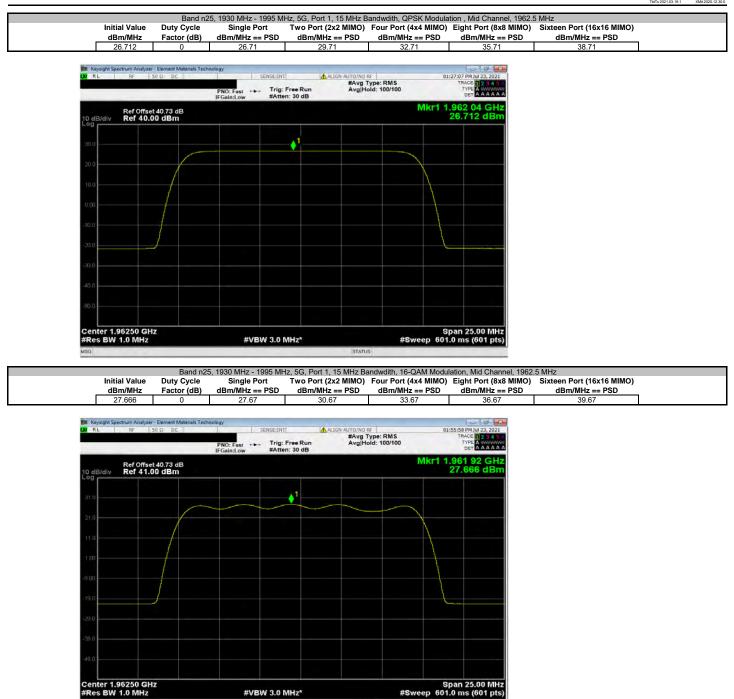
Span 10.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.992500 GHz #Res BW 1.0 MHz

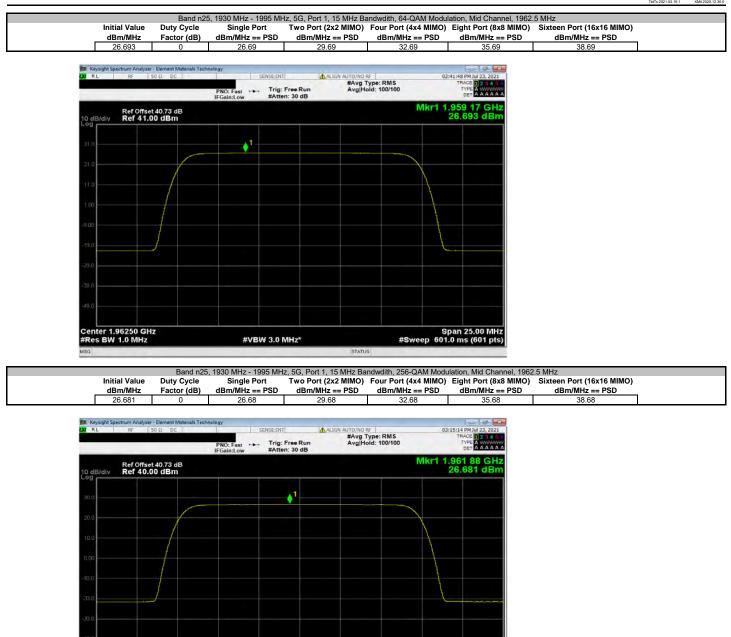


Span 20.00 MHz #Sweep 601.0 ms (601 pts)

Center 1.96250 GHz #Res BW 1.0 MHz



Span 20.00 MHz #Sweep 601.0 ms (601 pts)


Center 1.96250 GHz #Res BW 1.0 MHz

Center 1.96250 GHz #Res BW 1.0 MHz #VBW 3.0 MHz*



Span 25.00 MHz #Sweep 601.0 ms (601 pts)


Center 1.96250 GHz #Res BW 1.0 MHz

RL	RF 50 Ω DC		SENSE:INT	ALIGN AUTO/NO RF	10:00:36 AM Jul 23, 2021
		PNO: Fast IFGain:Low	Trig: Free Ru #Atten: 30 dB	#Avg Type: RMS an Avg Hold: 100/100 B	DET A A A A A
0 dB/div	Ref Offset 40.73 dB Ref 39.00 dBm				Mkr1 1.960 34 GH: 25.406 dBn
29.0			1		
9.0	,				
1.0					
1.0					
1.0					
t 0					
0					
enter 1.9 Res BW	96250 GHz 1.0 MHz	#	VBW 3.0 MHz*		Span 35.00 MH #Sweep 601.0 ms (601 pts
iG .				STATUS	

5G NR EIRP Calculations for Sixteen Port MIMO Operations

EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements. Each cell site installation needs to consider the power measurements in the radio certification report as well as site specific regulatory requirements (such as antenna height, population density, etc.), site installation parameters (line loss between antenna and radio, antenna parameters, etc.) and base station operational parameters (MIMO operational setup, carrier power level, channel bandwidth, modulation type, etc.) to optimize performance. Transmitter output power may be reduced (from maximum) by base station setup parameters.

The AAFB radio module connects to an 8-column antenna assembly with a maximum beamforming gain of 24 dBi. The columns within the antenna have ±45° cross-polarized (orthogonal) radiators. The sixteen AAFB transmitter outputs are connected to the columns (eight are connected to +45° radiators/antennas and eight are connected to the -45° radiators/antennas). The AAFB radio module provides transmitter outputs for one 8-column antenna assembly.

Equivalent Isotropically Radiated Power (EIRP) is calculated (as specified in ANSI C63.262015 section 6.4 for a system of correlated output signals) from the results of the power measurements (highest measured PSD for each channel bandwidth type). The maximum antenna assembly beamforming gain (& column antenna maximum beamforming gain is 24 dBi) was used for this calculation. The cable loss between the antenna and transmitter is assumed to be 0dB for this worst case EIRP calculation. Calculations of worst-case EIRP for sixteen port MIMO are as follows:

Parameter	5 MHz Ch BW	10 MHz Ch BW	15 MHz Ch BW	20 MHz Ch BW
	1.58 W/MHz	0.83 W/MHz	0.59 W/MHz	0.52 W/MHz
Worst Case PSD/Antenna Port	or	or	or	or
	32.0 dBm/MHz	29.2 dBm/MHz	27.7 dBm/MHz	27.2 dBm/MHz
Cable Loss	0 dB	0 dB	0 dB	0 dB
Number of Ant Ports per Polarization	8	8	8	8
	12.64 W/MHz	6.64 W/MHz	4.72 W/MHz	4.16 W/MHz
Total PSD per Polarization	or	or	or	or
	41.0 dBm/MHz	38.2 dBm/MHz	36.7 dBm/MHz	36.2 dBm/MHz
Maximum Antenna Beamforming Gain per Polarization	24.0 dBi	24.0 dBi	24.0 dBi	24.0 dBi
	65.0 dBm/MHz	62.2 dBm/MHz	60.7 dBm/MHz	60.2 dBm/MHz
EIRP per Polarization	or	or	or	or
	3162 W/MHz	1660 W/MHz	1175 W/MHz	1047 W/MHz
Number of Polarizations	2	2	2	2
	65.0 dBm/MHz	62.2 dBm/MHz	60.7 dBm/MHz	60.2 dBm/MHz
EIRP Total (See Note 1)	or	or	or	or
	3162 W/MHz	1660 W/MHz	1175 W/MHz	1047 W/MHz

Note 1: The EIRP per antenna polarization is required to be below the regulatory limit as described in ANSI C63.26-2015 section 6.4.6.3 b)2) and KDB 662911 D02v01 page 3 example (2) since the two transmitter outputs to each antenna are 90 degree-phase shifted relative to each other (cross-polarized radiators).

Calculation Summary

The worst case AAFB sixteen port MIMO EIRP levels using the 8-column antenna assembly are: (1) Less than the FCC and ISED (3280 W/MHz or 65.16 dBm/MHz) EIRP Regulatory Limits for 18 & 20MHz) channel bandwidths. (2) Less than the FCC and ISED (1640 W/Mtz or 62.15 dBm/MHz) EIRP Regulatory Limits for 18 & 20MHz channel bandwidths. (3) Over the FCC and ISED (1640 W/Mtz or 62.15 dBm/MHz) EIRP Regulatory Limits by 2.85 dB for the 5MHz channel bandwidth and by 0.05 dB for the 10MHz channel bandwidth. EIRP calculations are needed at each transmitter location to optimize base station operational performance while meeting regulatory requirements as noted above. (4) The AAFB antenna port NR5 maximum carrier power level was reduced 3.0 dB by changing the BTS configuration file output power parameter definition to show compliance with the 62.15 dBm/MHz EIRP regulatory limit. See "Output Power Lowered Power" and

(a) The AAFB antenna port NR10 maximum carrier power level was reduced 0.4 dB by changing the BTS configuration file output power parameter definition to show compliance with the 62.15 dBm/MHz EIRP regulatory limit. See "Output Power Lowered Power" and "Power Spectral Density Lowered Power" sections of this report for details.

POWER SPECTRAL DENSITY - LOWERED POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11
Block - DC	Fairview Microwave	SD3379	AMM	2020-09-21	2021-09-21
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to levels seen in the datasheet.

The method of section 5.2.4.5 of ANSI C63.26 was used to make the measurement. The method uses trace averaging across ON and OFF times of EUT transmissions using the spectrum analyzer's RMS detector. Following the measurement a duty cycle correction was applied by adding [10log(1/D)], where D is the duty cycle, to the measured power to compute the PSD during the transmit times.

RF conducted emissions testing was performed on one port. The AAFB antenna ports are essentially electrically identical (the RF power variation between antenna ports is small) and port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i and 6.4.

The total PSD of all antenna ports (at the radio output) was determined per ANSI C63.26-2015 paragraph 6.4.3.2.4.

The EIRP calculations were based upon ANSI C63.26-2015 sections 6.4.3.2.4, section 6.4.6.3, section 6.4.5.3 and section 6.4.5.2

Compliance check for EIRP Limit of 1640W/MHz or 62.15 dBm/MHz:

As shown in the EIRP calculation table of the "PSD and EIRP Calculations" report section, the highest AAFB antenna port 1 PSD level that will not cause the calculated EIRP to exceed the EIRP limit is 29.1 dBm/MHz. The NR5 and NR10 maximum carrier power levels were reduced by 3.0dB and 0.4 dB respectively by changing the carrier power parameters in the base station configuration file to comply with the EIRP limit (62.15 dBm/MHz).

The AAFB base station configuration file parameters set for maximum carrier output power (37.9dBm) gives a measured maximum NR5 PSD/port result of 32.0dBm/MHz and a worst case calculated EIRP that is 2.85dB over the EIRP limit (62.15dBm/MHz). To show compliance with the EIRP limit (62.15dBm/MHz), the AAFB base station configuration file parameters setting for NR5 carrier output power was set to 34.9dBm (reduced 3.0 dB from maximum) that gives a measured maximum NR5 PSD/port result of 28.9dBm/MHz and a worst case calculated EIRP that is 0.2dB below the EIRP limit (62.15dBm/MHz).

The AAFB base station configuration file parameters set for maximum carrier output power (37.9dBm) gives a measured maximum NR10 PSD/port result of 29.2dBm/MHz and a worst case calculated EIRP that is 0.05dB over the EIRP limit (62.15dBm/MHz). To show compliance with the EIRP limit (62.15dBm/MHz), the AAFB base station configuration file parameters setting for NR10 carrier output power was set to 37.5dBm (reduced 0.4 dB from maximum) that gives a measured maximum NR10 PSD/port result of 28.8dBm/MHz and a worst case calculated EIRP that is 0.3dB below the EIRP limit (62.15dBm/MHz).


POWER SPECTRAL DENSITY - LOWERED POWER

					XMit 2020.12.30.0
		Temperature:	21.4 °C		
			Humidity:	56.7% RH	
			Barometric Pres.:	1016 mbar	
	Power: 54 VDC		Job Site:	TX09	
	Test Method				
	ANSI C63.26:2015				
	RSS-133 Issue 6:201	13+A1:2018			
the reference level offest including any at	tenuators, filters and DC bloc	ks. The NR5 and	NR10 carrier power levels were reduce	d to demonstrate of	ompliance with
Diffimiliz for the base station calculated Li	intr level not to exceed the El	intr initit (02.15 di	511/Wit 12).		
	-1-1				
Signature	2001				
	Initial Value	Duty Cycle	Single Port	Limit	
	dBm/MHz == PSD		dBm/MHz == PSD	(dBm/MHz)	Results
				· · · ·	
Children and State					
1 Modulation					
	28.927	0	28.9	29.1	Pass
Low Channel, 1932.5 MHz	28.927	0	28.9	29.1	Pass
Low Channel, 1932.5 MHz	28.927	0	28.9	29.1	Pass
	28.927 28.774	0	28.9	29.1	Pass
	Bm/MHz for the base station calculated E	Test Method ANSI C63.26:2015 RSS-133 Issue 6:20: RSS-133 Issue 6:20: Bm/MHz for the base station calculated EIRP level not to exceed the EI Signature Initial Value dBm/MHz == PSD	Test Method ANSI C63.26:2015 RSS-133 Issue 6:2013+A1:2018 the reference level offest including any attenuators, filters and DC blocks. The NR5 and Bm/MHz for the base station calculated EIRP level not to exceed the EIRP limit (62.15 df Signature	Date: Temperature Power: 54 VDC Test Method ANSI C63.26:2015 RSS-133 Issue 6:2013+A1:2018 the reference level offest including any attenuators, filters and DC blocks. The NR5 and NR10 carrier power levels were reduce Bm/MHz for the base station calculated EIRP level not to exceed the EIRP limit (62.15 dBm/MHz). Signature Initial Value Duty Cycle Single Port dBm/MHz == PSD dBm/MHz == PSD	Test Method ANSI C63.26:2015 RSS-133 Issue 6:2013+A1:2018 the reference level offest including any attenuators, filters and DC blocks. The NR5 and NR10 carrier power levels were reduced to demonstrate of Bm/MHz for the base station calculated EIRP level not to exceed the EIRP limit (62.15 dBm/MHz). Signature Initial Value Duty Cycle Single Port Limit

POWER SPECTRAL DENSITY - LOWERED POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMM	2020-09-21	2021-09-21
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

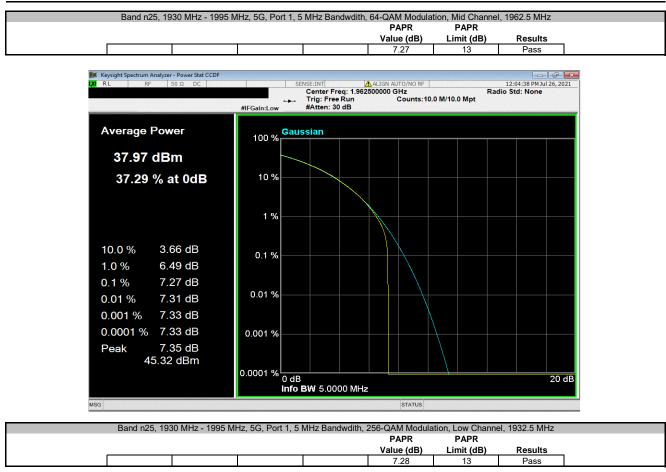
Because the conducted Output Power was measured using a RMS Average detector, the Peak to Average Power Ratio (PAPR) was measured to show that the maximum peak-max-hold spectrum to the maximum of the average spectrum does not exceed the rule part defined limit.

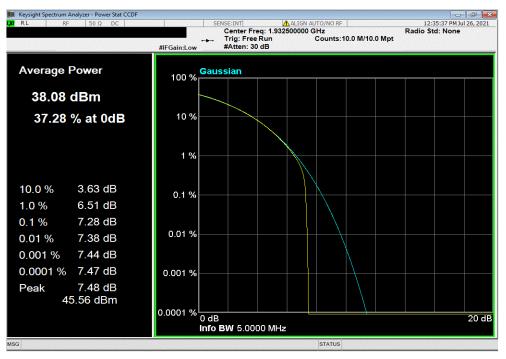
The PAPR measurement method is described in ANSI C63.26 section 5.2.3.4. The PAPR was measured using the CCDF function of the spectrum analyzer.

Per FCC part 24.232(d) and RSS 133 6.4, the PAPR limit shall not exceed 13 dB for more than the ANSI described 0.1% of the time.

RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AAFB) as the original certification test. The AAFB antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in this certification testing) and antenna port 1 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraphs 5.2.5.3, 5.7.2i, and 6.4.

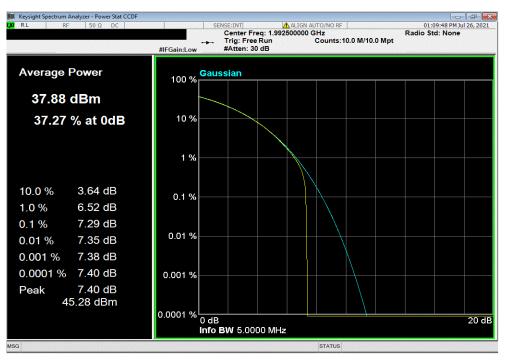
EUT: AAFB (FCC/ISED C2PC)	TbiTx 2021 03.19.1 XMit 202 Work Order: NOKI0031
Serial Number: BL2032H23PI	Date: 23-Jul-21
Customer: Nokia Solutions and Networks	Temperature: 21.5 °C
Attendees: David Le, Mitchell Hill	Humidity: 55.5% RH
Project: None	Barometric Pres.: 1017 mbar
Tested by: Brandon Hobbs Power: 54 VI	
	Method
	C63.26:2015
	133 Issue 6:2013+A1:2018
OMMENTS	
Il measurement path losses were accounted for in the reference level offest including any attenuators, filte	rs and DC blocks.Band n25 carriers are enabled at maximum power (6.25 watts/carrier).
EVIATIONS FROM TEST STANDARD	
one	
configuration # 2 Signature	
	PAPR PAPR
and n25, 1930 MHz - 1995 MHz, 5G	Value (dB) Limit (dB) Result
QPSK Modulation Mid Channel, 1962.5 MHz	7.27 13 Pass
16-QAM Modulation	7.44 40 Deve
Mid Channel, 1962.5 MHz	7.44 13 Pass
64-QAM Modulation Mid Channel, 1962.5 MHz	7.27 13 Pass
256-QAM Modulation	1.21 13 Fdss
Low Channel, 1932.5 MHz	7.28 13 Pass
Mid Channel, 1962.5 MHz	7.28 13 Pass
High Channel, 1992.5 MHz	7.29 13 Pass
10 MHz Bandwdith	1.25 10 1435
256-QAM Modulation	
Low Channel, 1935.0 MHz	7.33 13 Pass
Mid Channel, 1962.5 MHz	7.29 13 Pass
High Channel, 1990 MHz	7.30 13 Pass
15 MHz Bandwdith	
256-QAM Modulation	
Low Channel, 1937.5 MHz	7.50 13 Pass
Mid Channel, 1962.5 MHz	7.45 13 Pass
	7.44 13 Pass
High Channel, 1987.5 MHz	
20 MHz Bandwdith 256-QAM Modulation	
20 MHz Bandwdith 256-QAM Modulation Low Channel, 1940 MHz	7.34 13 Pass
20 MHz Bandwdith 256-QAM Modulation	7.34 13 Pass 7.17 13 Pass

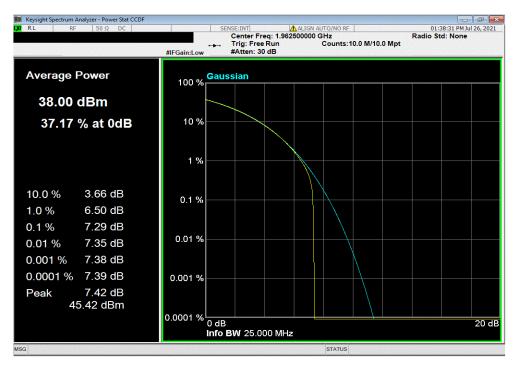


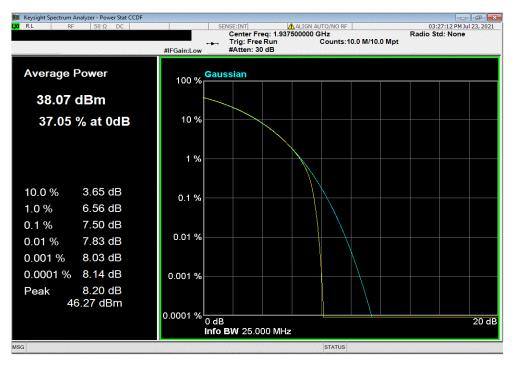


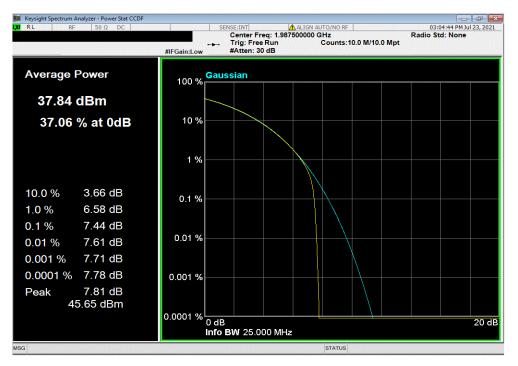
							V 2	alue (ub)	стин (ав	9	Results	_
								7.44	13		Pass	
Keysight S	pectrum Anal	yzer - Pow	er Stat CCDF									X
RL	RF	50 Ω	DC		SE	NSE:INT	ALIGN	AUTO/NO RF		1	1:28:32 AM Jul 26, 2	021
						Center Freq:				Radio	Std: None	
				#IFGain:Low	•••	Trig: Free Ru #Atten: 30 dB		Counts: 10	.0 M/10.0 Mpt			
Aver	age Po	ower		100 %	Gau	ssian						
				100 %								
37	7.82 d	Bm										

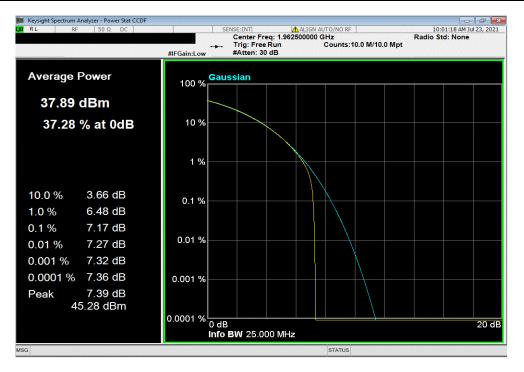

100 % Gaussian
10 %
1 %
0.1 %
0.1 %
0.01 %
0.001 %
0.0001 % 0 dB 20 dB Info BW 5.0000 MHz
STATUS






Danu 1125, 193	50 IVIEZ - 1995 IVIE	12, 5G, POIL I, TU	IVITZ Danuwulun,	250-QAIVI IVIOUUI	ation, ivilu Chann	
				PAPR	PAPR	
				Value (dB)	Limit (dB)	Results
				7.29	13	Pass


Dana 1120, 100	0 10112 - 1000 1011	12, 50, 1 011 1, 15	ivin iz Danawaith,	200-QAW Wodul	auon, Low Onann	101, 1007.0 10112
				PAPR	PAPR	
				Value (dB)	Limit (dB)	Results
				7.5	13	Pass


Bana neo, rooo nin ie	200 Gran module	anon, rugn onan	101, 1007.0 10112
	PAPR	PAPR	
	Value (dB)	Limit (dB)	Results
	7.44	13	Pass

		Value (dB)	Limit (dB)	Results
		7.17	13	Pass

