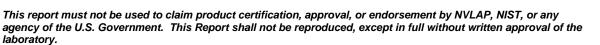


Radio Test Report Application for a Class II Permissive Change of Equipment Authorization

FCC Part 24:2019 and RSS-133:2018 [1930MHz - 1995MHz] FCC ID: VBNAAFB-01 IC ID: 661W-AAFB


Nokia Solutions and Networks
Airscale Base Transceiver Station Radio Module
Model: AAFB

Report # NOKI0005

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: January 31, 2020 Nokia Solutions and Networks

EUT: Airscale Base Transceiver Station Radio Module Model AAFB

Radio Equipment Testing

Standards

Specification	Method
FCC Part 24:2020	ANSI C63.26-2015, with FCC KDB 971168D01 v03r01 and FCC KDB 662911D01 v02r01
RSS-133:2018	RSS-Gen:2019

Results

Test Description	Applied	Results	Comments
Duty Cycle	No	N/A	Not requested.
Occupied Bandwidth	Yes	Pass	
Output Power	Yes	Pass	
Output Power – Worst Case Port	Yes	Pass	
Peak to Average Power (PAPR)/CCDF	Yes	Pass	
Band Edge Compliance	Yes	Pass	
Spurious Conducted Emissions	Yes	Pass	
Spurious Radiated Emissions	No	N/A	Not requested.

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. NOKI0005 2/68

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

Report No. NOKI0005 3/68

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

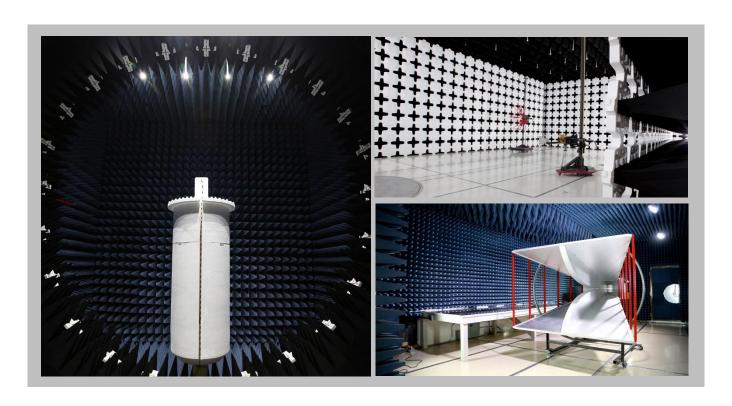
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

Report No. NOKI0005 4/68


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		NVLAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
		BSMI			
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
		VCCI			
A-0029	A-0109	A-0108	A-0201	A-0110	
Re	Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	US0017	US0191	US0157	

Report No. NOKI0005 5/68

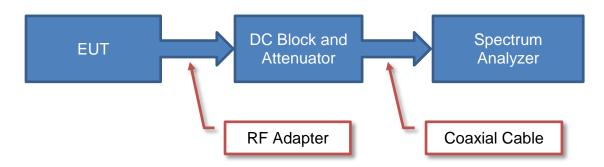
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

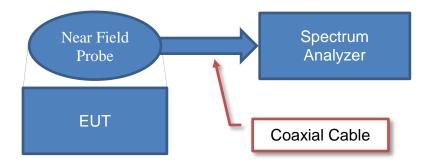
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

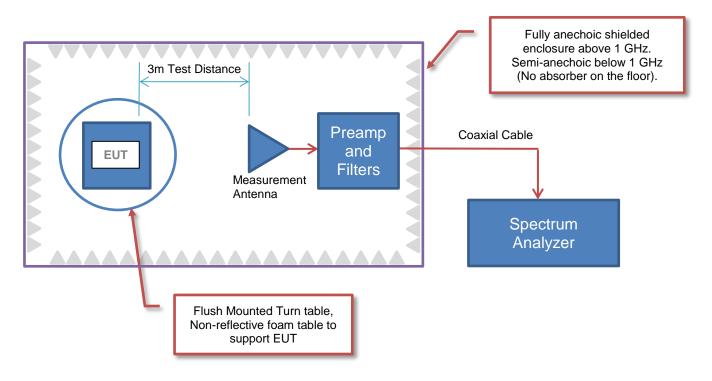
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. NOKI0005 6/68


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. NOKI0005 7/68

Client and Equipment Under Test (EUT) Information

Company Name:	Nokia Solutions and Networks
Address:	6000 Connection Drive
City, State, Zip:	Irving, TX 75039
Test Requested By:	Steve Mitchell
EUT:	Airscale Base Transceiver Station Radio Module Model AAFB
First Date of Test:	January 30, 2020
Last Date of Test:	January 31, 2020
Receipt Date of Samples:	January 28, 2020
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

A class II permissive change on the original filing is being pursued to add Narrow Band IoT Guard Band (NB IoT GB) to the LTE carrier for the Airscale BTS Radio Module AAFB Federal Communication Commission and Industry Canada certifications. The original FCC and IC radio certification submittal was NTS Test Report Number PR083556 Revision 1 dated August 27, 2018. The original test effort included testing for LTE technologies. Please refer to the test report on the original certification (FCC ID: VBNAAFB-01) for details on all required testing. The scope of testing in this effort is for narrow band IoT guard band operations for 10, 15 and 20MHz LTE channel bandwidths.

All conducted RF testing performed for the original certification testing will be repeated using NB IoT GB for this class II permissive change per correspondence/guidance from Nemko TCB. The same test methodology used in the original certification testing will be used in this class II permissive change test effort. Tests performed under the class II change effort include RF power, CCDF, emission bandwidth (99% and 26 dB down), band edge spurious emissions, and conducted spurious emissions. The LTE modulation type for this testing was setup according to 3GPP TS 36.141 E-UTRA Test Models and is "E-TM 1.1 (QPSK modulation type) with N-TM (narrow band IoT)". The base station and radio module software for this testing is an updated release that includes Narrow Band IoT Guard Band support.

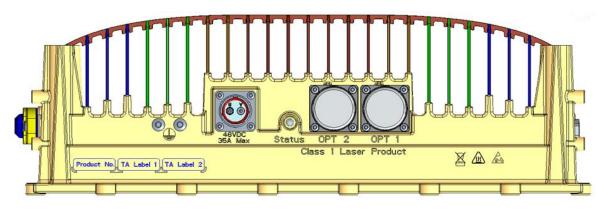
The radiated emissions and frequency stability measurements performed in the original certification was not repeated under this effort per TCB guidance. The radiated emission and frequency stability/accuracy results from the original certification had enough margin to preclude requiring additional testing. The same frequency stability/accuracy radio design is the same for all radio technologies/modulation types.

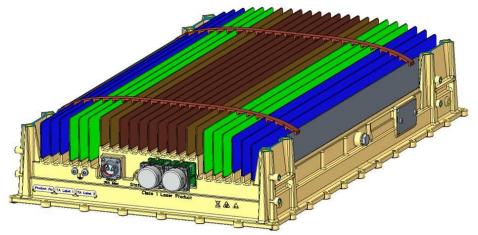
The equipment under test (EUT) is a Nokia Solutions and Networks AirScale Base Transceiver Station (BTS) radio module, model AAFB. The AAFB has 16 transmit/receive antenna ports that supports 3GPP frequency band 25 operations (BTS RX: 1850 to 1915 MHz/BTS TX: 1930 to 1995 MHz). The maximum RF output power of the radio module antenna port is 6.25 watts. The total RF output power for the AAFB radio module is 100 watts (16 x 6.25 watts). The radio module supports LTE-FDD, and narrow band IoT (internet of things) operations (in-band, guard band, standalone). The TX and RX instantaneous bandwidth cover the full operational (Band 25) bandwidth. The radio module supports 5, 10, 15, and 20MHz LTE bandwidths. The radio module supports four LTE downlink modulation types (QPSK, 16QAM, 64QAM and 256QAM) and NB-IoT.

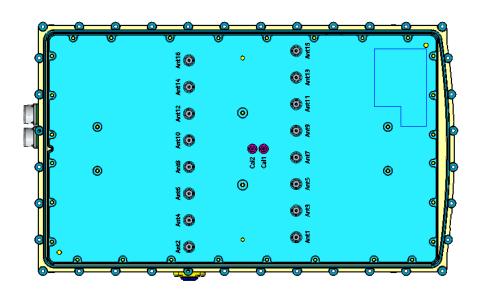
Report No. NOKI0005 8/68

The AAFB LTE channel numbers and frequencies are as follows:

	Downlink	Downlink	LTE Channel Bandwidth			
	EARFCN	Frequency (MHz)	5 MHz	10 MHz	15 MHz	20 MHz
	8040	1930.0	Band Edge	Band Edge	Band Edge	Band Edge
	8065	1932.5	Bottom Ch			
	8090	1935.0		Bottom Ch		
(6						
AAFB Band 25 (Antennas 1 through 16)	8115	1937.5			Bottom Ch	
coug						
1 th	8140	1940.0				Bottom Ch
nas						
nten	8365	1962.5	Middle Ch	Middle Ch	Middle Ch	Middle Ch
5 (A)						
1d 2	8590	1985.0				Top Channel
Ваг						
AFB	8615	1987.5			Top Channel	
A,						
	8640	1990.0		Top Channel		
	8665	1992.5	Top Channel			
	8690	1995.0	Band Edge	Band Edge	Band Edge	Band Edge


AAFB Downlink Band Edge LTE Band 25 Frequency Channels


Note: AAFB narrow band IoT guard band operations for 10, 15 and 20MHz LTE channel bandwidths are supported.


AAFB Connector Layout:

Report No. NOKI0005 9/68

Report No. NOKI0005 10/68

EUT External Interfaces

Name	Qty	Connector Type	Purpose (and Description)
DC In	1	Quick Disconnect	2-pole Power Circular Connector
GND	1	Screw lug (2xM5/1xM8)	Ground
ANT	16	4.3-10 Blind Mate/Quick Disconnect	RF signal for Transmitter/Receiver (50 Ohm)
Unit	1	LED	Unit Status LED
OPT	2	SFP+ cage	Optical Interface
Fan	1	Microfit	Power for fan on the side of radio module.

Testing Objective:

A class II permissive change on the original filing is being pursued to add Narrow Band IoT Guard Band to the LTE carrier for the Airscale BTS Radio Module AAFB Federal Communication Commission and Industry Canada certifications.

Report No. NOKI0005 11/68

CONFIGURATIONS

Configuration NOKI0005-1

Software/Firmware Running during test			
Description	Version		
Radio Module Software	FRM 59.10.R28L		
BTS Software Version	SBTS19B_ENB_0000_000904		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
AAFB (Radio Module Model)	Nokia	090148A.101	YK190400217

Peripherals in test setup boundary				
Description	on Manufacturer		Serial Number	
30dB Attenuator (50W)	Narda	776B-30	None	
Antenna Load 1	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 2	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 3	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 4	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 5	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 6	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 7	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 8	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 9	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 10	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 11	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 12	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 13	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 14	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
Antenna Load 15	R&D Microwaves LLC	TA-A40NFCB-BR	N/A	
AMIA (BTS system Module)	Nokia	473098A.101	RK16401509	
ASIA (BTS system Module)	Nokia	473095A.203	AH173111443	
ABIA (BTS system Module)	Nokia	473096A.102	L1164015939	
SFP+ 9.8G,300M,850NM	Nokia	473842.A101	Kr16180020006	
SFP+ 9.8G,300M,850NM	Nokia	473842.A101	MA17331610206	
HP ProBook 6470b	HP	B2G14EC#ABA	CNU246B8XP	
Power Supply (Laptop)	HP	608428-002	F1294123206400	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
RF cable HS-SUCOFLEX_106	Y	2m	N	EUT [AAFB] RF port 1 (port under test)	Narda 30dB Attenuator (50W)
RF cable HS-SUCOFLEX_104	Y	1m	N	Narda 30dB Attenuator (50W)	Spectrum Analyzer
RF cable R&D Microwaves CBL-6ft-NMNM-402J-N 15 places	Y	~1.8m	N	EUT [AAFB] RF ports 2 thru 16	Antenna Loads (1 through 15)

Report No. NOKI0005 12/68

CONFIGURATIONS

Configuration NOKI0005- 2

Software/Firmware Running during test				
Description	Version			
Radio Module Software	FRM 59.10.R28L			
BTS Software Version	SBTS19B_ENB_0000_000904			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
AAFB (Radio Module Model)	Nokia	090148A.101	YK190400217

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
10dB Attenuator (100W)	API Weinschel	48-10-34-LIM	BJ1771			
Low Pass Filter (100W)	Microwave Circuits, INC.	L13502G1	SN24254-01			
Antenna Load 1	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 2	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 3	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 4	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 5	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 6	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 7	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 8	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 9	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 10	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 11	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 12	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 13	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 14	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 15	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
AMIA (BTS system Module)	Nokia	473098A.101	RK16401509			
ASIA (BTS system Module)	Nokia	473095A.203	AH173111443			
ABIA (BTS system Module)	Nokia	473096A.102	L1164015939			
SFP+ 9.8G,300M,850NM	Nokia	473842.A101	Kr16180020006			
SFP+ 9.8G,300M,850NM	Nokia	473842.A101	MA17331610206			
HP ProBook 6470b	HP	B2G14EC#ABA	CNU246B8XP			
Power Supply (Laptop)	HP	608428-002	F12941232064008			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
RF cable HS-SUCOFLEX_106	Υ	2m	N	EUT [AAFB] RF port 1 (port under test)	10dB Attenuator (100W)
RF cable HS-SUCOFLEX_104	Υ	1m	N	Low Pass Filter (100W)	Spectrum Analyzer
RF cable R&D Microwaves CBL-6ft-NMNM-402J-N 15 places	Y	~1.8m	N	EUT [AAFB] RF ports 2 thru 16	Antenna Loads (1 through 15)

Report No. NOKI0005 13/68

CONFIGURATIONS

Configuration NOKI0005-3

Software/Firmware Running during test					
Description	Version				
Radio Module Software	FRM 59.10.R28L				
BTS Software Version	SBTS19B_ENB_0000_000904				

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
AAFB (Radio Module Model)	Nokia	090148A.101	YK190400217		

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
30dB Attenuator (50W)	Narda	776B-30	None			
High Pass Filter (2W)	RLC Electronics	F-100-3000-5-R	0028			
Antenna Load 1	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 2	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 3	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 4	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 5	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 6	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 7	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 8	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 9	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 10	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 11	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 12	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 13	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 14	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
Antenna Load 15	R&D Microwaves LLC	TA-A40NFCB-BR	N/A			
AMIA (BTS system Module)	Nokia	473098A.101	RK16401509			
ASIA (BTS system Module)	Nokia	473095A.203	AH173111443			
ABIA (BTS system Module)	Nokia	473096A.102	L1164015939			
SFP+ 9.8G,300M,850NM	Nokia	473842.A101	Kr16180020006			
SFP+ 9.8G,300M,850NM	Nokia	473842.A101	MA17331610206			
HP ProBook 6470b	HP	B2G14EC#ABA	CNU246B8XP			
Power Supply (Laptop)	HP	608428-002	F12941232064008			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
RF cable HS-SUCOFLEX_106	Υ	2m	N	EUT [AAFB] RF port 1 (port under test)	Narda 30dB Attenuator (50W)
RF cable HS-SUCOFLEX_104	Υ	1m	N	High Pass Filter (2W)	Spectrum Analyzer
RF cable R&D Microwaves CBL-6ft-NMNM-402J-N 15 places	Y	~1.8m	N	EUT [AAFB] RF ports 2 thru 16	Antenna Loads (1 through 15)

Report No. NOKI0005 14/68

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2020-01-30	Output Power – Worst Case Port	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2020-01-31	Peak to Average Power (PAPR)/CCDF	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2020-01-31	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2020-01-31	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2020-01-31	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2020-01-31	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. NOKI0005 15/68

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The 99% bandwidth was measured utilizing the analyzer's peak detector and measuring the carrier's 26 dB occupied bandwidth based on the peak output power level measured. A plot was taken to show the occupied bandwidth is contained within the allowable transmit band.

The measurement was made using a direct connection between the RF output of the EUT and the specturm analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The specturm analyzer settings were as follows:

- RBW is 1% 5% of the occupied bandwidth
- VBW is ≥ 3x the RBW
- · Peak Dectector was used
- · Trace max hold was used

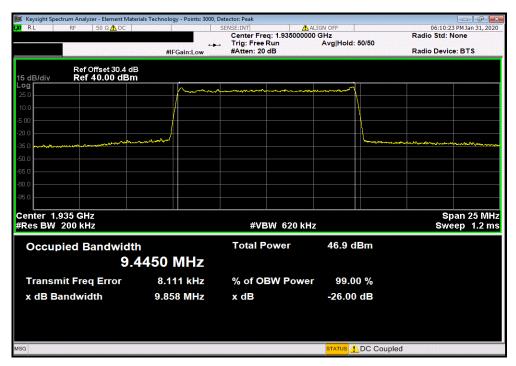
Report No. NOKI0005 16/68

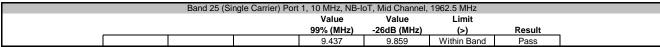
							TbtTx 2019.08.30.0	XMit 2019.09
EUT: AAFB						Work Order:		
Serial Number: YK19040							31-Jan-20	
Customer: Nokia So						Temperature:		
Attendees: Mitch Hil	I, John Rattanav	vong			Humidity: 39.8% RH			
Project: None						Barometric Pres.:		
Tested by: Willie Lo	ve, Brandon Ho	bbs	Power	54VDC		Job Site:	TX09	
EST SPECIFICATIONS				Test Method				
CC 24E:2020				ANSI C63.26:2015				
RSS-Gen:2019								
OMMENTS								
		orts using a 10 MHz channel bandwi		um power was used for these meas nnel.	urements. The highe	st power port was t	acternation by meas	uning the
DEVIATIONS FROM TEST ST	ANDARD							
lone								
Configuration #	1		2 /1	1				
		Signature	7					
					Value 99% (MHz)	Value -26dB (MHz)	Limit (>)	Result
and 25 (Single Carrier) Port 1								
and 25 (Single Carrier) Port 1								
and 25 (Single Carrier) Port 1 10 MHz								
	NB-loT							
		Low Channel, 1935 MHz			9.45	9.86	Within Band	Pass
		Mid Channel, 1962.5 MHz			9.44	9.86	Within Band Within Band	Pass
10 MHz							Within Band	
	NB-IoT	Mid Channel, 1962.5 MHz			9.44	9.86	Within Band Within Band	Pass
10 MHz		Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz			9.44 9.44	9.86 9.86	Within Band Within Band Within Band	Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz			9.44 9.44 14.07	9.86 9.86 14.64	Within Band Within Band Within Band Within Band	Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz			9.44 9.44 14.07 14.10	9.86 9.86 14.64 14.67	Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz			9.44 9.44 14.07	9.86 9.86 14.64	Within Band Within Band Within Band Within Band	Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz			9.44 9.44 14.07 14.10	9.86 9.86 14.64 14.67	Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz			9.44 9.44 14.07 14.10 14.09	9.86 9.86 14.64 14.67 14.73	Within Band Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz Low Channel, 1940 MHz			9.44 9.44 14.07 14.10 14.09	9.86 9.86 14.64 14.67 14.73	Within Band Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass Pass Pass
10 MHz	NB-IoT	Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz			9.44 9.44 14.07 14.10 14.09	9.86 9.86 14.64 14.67 14.73	Within Band Within Band Within Band Within Band Within Band Within Band	Pass Pass Pass Pass Pass

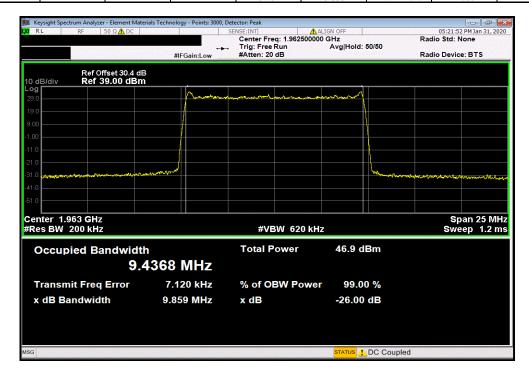
Band 25 Emission Designators:

Band 25 (1930MHz to 1995MHz) Emission Designators LTE Narrow Band IoT Guard Band									
LTE Channel Low Channel Middle Channel High Channel									
Bandwidth	FCC	IC	FCC	IC	FCC	IC			
10M	9M86F9W	9M45F9W	9M86F9W	9M44F9W	9M86F9W	9M44F9W			
15M	14M6F9W	14M1F9W	14M7F9W	14M1F9W	14M7F9W	14M1F9W			
20M	20M 19M4F9W 18M6F9W 19M4F9W 18M6F9W 19M4F9W 18M6F9W								
Note: FCC base	ed on 26dB en	nission bandw	idth; IC based o	n 99% emission	bandwidth.				

Report No. NOKI0005 17/68



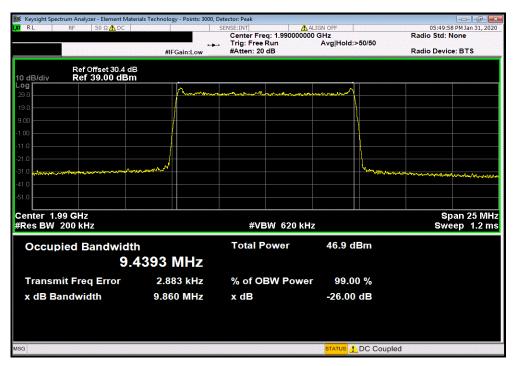

Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, Low Channel, 1935 MHz


Value Value Limit

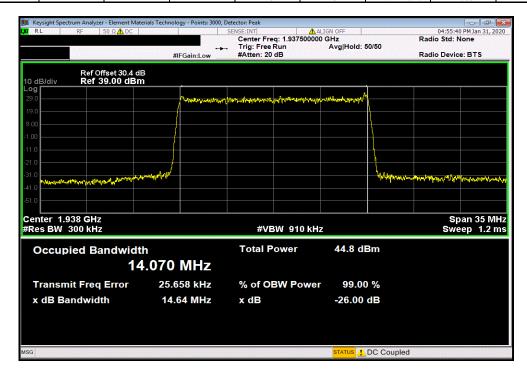
99% (MHz) -26dB (MHz) (->) Result

9.445 9.858 Within Band Pass

Report No. NOKI0005 18/68



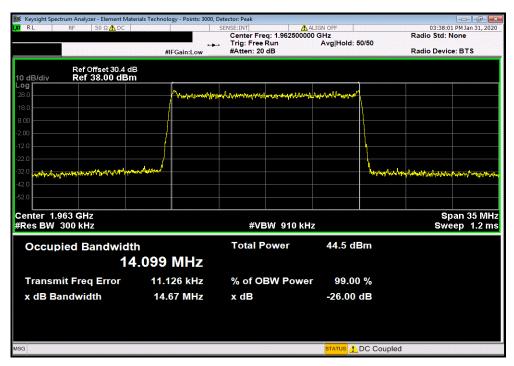
Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, High Channel, 1990.0 MHz


Value Value Limit

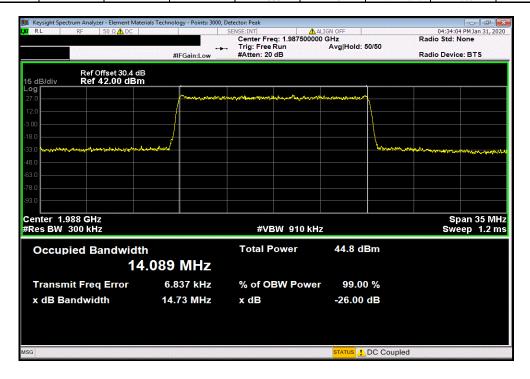
99% (MHz) -26dB (MHz) (>) Result

9.439 9.86 Within Band Pass

Report No. NOKI0005 19/68



Band 25 (Single Carrier) Port 1, 15 MHz, NB-IoT, Mid Channel, 1962.5 MHz

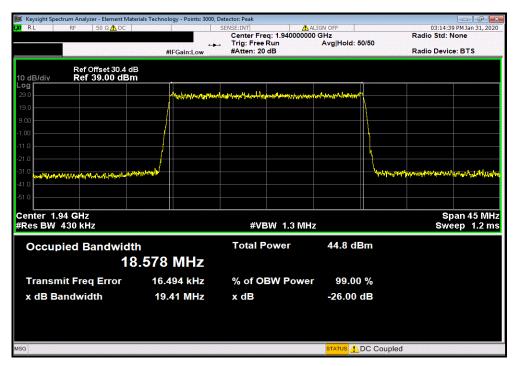

Value Value Limit

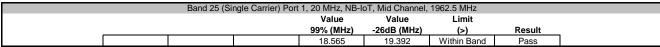
99% (MHz) -26dB (MHz) (->) Result

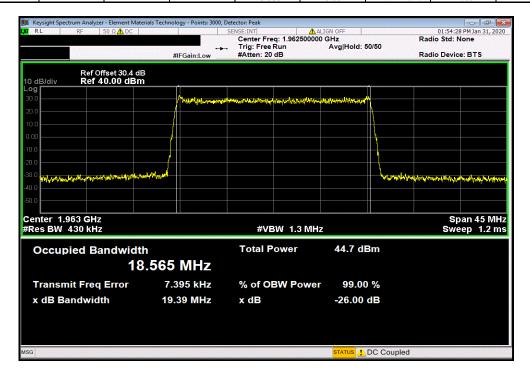
14.099 14.674 Within Band Pass

Band 25 (Single Carrier) Port 1, 15 MHz, NB-IoT, High Channel, 1987.5 MHz								
			Value	Value	Limit			
			99% (MHz)	-26dB (MHz)	(>)	Result		
			14.089	14.734	Within Band	Pass		

Report No. NOKI0005 20/68



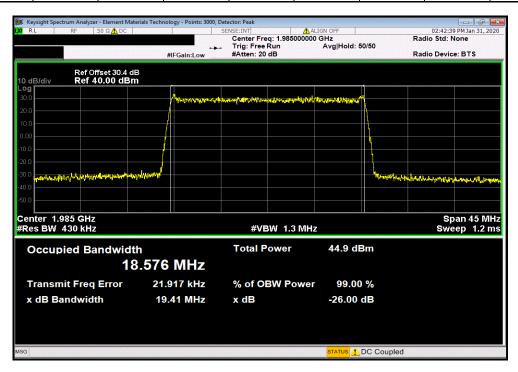

Band 25 (Single Carrier) Port 1, 20 MHz, NB-loT, Low Channel, 1940 MHz


Value Value Limit

99% (MHz) -26dB (MHz) (>) Result

18.578 19.41 Within Band Pass

Report No. NOKI0005 21/68



Band 25 (Single Carrier) Port 1, 20 MHz, NB-loT, High Channel, 1985 MHz

Value Value Limit

99% (MHz) -26dB (MHz) (->) Result

18.576 19.406 Within Band Pass

Report No. NOKI0005 22/68

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

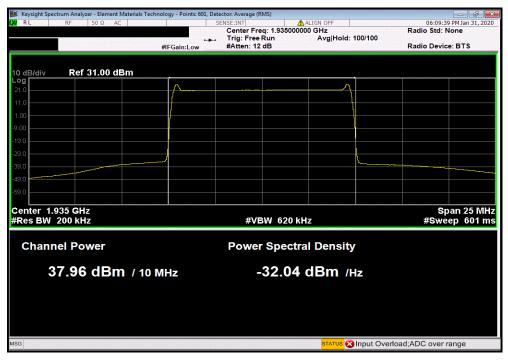
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

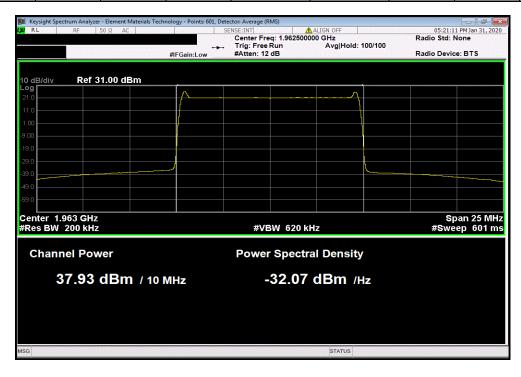
The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC part 24.232(a)(1), 24.232(a)(2) and RSS 133 6.4, the Equivalent Isotropically Radiated Power (EIRP) of the transceiver cannot exceed 1640 Watts/MHz.

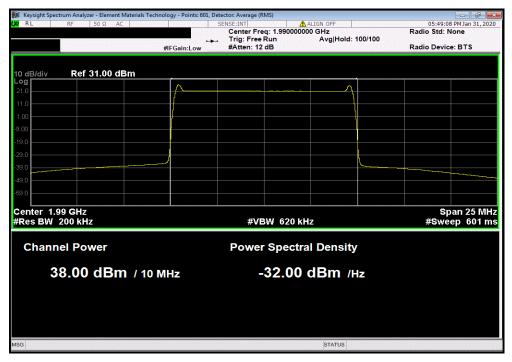
Report No. NOKI0005 23/68

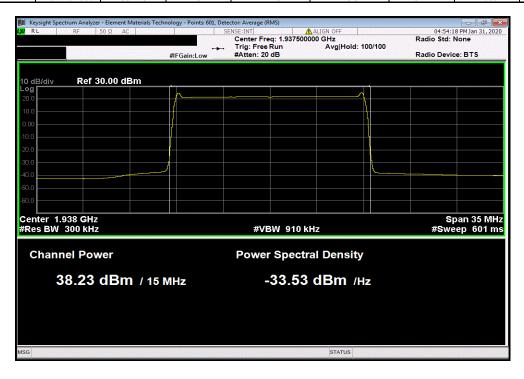

EUT: AAFB
Serial Number: YK190400217
Customer: Nokia Solutions and Networks
Attendees: Mitch Hill, John Rattanavong Work Order: NOKI0005
Date: 31-Jan-20
Temperature: 22 °C Humidity: 33.4% RH Barometric Pres.: 1012 mbar Project: None
Tested by: Willie Love, Brandon Hobbs
TEST SPECIFICATIONS Power: 54VDC Test Method Job Site: TX09 FCC 24E:2020 ANSI C63.26:2015 RSS-133:2018 COMMENTS All losses in the measurement path were accounted for. Per ANSI C63.26-2015 section 4.2.3 a correction factor was used to determine the Power/MHz value based on a measured dBm/OBW with a reduced RBW from the specification required reference bandwidth. CF= 10*Log(ref BW/measured Integration BW) The highest power port operating at maximum power was used for these measurements. The highest power port was determined by measuring the average power on each of the 16 antenna ports using a 10 MHz channel bandwidth at the middle channel shown elsewhere in the report.

DEVIATIONS FROM TEST STANDARD Configuration # 1 Signature Initial Power (dBm/OBW) Duty Cycle Factor (dB) ction I (dB) Limit EIRP (dBm/MHz) Results Value (dBm/MHz) (dBi) Band 25 (Single Carrier) Port 1 10 MHz NB-IoT -10.0 -10.0 62.2 62.2 Pass Pass Low Channel, 1935 MHz Not Provided 38.0 0.0 28.0 Mid Channel, 1962.5 MHz Not Provided 27.9 37.9 0.0 High Channel, 1990.0 MHz Not Provided 38.0 0.0 -10.0 28.0 62.2 Pass 15 MHz NB-IoT Low Channel, 1937.5 MHz Not Provided 38.2 0.0 -11.8 26.5 62.2 Pass Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz Not Provided Not Provided 0.0 -11.8 -11.8 62.2 62.2 38.0 26.2 Pass 38.2 26.4 Pass 20 MHz NB-IoT 62.2 62.2 Low Channel, 1940 MHz Not Provided 38.3 0.0 -13.0 25.2 Pass Mid Channel, 1962.5 MHz -13.0 25.0 Not Provided 38.0 0.0 Pass High Channel, 1985 MHz Not Provided 38.3 0.0 -13.0 25.3 62.2 Pass


Report No. NOKI0005 24/68

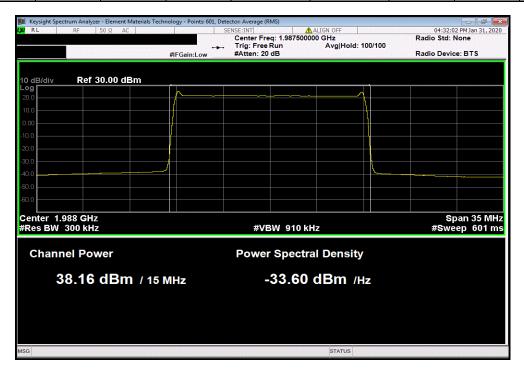
Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, Low Channel, 1935 MHz Limit EIRP Antenna Gain **Initial Power Duty Cycle** Correction Factor Final w/o Ant Gain (dBi) Not Provided (dBm/OBW) Factor (dB) (dB) Value (dBm/MHz) (dBm/MHz) Results 37.958 -10.0 Pass


Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, Mid Channel, 1962.5 MHz								
Antenna Gain	Initial Power	Duty Cycle	Correction Factor	Final w/o Ant Gain	Limit EIRP			
(dBi)	(dBm/OBW)	Factor (dB)	(dB)	Value (dBm/MHz)	(dBm/MHz)	Results		
Not Provided	37.934	0	-10.0	27.9	62.2	Pass		


Report No. NOKI0005 25/68

Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, High Channel, 1990.0 MHz Initial Power Limit EIRP Antenna Gain **Duty Cycle** Correction Factor Final w/o Ant Gain (dBi) Not Provided (dBm/OBW) Factor (dB) (dB) Value (dBm/MHz) (dBm/MHz) Results 37.995 -10.0 Pass

	Band 25 (Single Carrier) Port 1, 15 MHz, NB-IoT, Low Channel, 1937.5 MHz								
Antenna Gain	Initial Power	Duty Cycle	Correction Factor	Final w/o Ant Gain	Limit EIRP				
(dBi)	(dBm/OBW)	Factor (dB)	(dB)	Value (dBm/MHz)	(dBm/MHz)	Results			
Not Provided	38.228	0	-11.8	26.5	62.2	Pass			

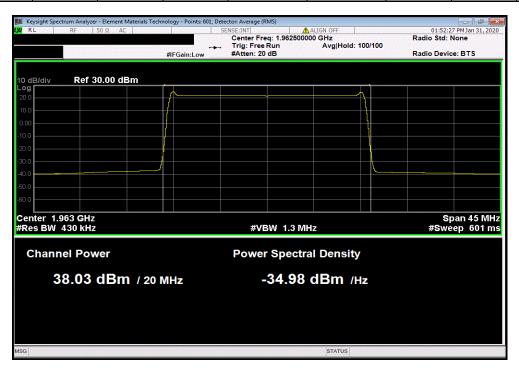

Report No. NOKI0005 26/68

Band 25 (Single Carrier) Port 1, 15 MHz, NB-IoT, Mid Channel, 1962.5 MHz Initial Power Limit EIRP Antenna Gain **Duty Cycle** Correction Factor Final w/o Ant Gain (dBi) Not Provided (dBm/OBW) Factor (dB) (dB) Value (dBm/MHz) (dBm/MHz) Results 37.975 -11.8 Pass

	Band 25 (Single Carrier) Port 1, 15 MHz, NB-IoT, High Channel, 1987.5 MHz									
Antenna	Gain Initial Power	Duty Cycle	Correction Factor	Final w/o Ant Gain	Limit EIRP					
(dBi	(dBm/OBW)	Factor (dB)	(dB)	Value (dBm/MHz)	(dBm/MHz)	Results				
Not Prov	ded 38.165	0	-11.8	26.4	62.2	Pass				

Report No. NOKI0005 27/68

Band 25 (Single Carrier) Port 1, 20 MHz, NB-IoT, Low Channel, 1940 MHz

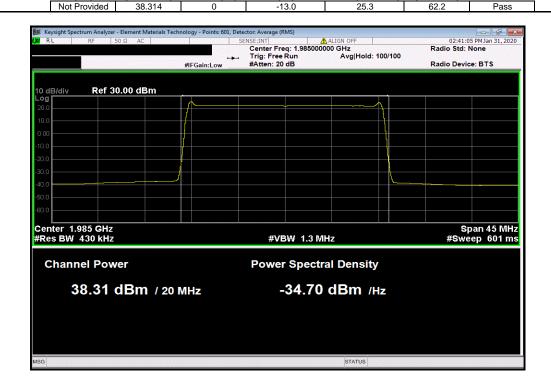

Antenna Gain Initial Power Duty Cycle Correction Factor Final w/o Ant Gain Limit EIRP

(dBi) (dBm/OBW) Factor (dB) (dB) Value (dBm/MHz) (dBm/MHz) Results

Not Provided 38.255 0 -13.0 25.2 62.2 Pass

	Band 25 (Single Carrier) Port 1, 20 MHz, NB-IoT, Mid Channel, 1962.5 MHz									
An	tenna Gain	Initial Power	Duty Cycle	Correction Factor	Final w/o Ant Gain	Limit EIRP				
	(dBi)	(dBm/OBW)	Factor (dB)	(dB)	Value (dBm/MHz)	(dBm/MHz)	Results			
No	ot Provided	38.027	0	-13.0	25.0	62.2	Pass			

Report No. NOKI0005 28/68



Band 25 (Single Carrier) Port 1, 20 MHz, NB-IoT, High Channel, 1985 MHz

Antenna Gain Initial Power Duty Cycle Correction Factor Final w/o Ant Gain Limit EIRP

(dBi) (dBm/OBW) Factor (dB) (dB) Value (dBm/MHz) (dBm/MHz) Results

Not Provided 38.314 0 -13.0 25.3 62.2 Pass

Report No. NOKI0005 29/68

XMit 2019 09 0F

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

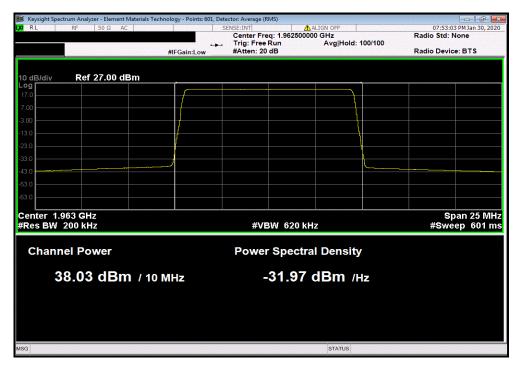
The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC part 24.232(a)(1), 24.232(a)(2) and RSS 133 6.4, the Equivalent Isotropically Radiated Power (EIRP) of the transceiver cannot exceed 1640 Watts/MHz.

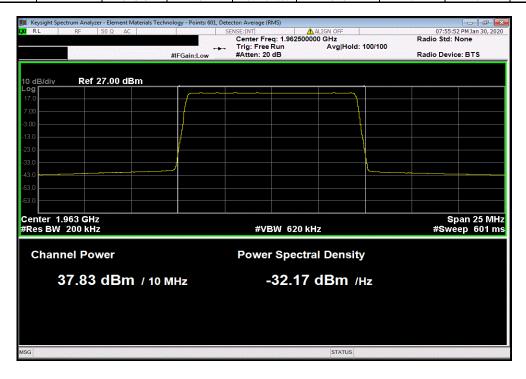
Report No. NOKI0005 30/68

	AFD					14/- 1 2 1	TbtTx 2019.08.30.0	XMit 2019.09.05
Social Number: VI						Work Order: N		
Serial Number: YI Customer: No	K190400217					Date: 3 Temperature: 2	0-Jan-20 2.7.°C	
	itch Hill, John Rattan	navong				Humidity: 2		
Project: No							041 mbar	
	/illie Love, Brandon F	lobbs	Power: 54VDC			Job Site: T		
TEST SPECIFICATION			Test Method					
FCC 24E:2020			ANSI C63.26:2015					
RSS-133:2018			RSS-133:2018					
COMMENTS								
All loses in the measu	urement path were ac	ccounted for. Worst case port wa	s found to be port 1					
DEVIATIONS FROM T	FST STANDARD							
None	LOT OTANDARD							
	4		73/1					
Configuration #	1	Signature	J. J.A					
			Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit	
D 105 (0: 1 0 :	\		(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results
Band 25 (Single Carrier	r) Port 1) MHz							
10	256QAM							
	2000/ (W	Mid Channel, 1962.5 MHz	38.03	0	Not Provided	38.0	N/A	N/A
Band 25 (Single Carrier								
10) MHz							
	256QAM	Mid Channel, 1962.5 MHz	37.83	0	Not Provided	37 g	N/A	N/A
Band 25 (Single Carrier	r) Port 3	IVIIU CHAIIIEI, 1902.5 IVITZ	31.03	U	INUL FIUVICEG	37.8	IN/A	IN/A
) MHz							
_	256QAM							
D105 (0: 1 0 :	-) D1 4	Mid Channel, 1962.5 MHz	37.89	0	Not Provided	37.9	N/A	N/A
Band 25 (Single Carrier	r) Port 4) MHz							
IC	256QAM							
	2000, 111	Mid Channel, 1962.5 MHz	37.75	0	Not Provided	37.8	N/A	N/A
Band 25 (Single Carrier								
10) MHz							
	256QAM	Mid Channel 1062 5 MU	27.00	0	Not Provided	37.0	NI/A	N/A
Band 25 (Single Carrier	r) Port 6	Mid Channel, 1962.5 MHz	37.89	U	Not Provided	37.9	N/A	N/A
) MHz							
_	256QAM							
D105 (0: 1 0 :	-) D1 7	Mid Channel, 1962.5 MHz	37.72	0	Not Provided	37.7	N/A	N/A
Band 25 (Single Carrier	r) Port 7) MHz							
IC	256QAM							
		Mid Channel, 1962.5 MHz	37.83	0	Not Provided	37.8	N/A	N/A
Band 25 (Single Carrier								
10) MHz							
	256QAM	Mid Channel, 1962.5 MHz	37.79	0	Not Provided	37.8	N/A	N/A
Band 25 (Single Carrier	r) Port 9	3 011411101, 1302.3 WILL	51.19		140t i Tovided	57.0	13//	14/5
) MHz							
	256QAM	NE 101				07.	.	
Pand 25 (Cinala Carrier	r) Port 10	Mid Channel, 1962.5 MHz	37.92	0	Not Provided	37.9	N/A	N/A
Band 25 (Single Carrier	r) Port 10) MHz							
TC.	256QAM							
		Mid Channel, 1962.5 MHz	37.87	0	Not Provided	37.9	N/A	N/A
Band 25 (Single Carrier								
10) MHz							
	256QAM	Mid Channel, 1962,5 MHz	37.88	0	Not Provided	37.9	N/A	N/A
Band 25 (Single Carrier	r) Port 12	a Oriannoi, 1302.3 WHZ	37.00		140t i Tovided	51.3	17/0	14/5
	MHz							
	256QAM	NE 101				o= -		.,,,
Band 25 (Single Carrier	r) Port 13	Mid Channel, 1962.5 MHz	37.71	0	Not Provided	37.7	N/A	N/A
	r) Port 13) MHz							
TC.	256QAM							
		Mid Channel, 1962.5 MHz	37.77	0	Not Provided	37.8	N/A	N/A
Band 25 (Single Carrier								
10	0 MHz 256QAM							
	ZOOQAM	Mid Channel, 1962.5 MHz	37.82	0	Not Provided	37.8	N/A	N/A
Band 25 (Single Carrier	r) Port 15	a Oriannoi, 1302.3 WHZ	51.02		140t i Tovided	57.0	17/0	14/5
) MHz							
	256QAM							
Dand 25 (0: 0- :	r) Dort 10	Mid Channel, 1962.5 MHz	37.78	0	Not Provided	37.8	N/A	N/A
Band 25 (Single Carrier	r) Port 16) MHz							
TC.	256QAM							
		Mid Channel, 1962.5 MHz	37.75	0	Not Provided	37.7	N/A	N/A

Report No. NOKI0005 31/68

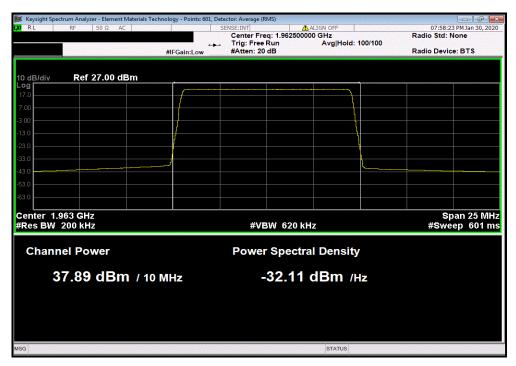


Band 25 (Single Carrier) Port 1, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz

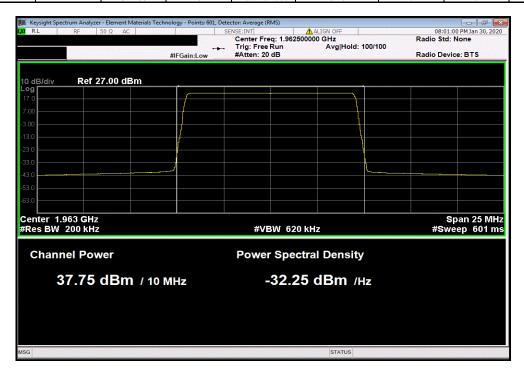

Initial Power Duty Cycle Antenna Gain Final w/o Ant Gain Limit

(dBm/OBW) Factor (dB) (dBi) Value (dBm/OBW) (dBm) Results

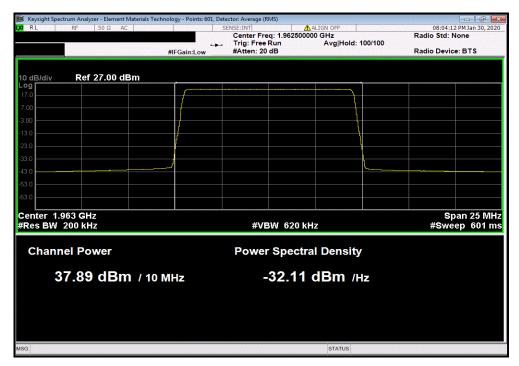
38.034 0 Not Provided 38 N/A N/A



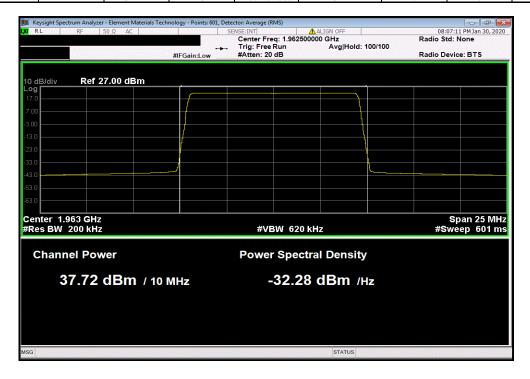
Band 25 (Single Carrier) Port 2, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz									
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit				
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results			
	37.828	0	Not Provided	37.8	N/A	N/A			



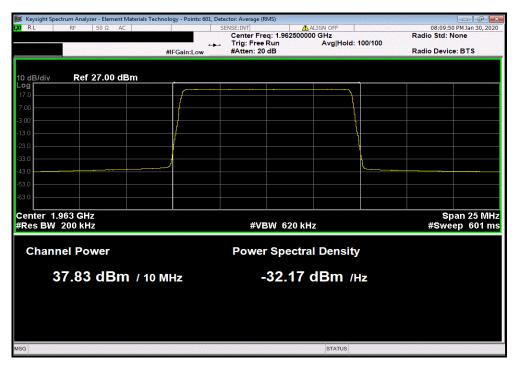
Report No. NOKI0005 32/68



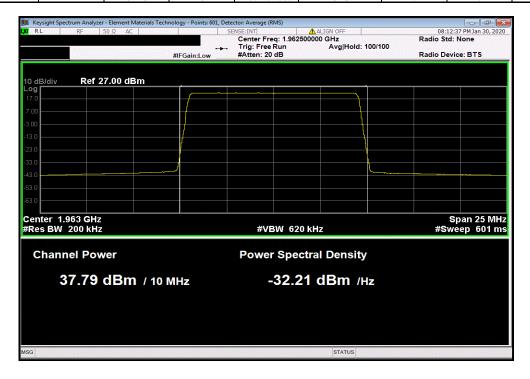
Band 25 (Single Carrier) Port 4, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz									
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit				
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results			
	37.753	0	Not Provided	37.8	N/A	N/A			



Report No. NOKI0005 33/68

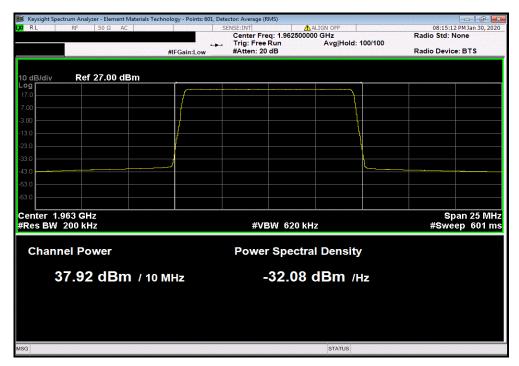


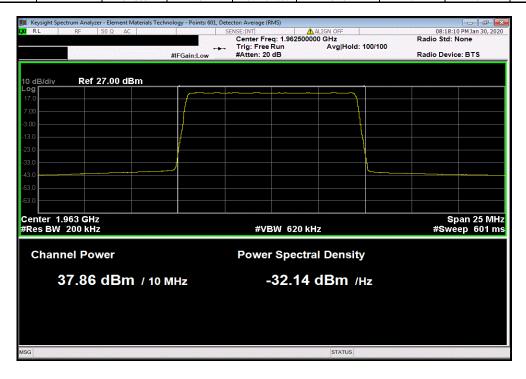
Band 25 (Single Carrier) Port 6, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz									
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit				
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results			
	37.724	0	Not Provided	37.7	N/A	N/A			



Report No. NOKI0005 34/68

Band 25 (Single Carrier) Port 8, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz									
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit				
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results			
	37.79	0	Not Provided	37.8	N/A	N/A			


Report No. NOKI0005 35/68

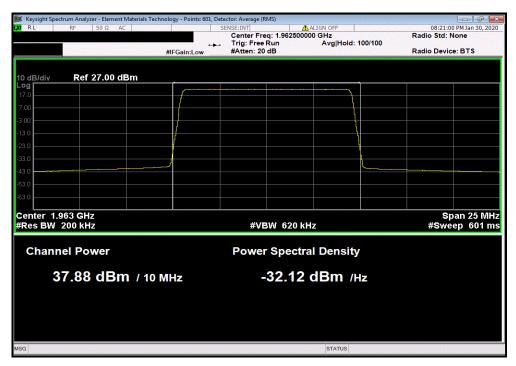

Band 25 (Single Carrier) Port 9, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz

Initial Power Duty Cycle Antenna Gain Final w/o Ant Gain Limit
(dBm/OBW) Factor (dB) (dBi) Value (dBm/OBW) (dBm) Results

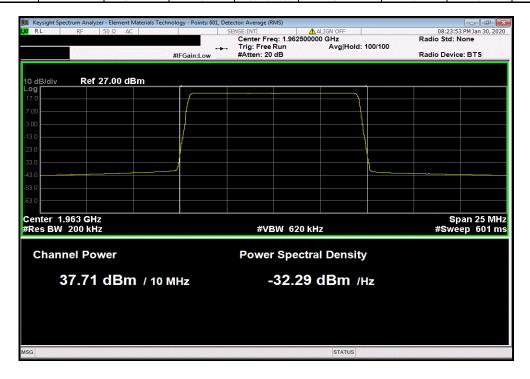
37.923 0 Not Provided 37.9 N/A N/A

	Band 25 (S	ingle Carrier) Poi	rt 10, 10 MHz, 25	6QAM, Mid Channel,	1962.5 MHz	
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit	
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results
	37.865	0	Not Provided	37.9	N/A	N/A

Report No. NOKI0005 36/68



Band 25 (Single Carrier) Port 11, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz

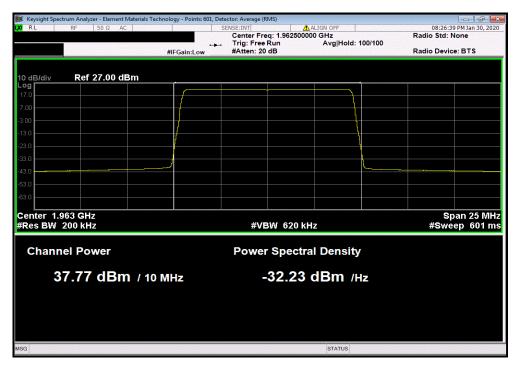

Initial Power Duty Cycle Antenna Gain Final w/o Ant Gain Limit

(dBm/OBW) Factor (dB) (dBi) Value (dBm/OBW) (dBm) Results

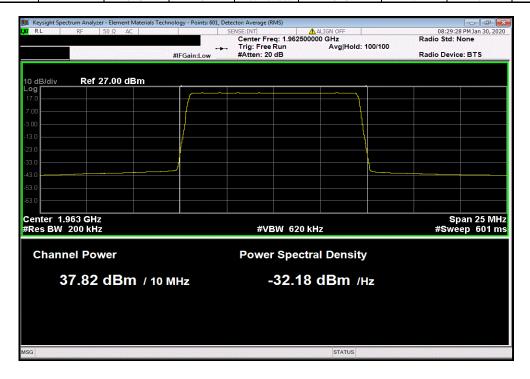
37.877 0 Not Provided 37.9 N/A N/A

	Band 25 (S	ingle Carrier) Por	rt 12, 10 MHz, 25	6QAM, Mid Channel,	1962.5 MHz	
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit	
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results
	37.711	0	Not Provided	37.7	N/A	N/A

Report No. NOKI0005 37/68



Band 25 (Single Carrier) Port 13, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz

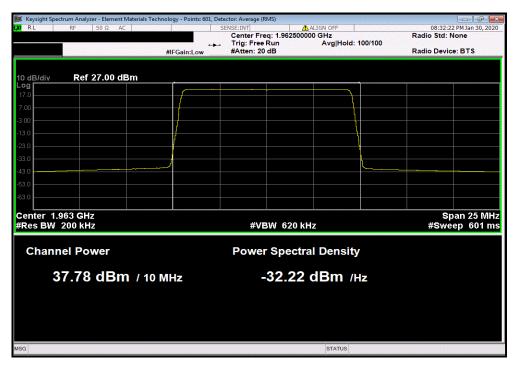

Initial Power Duty Cycle Antenna Gain Final w/o Ant Gain Limit

(dBm/OBW) Factor (dB) (dBi) Value (dBm/OBW) (dBm) Results

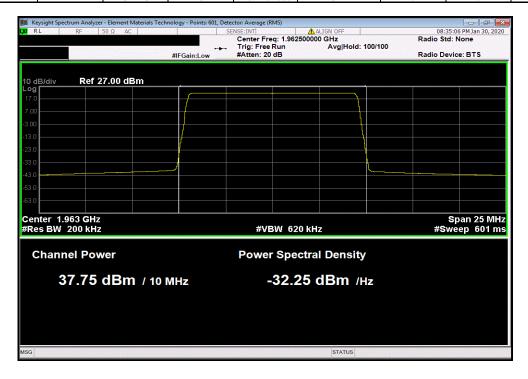
37.766 0 Not Provided 37.8 N/A N/A

	Band 25 (S	ingle Carrier) Por	rt 14, 10 MHz, 25	6QAM, Mid Channel,	1962.5 MHz	
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit	
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results
	37.82	0	Not Provided	37.8	N/A	N/A

Report No. NOKI0005 38/68



Band 25 (Single Carrier) Port 15, 10 MHz, 256QAM, Mid Channel, 1962.5 MHz


Initial Power Duty Cycle Antenna Gain Final w/o Ant Gain Limit

(dBm/OBW) Factor (dB) (dBi) Value (dBm/OBW) (dBm) Results

37.775 0 Not Provided 37.8 N/A N/A

	Band 25 (S	ingle Carrier) Por	t 16, 10 MHz, 256	6QAM, Mid Channel, 1	1962.5 MHz	
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	Limit	
	(dBm/OBW)	Factor (dB)	(dBi)	Value (dBm/OBW)	(dBm)	Results
	37.748	0	Not Provided	37.7	N/A	N/A

Report No. NOKI0005 39/68

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	19-Mar-19	19-Mar-20

TEST DESCRIPTION

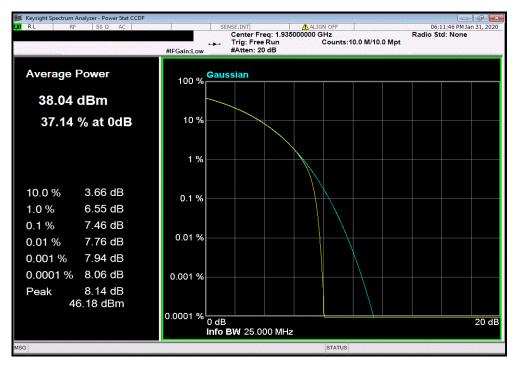
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

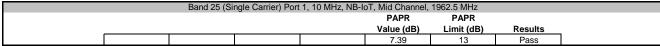
Because the conducted Output Power was measured using a RMS Average detector, the Peak to Average Power Ratio (PAPR) was measured to show that the maximum peak-max-hold spectrum to the maximum of the average spectrum does not exceed the rule part defined limit.

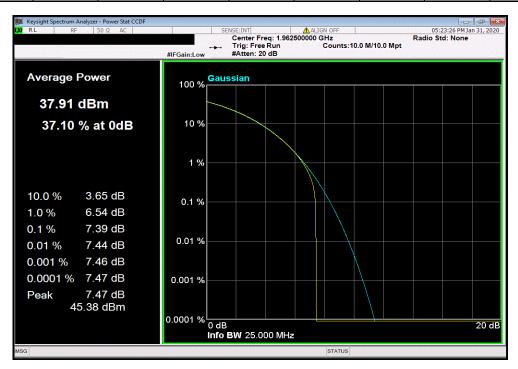
The PAPR measurement method is described in ANSI C63.26 section 5.2.3.4. The PAPR was measured using the CCDF function of the spectrum analyzer.

Per FCC part 24.232(d) and RSS 133 6.4, the PAPR limit shall not exceed 13 dB for more than the ANSI described 0.1% of the time.

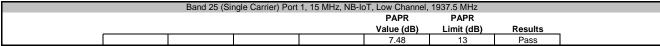
Report No. NOKI0005 40/68

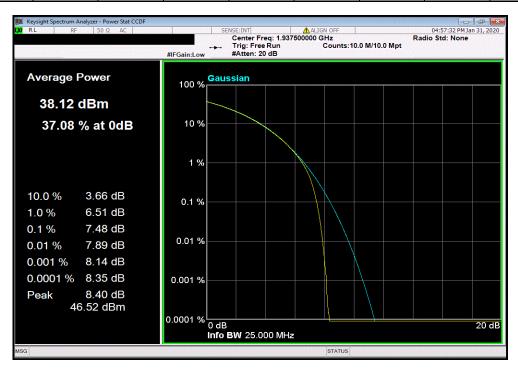



Serial Number: YK190400217 Customer: Nokia Solutions and Networks Attendees: Mitch Hill, John Rattanavong Project: None Tested by: Willie Love, Brandon Hobbs Power: 54VDC EST SPECIFICATIONS Test Method CC 24E:2020 ANSI C63.26:2015 SS-133:2018 RSS-Gen:2019 Ill losses in the measurement path were accounted for. The highest power port operating at maximum power was used for these measurements. The highest power port was determined by measuring the verage power on each of the 16 antenna ports using a 10 MHz channel bandwidth at the middle channel found elsewhere in the report. EVIATIONS FROM TEST STANDARD One PAPR PAPR								TbtTx 2019.08.30.0	XMit 2019.09
Customer: Nokis Solutions and Networks	EUT: AAFB					Wo			
Attendees: Mitch Hill, John Ratianavong									
Project: None									
Tested by: Willie Love, Brandon Hobbs Power: SHVDC Job Site: TX09		II, John Rattana	ivong						
Test Method									
ANSI C83.26:2015		ve, Brandon Ho	obbs	Power			Job Site:	TX09	
SS-133:2018 OMMENTS II losses in the measurement path were accounted for. The highest power port operating at maximum power was used for these measurements. The highest power port was determined by measuring the verage power on each of the 16 antenna ports using a 10 MHz channel bandwidth at the middle channel found elsewhere in the report. EVIATIONS FROM TEST STANDARD ONE Signature 1 Signature PAPR Value (dB) NB-IoT NB-IoT Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz NB-IoT Low Channel, 1997.5 MHz Mid Channel, 1987.5 MHz High Channel, 1987.5 MHz High Channel, 1987.5 MHz High Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz High Channel, 1987.5 MHz NB-IoT Low Channel, 1987.5 MHz Annel 13 Pass High Channel, 1982.5 MHz High Channel, 1982.5 MHz NB-IoT Low Channel, 1987.5 MHz NB-IoT Low Channel, 1982.5 MHz NB-IoT									
Il losses in the measurement path were accounted for. The highest power port operating at maximum power was used for these measurements. The highest power port was determined by measuring the verage power on each of the 16 antenna ports using a 10 MHz channel bandwidth at the middle channel found elsewhere in the report. EVIATIONS FROM TEST STANDARD	CC 24E:2020								
Il losses in the measurement path were accounted for. The highest power port operating at maximum power was used for these measurements. The highest power port was determined by measuring the verage power on each of the 16 antenna ports using a 10 MHz channel bandwidth at the middle channel found elsewhere in the report. Value Company Paper Paper	SS-133:2018				RSS-Gen:2019				
Variable	OMMENTS								
Onfiguration # 1 Signature PAPR Value (dB) PAPR Value (dB) <th>verage power on each of the</th> <th>ne 16 antenna p</th> <th></th> <th></th> <th></th> <th><u> </u></th> <th>-</th> <th></th> <th>-</th>	verage power on each of the	ne 16 antenna p				<u> </u>	-		-
Signature 1 Signature PAPR Value (dB) Value (dB) Value (dB) Value (dB) Results		ואוטאולט							
Signature PAPR Value (dB) Value (dB) Value (dB) Value (dB) Results	lone								
NB-IoT N	configuration #	1	Ciemeture	7.1	1				
NB-IoT			Signature						
NB-IoT			Signature	, ,					Results
Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz 15 MHz		1	Signature						Results
Mid Channel, 1962.5 MHz 7.39 13 Pass 15 MHz 7.39 13 Pass 15 MHz 7.39 13 Pass 15 MHz 7.39 13 Pass 7.39 13 Pass 7.39 13 Pass 7.35 7			Signature	2 2					Results
High Channel, 1990.0 MHz 7.39 13 Pass 15 MHz 15 MHz 15 MHz 15 MHz 15 MHz 15 MHz 15 MHz 15 MHz 15 MHz 15 MHz						Valu	e (dB)	Limit (dB)	
NB-IoT			Low Channel, 1935 MHz			Valu 7	r.46	Limit (dB)	Pass
NB-IoT			Low Channel, 1935 MHz Mid Channel, 1962.5 MHz			Valu 7 7	.46 .39	Limit (dB) 13 13	Pass Pass
Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz 20 MHz NB-IoT Low Channel, 1940 MHz Mid Channel, 1962.5 MHz 13 Pass Pass 13 Pass 20 MHz NB-IoT Low Channel, 1940 MHz Mid Channel, 1962.5 MHz 13 Pass Pass Pass Pass Pass Pass Pass Pass	10 MHz		Low Channel, 1935 MHz Mid Channel, 1962.5 MHz			Valu 7 7	.46 .39	Limit (dB) 13 13	Pass Pass
Mid Channel, 1962.5 MHz 7.35 13 Pass Fass Fass	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz			Valu 7 7	.46 .39	Limit (dB) 13 13	Pass Pass
High Channel, 1987.5 MHz 7.35 13 Pass 20 MHz	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz			Valu 7 7 7	.46 .39 .39	13 13 13	Pass Pass Pass
20 MHz NB-IoT	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz			Valu 7 7 7	.46 .39 .39	13 13 13 13	Pass Pass Pass
Low Channel, 1940 MHz 7.47 13 Pass Mid Channel, 1962.5 MHz 7.22 13 Pass	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz			Valu 7 7 7 7	.46 .39 .39 .48	13 13 13 13 13 13	Pass Pass Pass Pass Pass
Mid Channel, 1962.5 MHz 7.22 13 Pass	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz			Valu 7 7 7 7	.46 .39 .39 .48	13 13 13 13 13 13	Pass Pass Pass Pass Pass
	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz			Valu 7 7 7 7 7	7.46 7.39 7.39 7.48 7.35 7.35	13 13 13 13 13 13 13	Pass Pass Pass Pass Pass Pass
Filgit Citatilies, 1900 WIFE 7.25 13 Pass	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1937.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz Low Channel, 1940 MHz			Valu 7 7 7 7 7 7 7 7	e (dB) 2.46 3.39 3.39 4.48 3.35 3.35	13 13 13 13 13 13 13 13 13	Pass Pass Pass Pass Pass Pass Pass
	10 MHz	NB-IoT	Low Channel, 1935 MHz Mid Channel, 1962.5 MHz High Channel, 1990.0 MHz Low Channel, 1997.5 MHz Mid Channel, 1962.5 MHz High Channel, 1987.5 MHz Low Channel, 1940 MHz Mid Channel, 1940 MHz			Valu 7 7 7 7 7 7 7 7 7 7	e (dB) 463939353535	13 13 13 13 13 13 13 13 13	Pass Pass Pass Pass Pass Pass Pass Pass

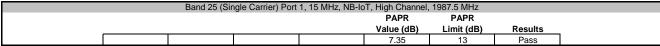

Report No. NOKI0005 41/68

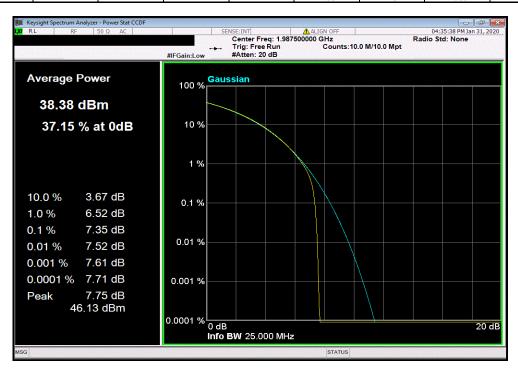
Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, Low Channel, 1935 MHz
PAPR PAPR
Value (dB) Limit (dB) Results
7.46 13 Pass



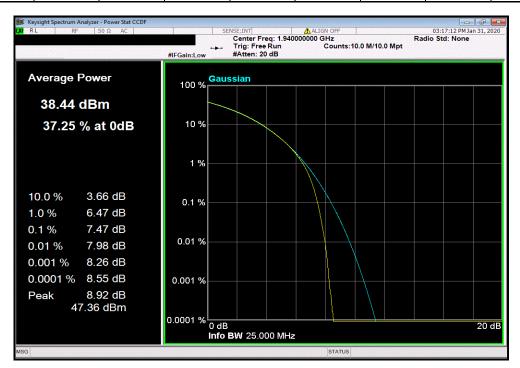

Report No. NOKI0005 42/68

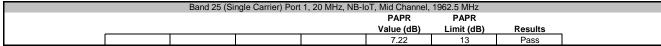
Band 25 (Single Carrier) Port 1, 10 MHz, NB-IoT, High Channel, 1990.0 MHz
PAPR PAPR
Value (dB) Limit (dB) Results
7.39 13 Pass




Report No. NOKI0005 43/68

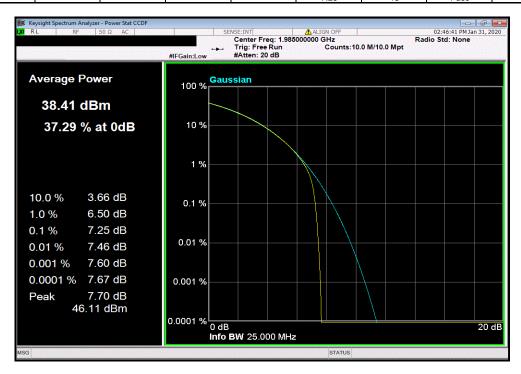
Band 25 (Single Carrier) Port 1, 15 MHz, NB-IoT, Mid Channel, 1962.5 MHz
PAPR PAPR
Value (dB) Limit (dB) Results
7.35 13 Pass






Report No. NOKI0005 44/68

Band 25 (Single Carrier) Port 1, 20 MHz, NB-IoT, Low Channel, 1940 MHz
PAPR
PAPR
Value (dB) Limit (dB) Results
7.47 13 Pass



Report No. NOKI0005 45/68

Band 25 (Single Carrier) Port 1, 20 MHz, NB-IoT, High Channel, 1985 MHz
PAPR PAPR
Value (dB) Limit (dB) Results
7.25 13 Pass

Report No. NOKI0005 46/68