

TEST REPORT

Report Number		RAPA12-O-411			
Type of Equipment		Keyless Entry System			
Model Name		1WG6R-AM			
FCC ID		VA5REC310-1W433			
IC Number		7087A-1WREC310433			
	Name	SEGI LIMITED			
Applicant	Logo	SEGI			
	Address	Room 1808, 18/F, Tower 2, Admiralty Centre, 18 Harcourt R Admiralty, Hong Kong			
	Name	SEGI ELECTRONICS CO., LTD.			
Manufacturer	Address	Chenjiapucun, Liaobu Town, Dongguan City, Guangdong Province, P.R.China			
Date of receptio	n	June 18, 2012			
Date of test		June 18, 2012 to July 2, 2012			
Date of issue		July 3, 2012			
Total Page		19 pages (including this page)			

SUMMARY

The equipment complies with FCC CFR 47 Part 15 Subpart C Section 15.231 and IC RSS-210 Issue8 Annex 1-2010.

This test report contains only the results of a single test of the sample supplied for the examination. It is not a general valid assessment of the features of the respective products of the mass-production.

Date : July 3, 2012

Tested by Chang Young Choi

Deputy General Manager

Date : July 3, 2012

Reviewed by **Sukil Park**Executive Managing Director

CONTENTS

3 3
,
3
<u></u>
E
5
5
{
14
·17
/
19
-

Page: 3 of 19 Report No.: RAPA12-O-411

1. General description of EUT

1.1 Applicant

Company name : SEGI LIMITED

• Address : Room 1808, 18/F, Tower 2, Admiralty Centre, 18 Harcourt Rd.,

Admiralty, Hong Kong

• Contact person : Eui Seok, Chung

Phone/Fax
 82-32-623-5550 / 82-32-623-6667

1.2 Manufacturer

• Company name : SEGI ELECTRONICS CO., LTD

• Address : Chenjiapucun, Liaobu Town, Dongguan City, Guangdong Province,

P.R.China

Contact person : Eui Seok, Chung

Phone / Fax
 82-32-623-5550 / 82-32-623-6667

1.3 Basic description of EUT

Product name : Keyless Entry System

Model name : 1WG6R-AM

Serial number : Not available(Proto Type)

• Frequency : 433.92 MHz(Tx)

• Channel number : 1 Channel

Modulation method : ASK

• FCC Rule Part(s) : FCC CFR47 Part 15 Subpart C Section 15.231

• IC Rule Part(s) : IC RSS-210 Issue8 Annex 1-2010

• FCC classification : DSC / Part 15 Security/Remote control Transmitter

• IC classification : Annex 1 / Momentarily Operated Devices and Remote Control

• Date of test : June 18, 2012 to July 2, 2012

Date of issue : July 3, 2012Place of test : Head office

824, B104, Anyang Megavalley, 799, Gwanyang-dong, Dongan-gu, Anyang-si, Gyeonggi-do, Korea, 483-060

Open area test site

80, Jeil-ri, Yangji-myun, Cheoin-gu, Yongin-si, Gyeonggi-do,

Korea, 449-825

(FCC Registration Number : 337229) (IC Submission Number : 143881) (KCC Designation Number : KR0027) Page : 4 of 19 Report No. : RAPA12-O-411

1.4 Technical specification of EUT

Model Name	1WG6R-AM
Product Name	Keyless Entry System
Size(mm)	34.0 x 58.2 x 13.5 (W x L x H)
Battery Size	CR2016 Battery 2EA
Transmit Frequency	433.92 MHz
Modulation Method	ASK

Page : 5 of 19 Report No. : RAPA12-O-411

2. General information of test

2.1 Standard for measurement methods

Applied Standard : FCC CFR47 Part 15 Subpart C, IC RSS-210 Issue8 Annex 1-2010							
FCC	IC	Description of Test	Limit	Result			
15.231(a)	A1.1.1	Transmission Time(s)	5	Pass			
15.231(b)	A1.1.2	Field Strength of Fundamental (dBµV/m)	101.24(Peak) / 81.24(AVG)	Pass			
15.231(b) & 15.209	A1.1.2	Radiated Emission(dBµV/m)	81.24(Peak) / 61.24(AVG)	Pass			
15.231(c)	A1.1.3	Occupied Bandwidth(kHz)	1 084.8 kHz	Pass			

2.2 Description of EUT modification

During the test, there was no mechanical or circuitry modification to improve RF and spurious characteristic, and any RF and spurious suppression device(s) was not added against the device tested.

2.3 Test configuration

• Type of peripheral equipment used

Description	Model Name	Serial No.	Manufacturer	FCC ID	IC Number
EUT	1WG6R-AM	N/A	SEGI Electronics Co., Ltd.	VA5REC310-1W433	7087A-1WREC310433

Type of cable used

Device from	Device to	Type of Cable	Cable Number	Length
-	-	-	-	-

Page : 6 of 19 Report No. : RAPA12-O-411

3. Measurement data

3.1 Transmission time

3.1.1 Definitions

A transmission time is a switching time that will automatically deactivate the transmission of transmitter of EUT.

3.1.2 Specification

FCC Rules Part 15 Subpart C Section 15.231(a)(1) IC Rules RSS-210 Issue8 Annex 1-2010 A1.1.1

3.1.3 Measurement method

The device output is connected to the spectrum analyzer.

3.1.4 Set-Up

3.1.5 Test equipment list

Equipment	Model Name	Manufacture		
EUT	1WG6R-AM	SEGI Electronics Co., Ltd.		
Spectrum Analyzer	N9020A	Agilent		

3.1.6 Test procedure

Spectrum analyzer setting:

• Center Frequency: 433.92 MHz

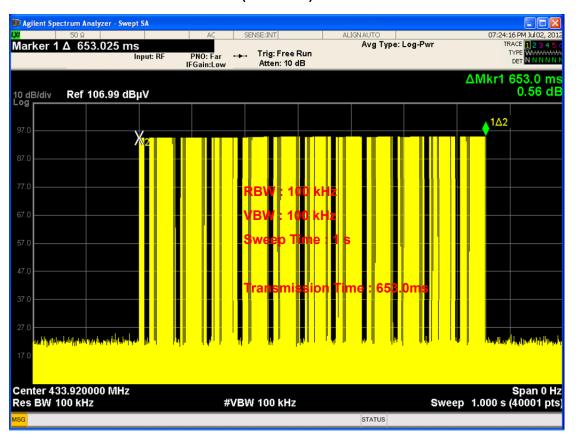
Span: ZeroRBW: 100 kHzVBW: 100 kHzSweep time: 1 sDetect Mode: Peak

3.1.7 Test condition

Test place: Shield RoomTest mode: Normal Operation

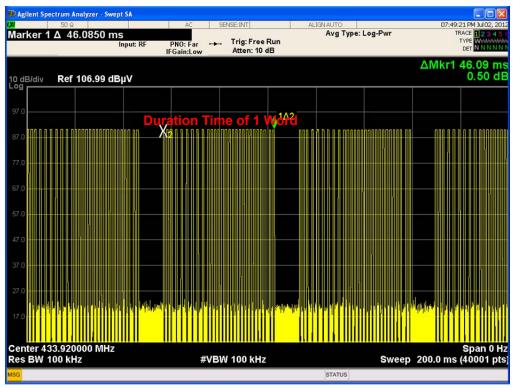
• Test environment: 26 °C, 49 % R.H.

Page : 7 of 19 Report No. : RAPA12-O-411

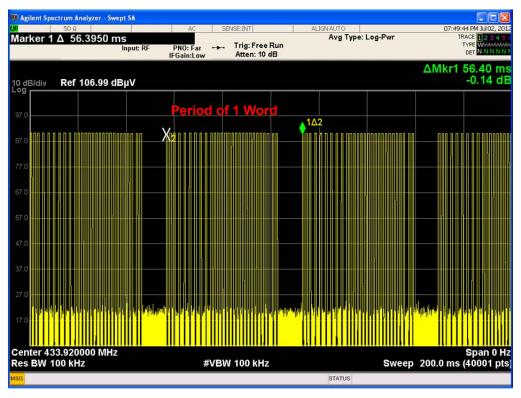

3.1.8 Test result

Frequency (MHz)	Transmission Time (s)	Limit (s)
433.92	0.653	5.00

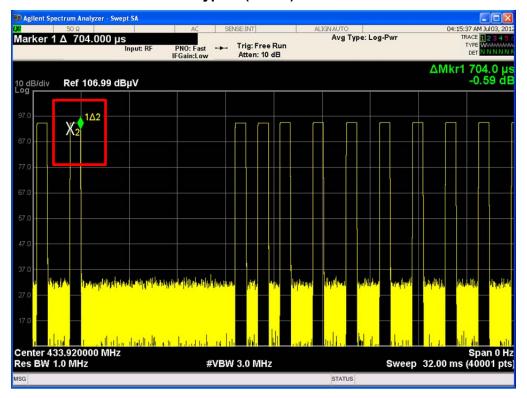
3.1.9 Limit

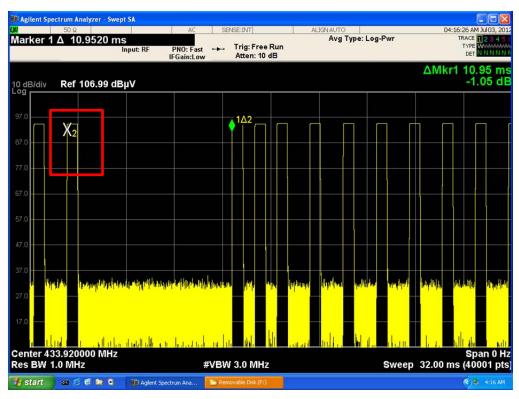

Less than 5 seconds.

3.1.10 Plots of transmission time (11 words)

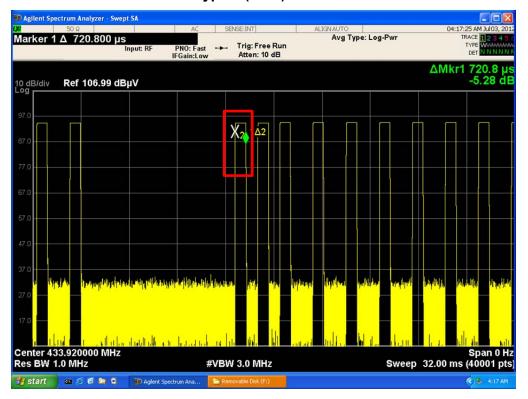


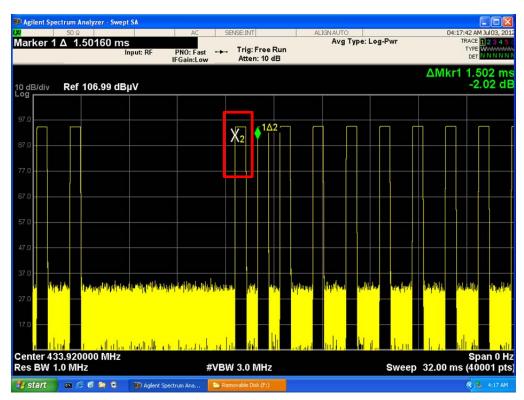
3.1.11 Plot of 1 word


Duration Time of 1 word: 46.09 ms


Period of 1 word: 56.40 ms

3.1.12 Plot of Data Format Type 1 (SYNC)


Duration Time of Type 1 (SYNC): 704.0 μs

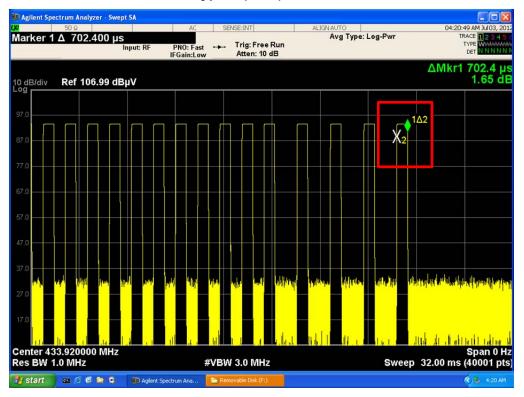

Period of Type 1 (SYNC): 10 950 µs

3.1.13 Plot of Data Format Type 2 (Bit 0)

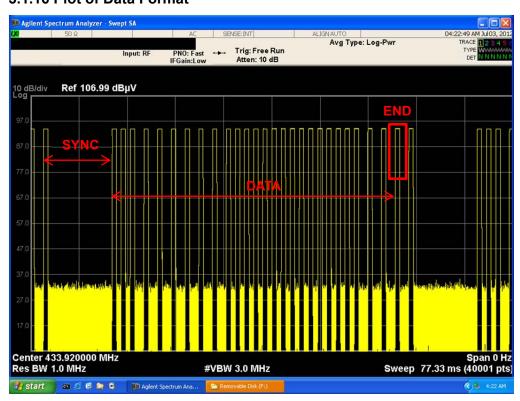

Duration Time of Type 2 (Bit 0): 720.8 μs

Period of Type 2 (Bit 0): 1 502 μs

3.1.14 Plot of Data Format Type 3 (Bit 1)


Duration Time of Type 3 (Bit 1): 696.0 μs

Period of Type 3 (Bit 1): 2 190 μs



3.1.15 Plot of Data Format Type 4 (END)

Duration Time of Type 4 (END): 702.4 μs

3.1.16 Plot of Data Format

Page : 13 of 19 Report No. : RAPA12-O-411

3.1.17 Data Format of 1 Word

Data Type	Format	Duration T	ime (µs)	
SYNC	(SYNC) x 1	704.0 x 1	704.0	
Data	(Bit 0 x 18) + (Bit 1 x 8)	(720.8 x 18) + (696.0 x 8)	18 542.4	
END	(END) x 1	702.4 x 1	702.4	

3.1.18 Average Factor

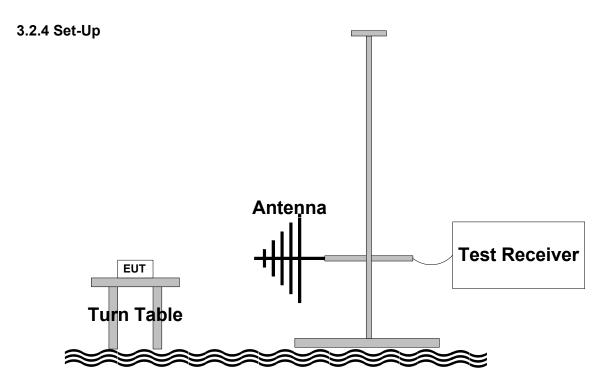
Total Average Factor =
$$20 \log \left[\frac{(704.0 + 18542.4 + 702.4)}{56400} \right] dB$$

= -9.0 dB

Page : 14 of 19 Report No. : RAPA12-O-411

3.2 Field strength of fundamental and spurious emission

3.2.1 Definitions


A field strength emission is a emission from the equipment when transmitting into a non-radiating load on fundamental frequency and frequencies that are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

3.2.2 Specification

FCC Rules Part 15 Subpart C Section 15.231(b) IC Rules RSS-210 Issue8 Annex 1-2010 A1.1.2

3.2.3 Measurement method

ANSI Standard C63.4-2009 8.3

3.2.5 Test equipment list

Equipment	Model Name	Manufacturer
EUT	1WG6R-AM	SEGI Electronics Co., Ltd.
Spectrum Analyzer	N9020A	Agilent
Loop Antenna	EMCO 6502	EMCO
Bi-conical Antenna	VHA9103	Schwarzbeck
Log Periodic Antenna	VULP9118A	Schwarzbeck
Horn Antenna	BBHA-9120D	Schwarzbeck
Pre-Amplifier	SCU-01	R&S
Pre-Amplifier	ESMI-Z7	R&S

Page : 15 of 19 Report No. : RAPA12-O-411

3.2.6 Test procedure

The EUT is placed on a turntable, which is 0.8 meter high above ground.

The turntable rotates 360 degrees to determine the position of the maximum emission level.

EUT is set 3.0 meters away from the receiving antenna, broadband antenna, which is mounted on an antenna mast.

The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level form the EUT. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find out the maximum emission levels, all of the EUT location were manipulated according to ANSI 63.4 during the radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz between 30 to 1000 MHz, and 1 MHz between 1 to 5 GHz.

3.2.7 Test condition

Test place: Open area test siteTest mode: Normal operation

• Test environment: 21 °C, 52 % R.H.

3.2.8 Test result

Freq. [MHz]	Pol. [H/V]	plane [X/Y/Z]	Detect Mode [Peak/QP/AVG]	Reading [dBµV]	ANT. Factor [dB/m]	Cable Loss [dB]	AVG Factor [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
400.00	.,		Peak	400.4	45.0	4.5	0	40.5	86.0	100.8	14.8
433.92	V	Υ	**AVG	106.1	15.9	4.5	-22.3	40.5	77.0	80.8	3.8
007.04	.,		Peak	70.0	00.4	0.0	0	40.5	61.7	80.8	19.1
867.84	V	Υ	**AVG	70.8	22.4	9.0	-22.3	40.5	52.7	60.8	8.1
*4004.70			Peak		04.0	40.0	0	40.0	-	74.0	-
*1301.76	-	1	**AVG	•	24.3	13.6	-22.3	16.8	-	54.0	-
4705.00			Peak		04.0	40.4	0	40.0	-	80.8	-
1735.68	-	-	**AVG	-	24.8	18.1	-22.3	16.6	-	60.8	-
0400.00	.,		Peak	05.4	05.4	00.0	0	40.4	57.0	80.8	23.8
2169.60	V	Υ	**AVG	25.4	25.4	22.6	-22.3	16.4	48.0	60.8	12.8
2002 52	Ξ	Υ	Peak	40.0	07.0	07.4	0	40.4	49.7	80.8	31.1
2603.52	П	Ť	**AVG	10.8	27.9	27.1	-22.3	16.1	40.7	60.8	20.1
2027 44			Peak		20.4	24.6	0	16.2	-	80.8	-
3037.44	-	•	**AVG	1	28.4	31.6	-22.3	10.2	-	60.8	-
2474.20			Peak		20.4	20.4	0	45.0	-	80.8	-
3471.36	-		**AVG	1	29.1	36.1	-22.3	15.8	-	60.8	-
*2005.20			Peak		20.7	40.7	0	16.0	-	74.0	-
*3905.28	-		**AVG	•	29.7	40.7	-22.3		-	54.0	-
*4000.00			Peak		20.2	45.0	0	45.0	-	74.0	-
*4339.20	-	-	**AVG	-	30.3	45.2	-22.3	15.8	-	54.0	-

Here, * is restricted frequency,

^{**} is the average value applied with average factor.

[&]quot;-" is no emission data detected above noise floor.

Page : 16 of 19 Report No. : RAPA12-O-411

3.2.9 Limit

• Fundamental

Fundamental Frequency (MHz)	Field Strength of Fundamental (μV/m)	Field Strength of Fundamental (dBμV/m)
40.66 – 40.70	2 250	67.04
70 – 130	1 250	61.94
130 – 174	1 250 to 3 750	61.94 to 71.48
174 – 260	3 750	71.48
260 – 470	3 750 to 12 500	71.48 to 81.94
Above 470	12 500	81.94

• Spurious emission

Fundamental Frequency (MHz)	Field Strength of Spurious Emission (μV/m)	Field Strength of Spurious Emission (dBµV/m)	
40.66 – 40.70	225	47.04	
70 – 130	125	41.94	
130 – 174	125 to 375	41.94 to 51.48	
174 – 260	375	51.48	
260 – 470	375 to 1 250	51.48 to 61.94	
Above 470	1 250	61.94	

• Spurious emission at restricted band

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	48.52 to 13.80	300
0.490 – 1.705	24000/F(kHz)	33.80 to 22.97	30
1.705 – 30.0	30	29.54	30
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 – 960	200	46.02	3
Above 470	500	53.98	3

Here, restricted bands are 1301 to 1427 MHz and 3600 to 4400 MHz.

Page : 17 of 19 Report No. : RAPA12-O-411

3.3 20 dB Bandwidth

3.3.1 Definitions

A 20 dB Bandwidth is width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each lower 20 dB of the total mean power of a given emission

3.3.2 Specification

FCC Rules Part 15, Subpart C, Section 15.231(c)

3.3.3 Measurement methods

ANSI Standard C63.4-2009 10.1.8.8

3.3.4 Set-Up

3.3.5 Test equipment list

Equipment	Model Name	Manufacture	
EUT	1WG6R-AM	SEGI Electronics Co., Ltd.	
Spectrum Analyzer	N9020A	N9020A Agilent	

3.3.6 Test procedure

Spectrum Analyzer setting

• Center Frequency: 433.92 MHz

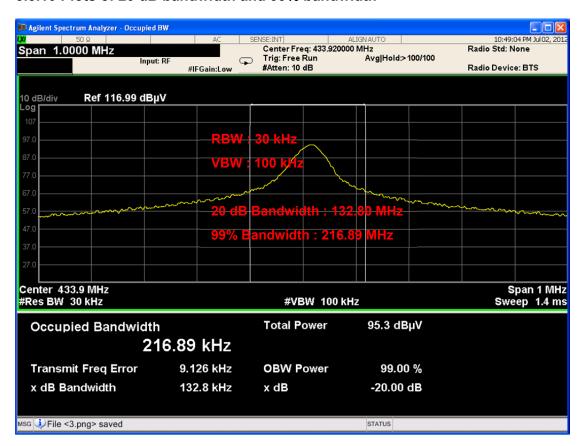
Span: 1 MHzRBW: 30 kHzVBW: 100 kHz

• Detect Mode: Peak, Max Hold

3.3.7 Test condition

Test Place: Shield Room
Test Mode: Normal Operation
Test environment: 26 °C, 49 %R.H.

3.3.8 Test result


Frequency (MHz)	RBW (MHz)	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)
433.92	30 kHz	0.133	0.217	1.085

3.3.9 Limit

Less than 0.25 % (1.085 MHz).

Page : 18 of 19 Report No. : RAPA12-O-411

3.3.10 Plots of 20 dB bandwidth and 99% bandwidth

Page : 19 of 19 Report No. : RAPA12-O-411

4. Test equipment list

The listing below denotes the test equipment for the test(s).

No.	Equipment	Model	Manufacturer	Serial Number	Calibration Due date
1	Spectrum Analyzer	N9020A	Agilent	MY48010456	03/10/13
2	Biconical Antenna	BBAK9137	Schwarzbeck	2217	11/29/12
3	Log-Periodic Antenna	VULP9118A	Schwarzbeck	382	11/29/12
4	Horn Antenna	BBHA 9120 D	Schwarzbeck	395	08/13/12
5	Pre-Amplifier	SCU-01	R&S	383521	09/28/12
6	Pre-Amplifier	ESMI-Z7	R&S	N/A	12/29/12
7	Turn Table	N/A	Daeil EMC	N/A	N/A
8	Antenna Mast	EAM4.5	Daeil EMC	N/A	N/A
9	Controller	DE200	Daeil EMC	AAA69813111	N/A