TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC1806-0165(1)

2. Customer

Name: SEGI LIMITED

• Address : UNIT S, 3-F, HARIBEST INDUSTRIAL BUILDING, 45-47, AU PUI WAN STREET,

SHATIN, NT HONGKONG China

3. Use of Report: FCC & IC Original Grant

4. Product Name / Model Name : Keyless Entry System / FTX1600R-FM

FCC ID / IC: VA5REB500-1WFX / 7087A-1WREB500FX

5. Test Method Used: ANSI C63.10-2013

Test Specification: FCC Part 15.231

RSS-210 Issue 9

6. Date of Test: 2018.06.04 ~ 2018.06.11

7. Testing Environment: See appended test report.

8. Test Result: Refer to the attached test result.

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2018.06.25.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1806-0165	Jun. 22, 2018	Initial issue
DRTFCC1806-0165(1)	Jun. 25, 2018	Updated page 7 (Note 4)

CONTENTS

1. General Information	. 4
1.1. Testing Laboratory	. 4
1.2. Testing Environment	. 4
1.3. Measurement Uncertainty	. 4
1.4. Description of EUT	. 5
2. Information about test items	. 6
2.1 Operating mode	. 6
2.2 Tested frequency	. 6
2.3 Auxiliary equipment	. 6
2.4 EMI Suppression Device(s)/Modifications	. 6
3. Test Report	. 7
3.1 Summary of tests	. 7
3.2 Transmitter requirements	. 8
3.2.1 20dB & Occupied bandwidth	. 8
3.2.2 Automatically deactivate	. 9
3.2.3 Field strength of fundamental and spurious emissions	10
3.2.4 AC power line conducted emission	13
3.2.5 Antenna requirement	14
APPENDIX I	15
APPENDIX II	16
APPENDIX III	17

1. General Information

1.1. Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site comply with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No.: KR0034

- IC Test site No.: 5740A-4

<u>www.dtnc.net</u>		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.2. Testing Environment

Ambient Condition	
Temperature	+23 °C ~ +27 °C
Relative Humidity	45 % ~ 47 %

1.3. Measurement Uncertainty

Test items	Measurement uncertainty
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, k = 2)

1.4. Description of EUT

FCC Equipment Class	Part 15 Security / Remote Control Transmitter	
EUT	Keyless Entry System	
Model Name	FTX1600R-FM	
Hardware version	1.0	
Software version	1.0	
Power Supply	DC 6 V	
Frequency Band	433.92 MHz	
Modulation Type	FSK	
Antenna type	Helical Antenna	

2. Information about test items

2.1 Operating mode

Operating Mode 1	This device was tested with continuous TX mode for field strength of fundamental and spurious emissions measurements.
Operating Mode 2	Normal operating mode was used for 20 dB BW and less than 5 second requirements.

2.2 Tested frequency

Mode	Frequency(MHz)
Transmitting mode	433.92
-	-

2.3 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-		-

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	RSS section(s)	Parameter	Test Condition	Status Note 1
I. Test Items				
15.231(b)	RSS-210[A1.2]	Field strength of fundamental and spurious emissions		C Note 3,4
15.205 15.209	RSS-GEN [8.9] RSS-GEN [8.10	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Radiated C Note 3	
15.231(a)	RSS-210[A1.1]	Automatically deactivate	C Conducted C C	
15.231(c)	-	20dB bandwidth		
-	RSS-210[A1.3]	Occupied bandwidth		
15.207	RSS-Gen[8.8]	AC Power Line Conducted Emission		NA Note 2
15.203	-	Antenna Requirements	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification: ANSI C-63.10-2013

Note 2: This device is used Battery for power supplying. Therefore this test item was not performed.

Note 3: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

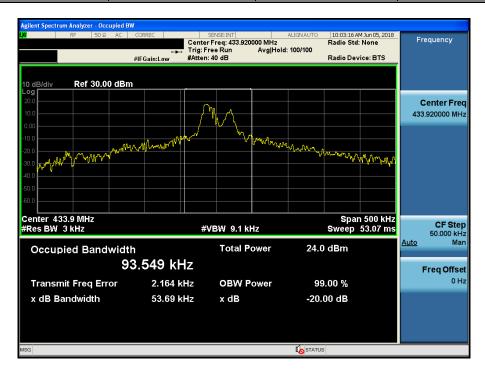
Note 4: This test item was performed in each axis and the worst case data was reported.

3.2 Transmitter requirements

3.2.1 20dB & Occupied bandwidth

- Procedure:

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of ANIS 63.10-2013.

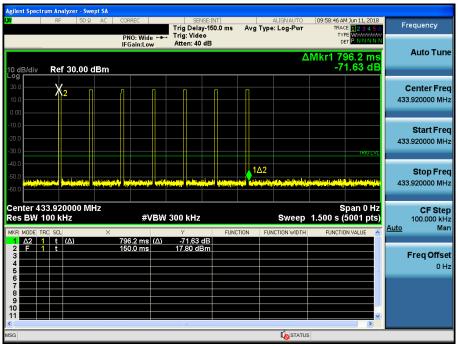

RBW: 1% to 5% of the OBW

VBW: Approximately three times the RBW

Detector: Peak Trace: Max hold Sweep: Auto couple

- Measurement Data: Comply

Frequency	20dB Bandwidth	99% Bandwidth	Limit
(MHz)	(kHz)	(kHz)	(kHz)
433.92	53.69	93.55	1084.80

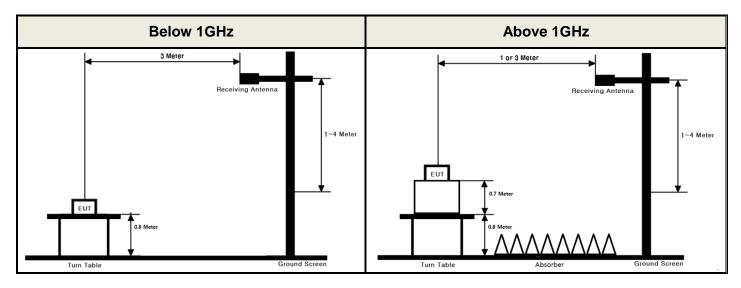

- Limit: § 15.209(c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

3.2.2 Automatically deactivate

- Measurement Data:

One operation time (s)	Limit (s)	
0.796	5	


- Limit: § 15.231(a)

- (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
 - (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
 - (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition
 - (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

3.2.3 Field strength of fundamental and spurious emissions

- Test set up diagrams:

- Procedure:

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

- Limit:

§ 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

§ 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency [MHz]	Field Strength of Fundamental Frequency [uV/m]	Measurement Distance [m]
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

§ 15.231(b), In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Frequency [MHz]	Field Strength of Fundamental Frequency [uV/m]	Field Strength of Spurious Emissions [uV/m]		
40.66 ~ 40.70	2,250	225		
70 ~ 130	1,250	125		
130 ~ 174	¹ 1,250 to 3,750	¹ 125 to 375		
174 ~ 260	3,750	375		
260 ~ 470	¹ 3,750 to 12,500	¹ 375 to 1,250		
Above 470	12,500	1,250		

¹Linear interpolations

- Measurement Data: Refer to next page

- Measurement Data: Comply

Radiated Emissions

Measurement Distance: 3 m

Frequency [MHz]	Detector Mode	EUT Positi on	ANT Pol	Reading [dBuV]	T.F [dB/m]	DCF [dB]	Field Strength [dBuV/m]	Limit [dBuV/m]	Margin [dB]
*433.92	PK	Х	Н	75.27	23.50	N/A	98.77	100.82	2.05
*433.92	AV	Х	Н	75.27	23.50	-19.21	79.56	80.82	1.26
867.82	PK	Х	Н	34.70	32.60	N/A	67.30	80.82	13.52
867.82	AV	Х	Н	34.70	32.60	-19.21	48.09	60.82	12.73
#1301.75	PK	Z	Н	58.50	-4.12	N/A	54.38	74.00	19.62
#1301.75	AV	Z	Н	58.50	-4.12	-19.21	35.17	54.00	18.83
1735.64	PK	Z	Н	58.02	-2.15	N/A	55.87	80.82	24.95
1735.64	AV	Z	Η	58.02	-2.15	-19.21	36.66	60.82	24.16
2169.40	PK	Z	Н	48.05	-0.01	N/A	48.04	80.82	32.78
2169.40	AV	Z	Н	48.05	-0.01	-19.21	28.83	60.82	31.99
2603.57	PK	Z	Н	55.05	1.06	N/A	56.11	80.82	24.71
2603.57	AV	Z	Н	55.05	1.06	-19.21	36.90	60.82	23.92
3037.55	PK	Z	Н	56.81	3.36	N/A	60.17	80.82	20.65
3037.55	AV	Z	Н	56.81	3.36	-19.21	40.96	60.82	19.86
3471.18	PK	Z	Н	56.37	3.57	N/A	59.94	80.82	20.88
3471.18	AV	Z	Н	56.37	3.57	-19.21	40.73	60.82	20.09
#3905.33	PK	Z	Н	57.68	3.27	N/A	60.95	74.00	13.05
#3905.33	AV	Z	Н	57.68	3.27	-19.21	41.74	54.00	12.26
#4339.06	PK	Z	V	50.57	3.87	N/A	54.44	74.00	19.56
#4339.06	AV	Z	V	50.57	3.87	-19.21	35.23	54.00	18.77

Note 1. The result of Average measurement was calculated using PK result and duty cycle reduction factor.

Refer to the appendix II for duty reduction factor.

Note 2. * is fundamental frequency. And # is spurious emission at restricted band.

The spurious emission was confirmed to be related to the fundamental emissions.

Note 3. No other spurious and harmonic emissions were reported greater than listed emissions above table.

Note 4. Sample calculation

T.F = AF + CL - AG / Field Strength = Reading + T.F + DCF

Margin = Limit – Field Strength

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain DCF = Duty cycle reduction factor

3.2.4 AC power line conducted emission

- Procedure:

- 1. The test procedure is performed in a 6.5 m \times 3.5 m \times 3.5 m (L \times W \times H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) \times 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

- Measurement Data: NA

- Limit:

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15 ~ 0.5	66 to 56 *	56 to 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

^{*} Decreases with the logarithm of the frequency

Pages: 14 / 17

Report No.: DRTFCC1806-0165(1)

3.2.5 Antenna requirement

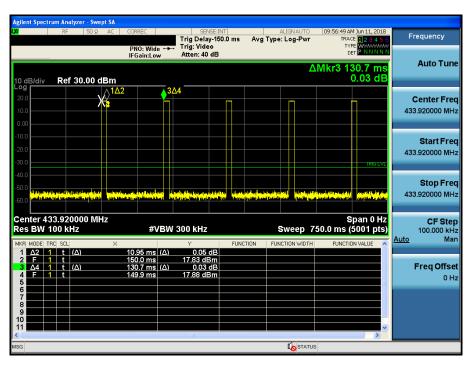
- According to FCC 47 CFR §15.203:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna is permanently attached on PCB. (Refer to Internal photo file.) Therefore this E.U.T Complies with the requirement of §15.203.

APPENDIX I

TEST EQUIPMENT FOR TESTS


Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	17/07/12	18/07/12	MY46471601
EMI Test Receiver	Rohde Schwarz	ESR7	18/02/13	19/02/13	101061
Spectrum Analyzer	Agilent Technologies	N9020A	17/12/28	18/12/28	MY50200816
DC Power Supply	Agilent	66332A	17/09/05	18/09/05	MY43000719
Loop Antenna	Schwarzbeck	FMZB1513	18/01/30	20/01/30	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9168	18/04/23	20/04/23	798
Horn Antenna	ETS-LINDGREN	3117	18/05/10	20/05/10	00140394
PreAmplifier	TSJ	8447D	17/12/26	18/12/26	2944A07774
Signal Generator	Rohde Schwarz	SMBV100A	17/12/27	18/12/27	255571
Multimeter	FLUKE	17B	17/12/26	18/12/26	26030065WS
Thermohygrometer	BODYCOM	BJ5478	18/01/03	19/01/03	1209
High-pass filter	Wainwright	WHKX12-935-1000- 15000-40SS	17/09/05	18/09/05	7
High-pass filter	Anristu	MP526D	17/09/05	18/09/05	M27756
CABLE	DTNC	CABLE	17/06/22	18/06/22	C-016-4
CABLE	DTNC	CABLE	17/06/22	18/06/22	RF-81
CABLE	Radiall	TESTPRO3	17/06/22	18/06/22	RF-74
CABLE	HUBER+SUHNER	SUCOFLEX103	17/06/22	18/06/22	RF-75
CABLE	Radiall	TESTPRO3	17/06/22	18/06/22	RF-66

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

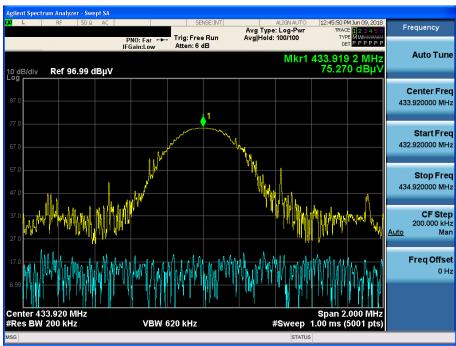
Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX II

Duty cycle reduction factor

Measured transmit time per 100ms	10.95ms
Declared transmit time per 100ms	10.00ms
Duty cycle reduction factor(Worst case)	20 x log (10.95ms/100ms) = -19.21dB

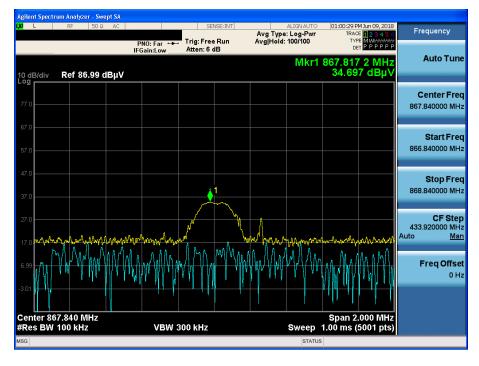
Note: The duty cycle has been provided by the manufacturer's technical documentation.


APPENDIX III

Worst data plot of radiated test

Note: The offset was not include in test plot(Reading value). The results refer to the section 3.2.3.

Field strength of fundamental


X axis & Hor Detector Mode: PK

Note: The resolution bandwidth was set enough larger than occupied bandwidth of fundamental.

Spurious emission

X axis & Hor Detector Mode: PK

