

		TEST REPORT		
	•	ILST KLI OKT		
		Report No: KST-FCR-090009		
Applicant	Name	SEGI LIMITED.		
	Address	ROOM 1808, 18/F, TOWER2, ADMIRALTY CENTER, 18 HARCOU RT ROAD		
Manufacturer	Name	SEGI LIMITED.		
	Address	ROOM 1808, 18/F, TOWER2, ADMIRALTY CENTER, 18 HARCOU RT ROAD		
Equipment	Name	One-Way FM Remote		
	Model No	1WSSR-25		
	Usage	Remote Controller for Car System		
	FCC ID	VA5JR762WSS		
	CANADA IC	7087A-R762WSS		
	T			
Test Standard	FCC CFR 47, Part 15. Subpart C-15.247 : 2009. RSS-210 Issue 7 : 2007, RSS-Gen Issue 2 : 2007			
Test Date(s)	2009. 09. 07 ~ 2009. 09. 09			
Issue Date	2009. 10. 16			
Test Result	Compliance			

Supplementary Information

The device bearing the brand name and FCC ID, CANADA IC specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with measurement procedures specified in <u>ANSI C 63.4-2003.</u>

We attest to the accuracy of data and all measurements reported herein were performed by KOSTEC Co., Ltd. and were made under Chief Engineer's supervision. We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested by Mi Young, Lee Approved by Gyeong Hyeon, Park

Signature Signature

Table of Contents

1. GENERAL INFORMATION	3
1.1 Test Facility	3
1.2 Location	
2. EQUIPMENT DESCRIPTION	
3. SYSTEM CONFIGURATION FOR TEST	5
3.1 Characteristics of equipment	5
3.2 Used peripherals list	5
3.3 Product Modification	5
3.4 Operating Mode	5
3.5 Test Setup of EUT	5
3.6 Table for Test condition	6
3.7 Table for Parameters of Test Jig Setting	6
3.8 Used Test Equipment List	7
4. SUMMARY TEST RESULTS	
5. MEASUREMENT RESULTS	g
5.1 Carrier Frequency Separation and 20 dB, 99% Occupied Bandwidth	g
5.2 Number of hopping Channel	
5.3 Time of occupancy (Dwell Time)	16
5.4 Max. Conducted peak output power	
5.5 Band-edge Compliance	21
5.6 Spurious RF conducted emissions	25
5.7 Spurious radiated emissions	
5.8 General requirement	39

1. GENERAL INFORMATION

1.1 Test Facility

Test laboratory and address

KOSTEC Co., Ltd.

180-254, Annyeong-dong, Hwaseong-si, Gyeonggi-do, South Korea

The open area field test site and conducted measurement facility are used for these testing. This site at was fully described in a reports submitted to the Federal Communications Commission (FCC).

The details of these reports have been found to be in complies with the requirements of Section 2.948 of the FCC Rules on November 14, 2002. The facility also complies with the radiated and conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission (FCC) has the reports on file and KOSTEC Co., Ltd. is listed under FCC Registration No.525762. The test site has been approved by the FCC for public use and is List in the FCC Public Access Link CORES (Commission Registration System)

Registration information

KCC (Korea Communications Commission) Number: KR0041 KOLAS(Korea laboratory accreditation Scheme) Number: 232

FCC Registration Number(FRN): 525762

IC Company Number(C,N): 8305A

VCCI Registration Number: R-1657/C-1763

1.2 Location

Report No: KST-FCR-090009

Page: 3 / 39

2. EQUIPMENT DESCRIPTION

The product specification described herein was declared by manufacturer. And refer to user's manual for the details.

Equipment Class	Category I (according to RSS-Gen in CANADA Standard)		
1) Equipment Name	One-Way FM Remote		
2) Model No	1WSSR-25		
3) Usage	Remote Controller for Car System		
4) Serial Number	None		
5) Oscillation type	PLL (Phase Local Loop)		
6) Data Sequence type	FHSS (Frequency Hopping Spread Spectrum)		
7) ITU emission type	Not required (because it is unlicensed devices)		
8) Modulation type	FSK		
9) Operated Frequency	910.920 MHz ~ 919.080 MHz		
10) Max. conducted power	43.05 mW (Max. peak conducted power)		
11) Number of hopping channel	25 Ch		
12) Communication type	Half duplex(Two-Way)		
13) Microprocessor	Atmega48p-10MU		
14) Weight / Dimension	130g / 68(L) mm x 23(W) mm x 10(D) mm		
15) Operation temperature	- 40℃~ + 80℃		
16) Power Source	5 Vdc/90mAH(CR2016, Coin type battery)		
17) Antenna Description	Type: Helical, Connection: Fixed, Length: 1.6 cm, Gain: -3.832 dBi		

3. SYSTEM CONFIGURATION FOR TEST

3.1 Characteristics of equipment

This device is One-way Car Remote controller for Car's Engine start/stop and door open/close, it is named Two-Way FM Remote, and also it is design to RF and Logic Part, Rated power source was supplied 1.5 Vdc from Cell battery

Operation description is response short message by user's push button remote controller For more than describe is written the user manual

3.2 Used peripherals list

Description	Model No.	Serial No.	Manufacture	Remark
Power supply	E3610A	KR24104505	Agilent Technology	

3.3 Product Modification

N/A

3.4 Operating Mode

All measurements were intended to emit maximum RF continuously signal from EUT

3.5 Test Setup of EUT

The measurements were taken in continuous transmit mode using the push button of EUT For controlling the EUT, the test Jig were provided by the applicant.

Report No: KST-FCR-090009 Page: 5 / 39
KST-IRF-FCR-Rev.0.2

3.6 Table for Test condition

Test Items	Channel No	Frequency (MHz)	Operated Condition
	14	914.662	
Carrier frequency separation	15	915.000	Hopping on and continuous modulation setting mode
	16	915.338	J
Number of hopping frequencies	1 ~ 25	910.920 ~ 919.080	Hopping on mode
Time of occupancy (Dwell Time)	13	945.000	Hopping on mode
	1	910.920	
Conducted peak output power	15	915.000	Hopping off and continuous modulation setting mode
	25	919.080	· ·
Pand adas Camplianes	1	910.920	Hopping off/on and continuous
Band-edge Compliance	25	919.080	modulation setting mode
Spurious RF conducted emissions		-	Frequency band setting by required
Spurious radiated emissions	-	-	standard (FCC and IC Rules)**

^{*}Channel number is based on lowest, middle, highest channel setting and also hopping on/off mode operation
Please see plot shown in this chapter 5.6 and 5.7

3.7 Table for Parameters of Test Jig Setting

During testing, channel change & modulation and carrier controlling push button of EUT is provided by the applicant is made firmware upgrade in RF Chip part of EUT.

Output power expected by the customer and is going to be fixed on the firmware of the final end product.

■ Table for Test setting with test Push button

Setting Parameter	Push button No. 1	Push button No.2	Push button No.3
Hopping mode	0		
Channel selecting		0	
Receive mode			0

^{*} Example: When Push button No.1 of EUT, Test setting is operating Hopping mode

Report No: KST-FCR-090009 Page: 6 / 39
KST-IRF-FCR-Rev.0.2

3.8 Used Test Equipment List

No.	Instrument	Model	Serial No.	Manufacturer	Due to Cal. Date	Used
1	Spectrum Analyzer	8563E	3846A10662	Agilent Technology	2010.05.20	\boxtimes
2	Test Receiver	ESCS30	100111	Rohde & Schwarz	2010.03.07	\boxtimes
3	Test Receiver	ESPI3	100109	Rohde & Schwarz	2010.03.03	
4	LISN	ESH2-Z5	100044	Rohde & Schwarz	2010.03.16	
5	LISN	ESH3-Z5	100147	Rohde & Schwarz	2010.06.25	
6	Ultra broadband Antenna	HL562	100075	Rohde & Schwarz	2010.03.20	\boxtimes
7	Ultra broadband Antenna	HL562	100076	Rohde & Schwarz	2010.04.14	
8	Dipole Antenna	HZ-12	100005	Rohde & Schwarz	2010.04.03	
9	Dipole Antenna	HZ-13	100007	Rohde & Schwarz	2010.04.03	
10	Horn Antenna	3115	2996	EMCO	2010.06.13	\boxtimes
11	Loop Antenna	6502	9203-0493	EMCO	2010.06.15	
12	Digital Signal Generator	E4436B	US39260458	HP	2010.05.20	\boxtimes
13	Tracking CW Signal Source	85645A	070521-A1	HP	2010.05.20	\boxtimes
14	RF Power Amplifier	8347A	3307A01571	HP	2010.05.20	\boxtimes
15	Microwave Amplifier	8349B	2627A01037	HP	2010.05.20	\boxtimes
16	Attenuator	8498A	3318A09485	HP	2010.05.20	\boxtimes
17	Temperature & Humidity Chamber	EY-101	90E14260	TABAI ESPEC	2010.03.16	
18	EPM Series Power meter	E4418B	GB39512547	Agilent Technology	2010.05.20	
19	RF Power Sensor	ECP-E18A	US37181768	Agilent Technology	2010.05.20	
20	Microwave Frequency Counter	5352B	2908A00480	Agilent Technology	2010.05.20	
21	Band rejection filter	WTR-BRF2442- 84NM	09020001	WAVE TECH Co.,Ltd.	2010.03.03	
22	SLIDAC	None	0207-4	Myoung-Sung Electronic Co., Ltd.	2010.05.20	
23	DC Power supply	DRP-5030	9028029	Digital Electronic Co.,Ltd	2010.06.04	
24	DC Power supply	UP-3005T	68	Unicon Co.,Ltd	2010.05.20	
25	DC Power supply	E3610A	KR24104505	Agilent Technology	2010.05.20	\boxtimes
26	Antenna Master	-	-	Daeil EMC	-	\boxtimes
27	Turn Table	-		Daeil EMC	-	

4. SUMMARY TEST RESULTS

Description of Test	FCC Rule	Reference Clause	Used	Test Result
Carrier frequency separation and 20 dB Bandwidth	15.247(a)(1)	Clause 5.1	\boxtimes	Compliance
Number of hopping channel	15.247(a)(1)(i)	Clause 5.2	\boxtimes	Compliance
Time of occupancy (Dwell Time)	15.247(a)(1)(i)	Clause 5.3	\boxtimes	Compliance
Max. Conducted peak output power	15.247(b)(2)	Clause 5.4	\boxtimes	Compliance
Band-edge compliance	15.247(d)	Clause 5.5	\boxtimes	Compliance
Spurious RF conducted emissions	15.247(d)	Clause 5.6	\boxtimes	Compliance
Spurious radiated emissions	15.247(d), 15.209	Clause 5.7	\boxtimes	Compliance
Antenna requirement	15.203, 15.247	Clause 5.8	\boxtimes	Compliance

Compliance: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

Description of Test	IC Rule	Reference Clause	Used	Test Result
Carrier frequency separation and 99% Occupied Bandwidth	RSS-210 (A 8.1) RSS-Gen 4.6.1	Clause 5.1	\boxtimes	Compliance
Number of hopping channel	RSS-210 (A 8.1)	Clause 5.2	\boxtimes	Compliance
Time of occupancy (Dwell Time)	RSS-210 (A 8.1)	Clause 5.3	\boxtimes	Compliance
Max. Conducted peak output power	RSS-210 (A 8.4)	Clause 5.4	\boxtimes	Compliance
Band-edge compliance	RSS-210 (A 8.5)	Clause 5.5	\boxtimes	Compliance
Spurious RF conducted emissions	RSS-210 (2.2).(A2.9)	Clause 5.6	\boxtimes	Compliance
Spurious radiated emissions	RSS-210[22/A2.9 (a)]	Clause 5.7	\boxtimes	Compliance
Antenna requirement	RSS-Gen (7.1.5)	Clause 5.8	\boxtimes	Compliance

Compliance: The EUT complies with the essential requirements in the standard.

Not Compliance: The EUT does not comply with the essential requirements in the standard.

N/A: The test was not applicable in the standard.

Report No: KST-FCR-090009 Page: 8 / 39
KST-IRF-FCR-Rev.0.2

5. MEASUREMENT RESULTS

5.1 Carrier Frequency Separation and 20 dB, 99% Occupied Bandwidth

5.1.1 Standard Applicable [FCC §15.247(a),(1)] [RSS-210 A8.1(b)]

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB and 99% occupied bandwidth of the hopping channel, whichever is greater.

The maximum allowed 20 dB and 99% occupied bandwidth of the hopping channel is 500 KHz.

5.1.2 Measurement Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peak of the adjacent channels using the marker-Delta function was recorded as the measurement results.

The spectrum analyzer is set to the as follows:

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings;

• Span : wide enough to capture the peak of two adjacent channels

• Resolution (or IF) Bandwidth(RBW) : ≥ 1% of the span

Video (or Average) Bandwidth(VBW) : ≥ RBW

• Sweep : auto

· Detector function : peak

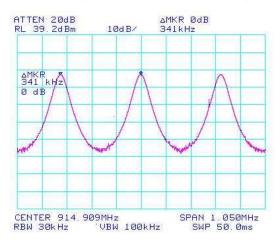
Trace : max hold

5.1.3 Measurement Result

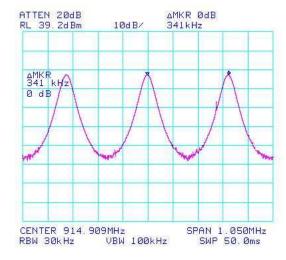
• Environmental Conditions :

-. Temperature : 23 °C, Relative Humidity : (55 ~ 56) % R.H.

Channel Number	Test Results				
Charmer Number	Measured frequency Separation [MHz]		Limit	Result	
14, 15	0.341		≥ 25 kHz or 20dB	Complies	
15, 16	0.341		bandwidth	Complies	
Channel Number	20 dB Occupied Bandwidth(KHz)	99% Occupied. Bandwidth(KHz)	Limit	Result	
1	379.0	369.6		Complies	
15	379.0	387.9	≤ 500 KHz	Complies	
25	376.0	394.7		Complies	

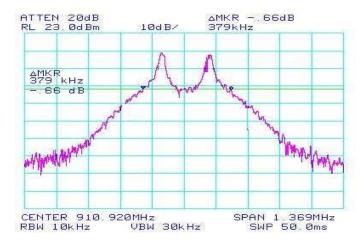

^{*} please see plot in this next page(5.1.4 ~ 5.1.6)

Report No: KST-FCR-090009 Page: 9 / 39

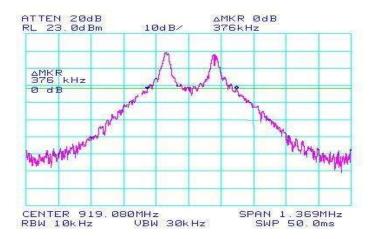


5.1.4 Test Plot (separation frequency)

⇒ Channel _14, 15 (914.659 MHz, 915.000 MHz)

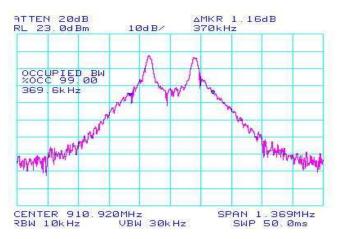

⇒ Channel 15, 16 (915.000 MHz, 915.341 MHz)

5.1.5 Test Plot (20 dB Occupied bandwidth)

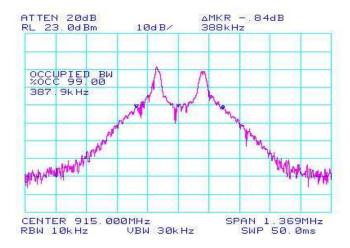

\Rightarrow Lowest Channel _ch 1 (910.920 MHz)

⇒ Middle Channel _ch 15 (915.000 MHz)

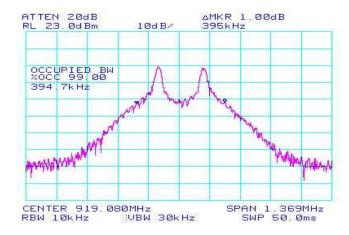
⇒ Highest Channel_ch 25 (919.080 MHz)


Report No: KST-FCR-090009

Page: 11 / 39



5.1.6 Test Plot (99% Occupied bandwidth)


⇒ Lowest Channel _ch 1 (910.920 MHz)

⇒ Middle Channel _ch 15 (915.000 MHz)

⇒ Highest Channel_ch 25 (919.080 MHz)

Report No: KST-FCR-090009

Page: 12 / 39

* Note: above the 20 dB Bandwidth measurement method is described FCC Public Notice(DA 00-705), (IC RSS-Gen 4.) and setting method on spectrum analyzer is as follows;

• Span: approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

• Resolution (or IF) Bandwidth(RBW) : ≥ 1% of the 20 dB bandwidth

• Video (or Average) Bandwidth(VBW) : ≥ RBW

• Sweep : auto

• Detector function : peak

• Trace : max hold

5.2 Number of hopping Channel

5.2.1 Standard Applicable [FCC §15.247(a),(1)(i)] [RSS-210 A8.1(d)]

For frequency hopping systems operating in the 902 MHz ~ 928 MHz band :

If the 20 dB bandwidth of the hopping channel is less than 250 KHz, the system shall use at least 50 hopping frequencies and if the 20 dB bandwidth of the hopping channel is 250 KHz or greater, the system shall use at least 25 hopping frequencies

5.2.2 Measurement Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna Terminal to get higher resolution, two frequency ranges within the 902 MHz ~ 928 MHz frequency band Hopping band were examined. The EUT must have its hoping function enabled.

After the trace being stable, it may prove necessary to break the span up to sections, in order to clearly show All of the hopping frequencies. The limit is specified in this paragraph 5.2.3

The spectrum analyzer is set to the as follows:

• Span : the frequency band of operation

• Resolution (or IF) Bandwidth(RBW) : ≥ 1% of the span

• Video (or Average) Bandwidth(VBW) : ≥ RBW

• Sweep : auto

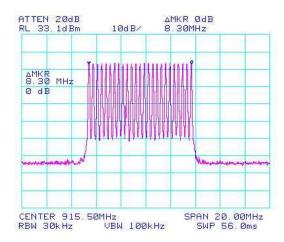
• Detector function : peak

• Trace : max hold

5.2.3 Measurement Result

• Environmental Conditions:

-. Temperature : 23 °C, Relative Humidity : (55 ~ 56) % R.H.


Channel		Test Results		
Number	Hopping frequency band (MHz)	Measured total number of Hopping Channels	Limit	Result
1 ~ 25	910.920 MHz ~ 919.080 MHz	25	≥ 25	Complies

Report No: KST-FCR-090009 Page: 14 / 39

5.2.4 Test Plot

1. Hopping channel number / ch1 ~ ch25

5.3 Time of occupancy (Dwell Time)

5.3.1 Standard Applicable [FCC §15.247(a),(1)(i)] [RSS-210 A8.1(d)]

For frequency hopping systems operating in the 902 MHz ~ 928 MHz band :

If the 20 dB bandwidth of the hopping channel is less than 250 KHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 second shall within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 KHz or greater, the system use at least 25hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds shall within a 10 second period

5.3.2 Measurement Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled. after used the marker-delta function to determine the dwell time.

The spectrum analyzer is set to the as follows:

• Span : Zero , Centered on a hopping channel

• Resolution (or IF) Bandwidth(RBW): 1 MHz

• Video (or Average) Bandwidth(VBW) : ≥ RBW

• Sweep : auto

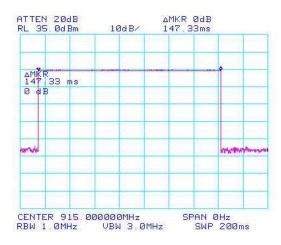
• Detector function : peak

• Trace : max hold

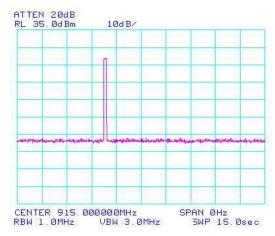
5.3.3 Measurement Result

• Environmental Conditions :

-. Temperature : 23 $^{\circ}$ C, Relative Humidity : (54 ~ 56) % R.H.


Slot length per channel	Test Results			
(ms)	Measured dwell time (ms)	Limit	Result	
147.33	147.33	≤ 0.4 Sec	Complies	

Report No: KST-FCR-090009 Page: 16 / 39



5.3.4 Test Plot

1. Burst width in one hop (ms)

2. Number of hop channel per 10 sec

* This device is send message when push button

This system is use at least 25 hopping frequencies but use 3 hops per one transmission time. Transmission time means Tx on time by one Push button release. The above plot show any one hop channel within 10 sec and burst width(or as well as one time slot) is 147.33 ms. As a result, the average time of occupancy of 105.50 ms within 10 sec.

The dwell time is calculated by burst width(time slot) x number of hopping channels in 10 s.

Dwell time = 147.33 ms x 1 = 147.33 ms

5.4 Max. Conducted peak output power

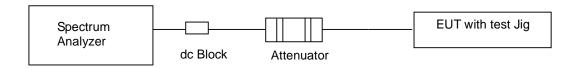
5.4.1 Standard Applicable [FCC §15.247(b)(2)] [RSS-210 A8.4(2)]

For frequency hopping systems operating in the 902 MHz ~ 928 MHz band;

1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channel

5.4.2 Test Conditions

- Attenuator : 30 dB dc Block : 1.0 dB Cable loss : 0.5 dB
- Environmental Conditions: Ambient temperature: 23 ℃, Relative Humidity: (55 ~ 56) % R.H.

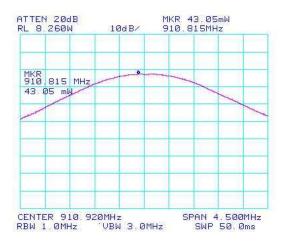

5.4.3 Measurement Procedure

- ① Pre-calibration for the spectrum analyzer has to be done first through a reference CW signal from CAL OUT(-10 dBm)
- ② Reference frequency signal generated from the signal generator is supply to RF input port in spectrum Analyzer via dc Block, RF cable and attenuator. and then, it's apply to offset value in spectrum analyzer as follows:
 - on Spectrum analyzer [Amplitude→1 More of 3→REF LVL OFFSET (31.5 dB)]
 - dc Block(1.0 dB)+Cable loss(0.5 dB)+Attenuator (30 dB)
- ③ Remove the antenna from the EUT and then, connected to spectrum analyzer via a dc Block, suitable low loss RF cable and attenuator.
- Place the EUT on the table and set it hopping function disable at the highest, middle and the lowest available channels.
- ⑤ After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission
- 6 The indicated level is the peak output power.
- ② please refer to the detailed procedure method FCC Public Notice(DA 00-705) and IC(RSS-Gen)
- *The spectrum analyzer is set to the as follows;
- Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- Resolution (or IF) Bandwidth(RBW): > 20 dB bandwidth of the emission being measured
- Video (or Average) Bandwidth(VBW) : ≥ RBW
- Sweep: auto
- · Detector function : peak
- Trace: max hold
- * above measurement frequency is selected to the lowest, Middle and Highest channel

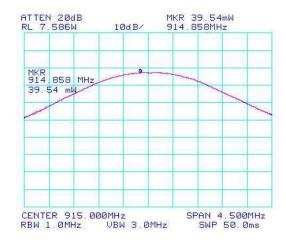
Report No: KST-FCR-090009 Page: 18 / 39
KST-IRF-FCR-Rev.0.2

5.4.4 Test Setup Configuration

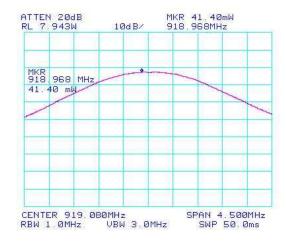
5.4.5 Measurement Result


			Test Results							
Channel No.	Frequency [MHz]	Measured power [mW]	Limit [mW]	Result						
1	910.920	43.05**		Complies						
15	915.000	39.54**	≤ 250	Complies						
25	919.080	41.40**		Complies						

^{**} it is conducted power



5.4.6 Test Plot


⇒ Lowest Channel _ch 1

⇒ Middle Channel _ch15

⇒Highest Channel_ch25

Report No: KST-FCR-090009

Page: 20 / 39

5.5 Band-edge Compliance

5.5.1 Standard Applicable [FCC §15.247(d)] [RSS-210 A8.5]

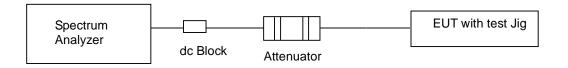
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

5.5.2 Test Conditions

- Attenuator: 30 dB
 dc Block: 1.0 dB
 Cable loss: 0.5 dB
- Environmental Conditions : Ambient temperature : 23 °C, Relative Humidity : (55 ~ 56) % R.H.

5.7.2 Measurement Procedure

- ① Pre-calibration for the spectrum analyzer has to be done first through a reference CW signal from CAL OUT(-10 dBm)
- ② Reference frequency signal generated from the signal generator is supply to RF input port in spectrum Analyzer via dc Block, RF cable and attenuator. and then, it's apply to offset value in spectrum analyzer as follows:
 - on Spectrum analyzer [Amplitude→1 More of 3→REF LVL OFFSET (31.5 dB)]
 - dc Block(1.0 dB)+Cable loss(0.5 dB)+Attenuator (30 dB)
- ③ Remove the antenna from the EUT and then, connected to spectrum analyzer via a dc Block, suitable low loss RF cable and attenuator.
- 4 Place the EUT on the table and set on the emission at the band-edge,
- S After the trace being stable, Use the marker-to-peak function to move the marker to the peak of the inband emission.
- The marker-delta value now displayed must comply with the limit specified in above standard.
- please refer to the detailed procedure method FCC Public Notice(DA 00-705) and IC(RSS-Gen 4.)


The spectrum analyzer is set to the as follows:

- Span: Wide enough to capture the peak level of the emission operating on the channel closet to the Band-edge, as well as any modulation products which fall outside of the authorized band of operation
- Resolution (or IF) Bandwidth(RBW) : ≥ 1 % of the span
- Video (or Average) Bandwidth(VBW) : ≥ RBW
- Sweep : auto
- Detector function : peak
- Trace : Max hold

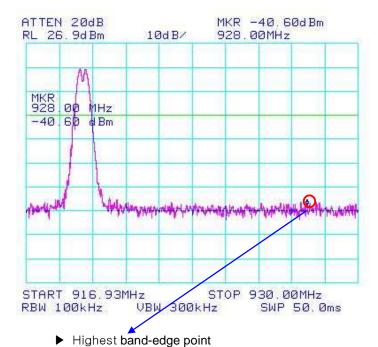
Report No: KST-FCR-090009 Page: 21 / 39

5.5.3 Test Setup Configuration

5.5.4 Measurement Result

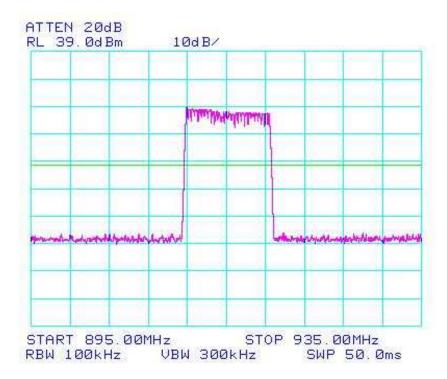
Frequency			Test Results					
Channel	Operating Fre	quency [MHz]	Measured value [dBm]	Limit [dBc]	Result			
Hanning off mode	Lowest channel	910.920	≤ - 50		Compliance			
Hopping off mode	Highest channel	919.080	3 - 30	≤ - 20	Compliance			
Hopping on mode	Operating full band frequency	910.920 ~ 919.080	≤ - 50		Compliance			

Report No: KST-FCR-090009 Page: 22 / 39
KST-IRF-FCR-Rev.0.2


5.5.5 Test Plot (Hopping off_mode)

⇒ Lowest Channel _ch 1

► Lowest band-edge point


⇒ Highest Channel _ch 25

Page: 23 / 39

5.5.6 Test Plot (Hopping on_ mode)

5.6 Spurious RF conducted emissions

5.6.1 Standard Applicable [FCC §15.247(d)] [RSS-210 A8.5]

In additional in this clause 5.5.1 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall e at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

5.6.2 Test Conditions

- Attenuator: 30 dB
 dc Block: 1.0 dB
 Cable loss: 0.5 dB
- Environmental Conditions : Ambient temperature : 23 °C, Relative Humidity : (55 ~ 56) % R.H.

5.6.3 Measurement Procedure

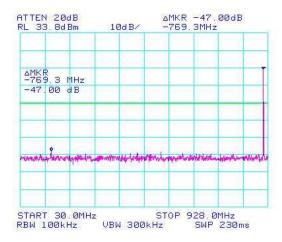
- ① Pre-calibration for the spectrum analyzer has to be done first through a reference CW signal from CAL OUT(-10 dBm)
- ② Reference frequency signal generated from the signal generator is supply to RF input port in spectrum Analyzer via dc Block, RF cable and attenuator. and then, it's apply to offset value in spectrum analyzer as follows:
 - on Spectrum analyzer [Amplitude→1 More of 3→REF LVL OFFSET (31.5 dB)]
 - dc Block(1.0 dB)+Cable loss(0.5 dB)+Attenuator (30 dB)
- ③ Remove the antenna from the EUT and then, connected to spectrum analyzer via a dc Block, suitable low loss RF cable and attenuator.
- 4) Place the EUT on the table and set on the emission at the out band
- S After the trace being stable, Use the marker-to-peak function to move the marker to the peak of the inband emission.
- The marker-delta value now displayed spurious emission must comply with the limit specified in above standard.
- please refer to the detailed procedure method FCC Public Notice(DA 00-705)

The spectrum analyzer is set to the as follows:

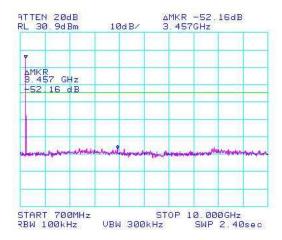
- Span: wide enough to capture the peak level of the in-band emission and all spurious emissions from the Lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- Resolution (or IF) Bandwidth(RBW): 100 kHz
- Video (or Average) Bandwidth(VBW) : ≥ RBW
- Sweep : Auto
- Detector function : Peak
- Trace : Max hold
- * Test setup of configuration is same as in this clause 5.5.3

Report No: KST-FCR-090009 Page: 25 / 39

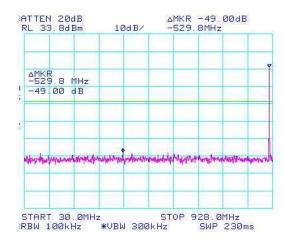
5.6.4 Measurement Result


Honning		Eroguanov band		Test Results	
Hopping mode	Channel Range	Frequency band [MHz]	Measured value [dBc]	Limit [dBc]	Result
	Lowest channel	30 MHz – 928 MHz	- 47.00		Compliance
	(910.920 MHz)	700 MHz – 10 GHz	-52.16		Compliance
	Middle channel	30 MHz – 928 MHz	-49.00		Compliance
Hopping off	(915.000 MHz)	700 MHz – 10 GHz	-50.16	- 00	Compliance
OII	Highest channel	30 MHz – 928 MHz	- 47.50	≤ - 20	Compliance
	(919.080 MHz)	700 MHz – 10 GHz	-50.66		Compliance
Hopping	Hanning oh (1, 25)	30 MHz – 1 000 MHz			Compliance
on	Hopping ch (1~25)	700 MHz – 10 GHz	-48.50		Compliance

^{*}Note: Spurious level at Hopping mode is 20dB below within the band that contains the highest level of the desired power. see to as below Test Plot of 5.6.5

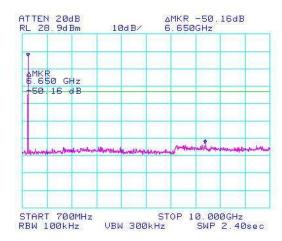


5.6.5 Test Plot (Hopping off)

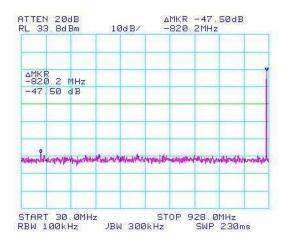

⇒Lowest Channel30 MHz ~ 928 MHz

⇒Lowest Channel700 MHz ~ 10 GHz

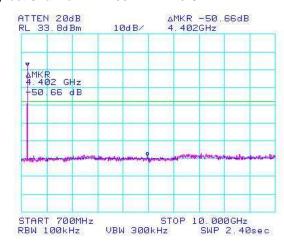
⇒Middle Channel30 MHz ~ 928 MHz


Report No: KST-FCR-090009

Page: 27 / 39

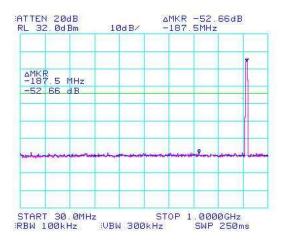


Continuous

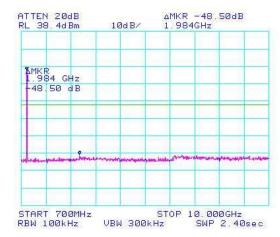

⇒Middle Channel700 MHz ~ 10 GHz

⇒Highest Channel30 MHz ~ 928 MHz

⇒Highest Channel 700 MHz ~ 10 GHz


Report No: KST-FCR-090009

Page: 28 / 39



5.6.6 Test Plot (Hopping on)

⇒frequency band (30 MHz ~ 1.0 GHz)

⇒frequency band (700 MHz ~ 10 GHz)

5.7 Spurious radiated emissions

5.7.1 Standard Applicable [FCC §15.247(d)] [RSS-210 2.2]

All other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10 GHz, the frequency Range of measurements: to the tenth harmonic of the highest fundamental frequency, Whichever is lower. In addition, radiated emissions which fall in the restricted bands, as defined in Sec.15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a), there is corresponding the specified Average limit according to 15.35(b)

5.7.2 Measurement Procedure

- ① As below test setup figure, for frequencies measured below and above 1 GHz respectively. Turn on EUT and make sure that it is test mode function. Also was placed on a non-metallic table height of 0.8 m above the reference ground plane. If EUT is connected to cables, that were fixed to cause maximum emission. antenna was used to Horn antenna for above 1 GHz and Broadband antenna below 1GHz. it made with the antenna positioned in both the horizontal and vertical planes of polarization.
- ② For emission frequencies measured each below and above 1 GHz, a pre-scan is performed in a Shield chamber to determine the accurate frequencies before final test, after maximum emissions level will be checked on a open test site and measuring distance is 3 meter from EUT to receiver antenna.
- ③ For emission frequencies measured below 1 GHz, set the Test Receiver on a 120KHz resolution bandwidth using measurement instrumentation employing a CISPR quasi-peak detector. and for above1 GHz, set the spectrum analyzer on a 1 MHz resolution bandwidth with average detector for each frequency measured in step② and then EUT is located Position X,Y,Z on turn table
- ④ The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- ⑤ Repeat step ④ until all frequencies to be measured were complete.
- 6 Repeat step 5 with search antenna in vertical polarized orientations.
- Check the frequencies of highest emission with varying the placement of cables (if any) associated with EUT to obtain the worst case and record the result.

Report No: KST-FCR-090009 Page: 30 / 39

The measurement results are obtained as described below:

Result($dB \mu V/m$) = Reading($dB \mu V/m$) + Antenna factor(dB/m)+ CL(dB) + other application factor (dB)

5.7.3 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are test receiver, Cable loss, Antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, Antenna frequency interpolation, measurement distance variation, Site imperfection, mismatch, and system repeatability based on NIS 80,81, The measurement uncertainty level with a 95 % confidence level were apply to Uncertainty of a radiation emissions measurement at OATS(Open Area Test Site) of KOSTEC is \pm 4.0 dB

Report No: KST-FCR-090009 Page: 31 / 39

§15.209 and RSS-210(2.7 Tab	le 2) : limits for radiated emission	ns measi	urements (distand	ce at 3m)					
Frequency Band	Limit [µV/m]	Lim	nit [dBµV/m]	Detector					
30 - 88	100 (3 nW)		40.0	Quasi peak					
88 - 216	Quasi peak								
216 - 960	200 (12 nW)		46.0	Quasi peak					
Above 960	500 (75 nW) 54.0 Averaç								
§15.249 and RSS-210(A 2.9 (a	a): The field strengths measured	at 3 me	tres shall not exc	eed the following:					
Fundamental Frequencies Field Strength (milivolts/m)									
(MHz) Fundamental Harmonics									

Fundamental Frequencies	Fleia Strength	(MIIIVOITS/M)
(MHz)	Fundamental	Harmonics
902 ~ 928	50 ^(Note 1)	0.5
2 400 ~ 2 483.5	50 ^(Note 1)	0.5
5 725 ~ 5 875	50 ^(Note 1)	0.5

§15.205 and RSS-210(2.7	'Table 1): Restrict Band of Opera any of the frequency b		sions are permitted in
[MHz]	[MHz]	[MHz]	[GHz]
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505**	16.69475 - 16.69525	608 -614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 -1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.
4.17725 - 4.17775	37.5 -38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 -6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 -6.26825	108 - 121.94	1718.8 -1722.2	13.25 - 13.
6.31175 -6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.4142 5 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	Above 38.6

^{**} Until February 1, 1999, this restricted band shall be 0.490-0.510

Report No: KST-FCR-090009 Page: 32 / 39

5.7.4 Measurement Result (Transmitter mode)

Environmental Conditions :

- Temperature : 24 $^{\circ}$ C, Relative Humidity : (55 ~ 56) % R.H. Pressure : 101.3 kPa

■ Lowest Channel_01 (910.920 MHz)

Below 1 GHz

Freq.	Reading	Table	Table Pstn Deg) (axis)	Antenna		Cbl	Pre	Meas	Limit	Mgn		
(MHz)	(dBμV/ m)	(Deg)		Height (m)	Pol. (H/V)	Fctr. (dB/m)			Result (dB µV/m)	_	_	Result

^{*} No emission in the restricted bands was detected.

Above 1 @

_				,	Antenna			Pre	Meas			
Freq.	Reading (dB∠W/m)	Table (Deg)	Pstn (axis)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	Cbl (dB)	Amp (dB)	Result (dB∠W/ m)	Limit (dB //m)	Mgn (dB)	Result
1.82190	43.33	115	Х	1.9	V	25.33	4.63	30	43.29	54.00	10.71	Pass
Above 1,83025				Nil e	mission							

Freq.(Mb): Measurement frequency, Reading(dB,W/m): Indicated value for test receiver,

Table (Deg): Directional degree of Turn table, Pstn(axis): Location axis of EUT

Antenna(Height, Pol, Fctr): Antenna Height, Polarization and Factor

Cbl(dB): Cable loss, Pre amp(dB): Pre amplifier gain, Meas Result (dB,W/m): Reading(dB,W/m)+ Antenna

factor.(dB/m)+ CL(dB) - Pre-amp gain(dB)

Limit(dB_{\(\mu\)}/m): Limit value specified with FCC Rule, Mgn(dB): FCC Limit (dB_{\(\mu\)}/m) – Meas Result(dB_{\(\mu\)}/m),

Middle Channel_ 15 (915.000 MHz)

Below 1 GHz

Freq. Read	Reading	Reading Table I	Table Pstn	Antenna			Cbl	Pre	Meas	Limit	Mgn	
(Mbz)	(dB≠V/m)	(Deg)	(axis)	Height (m)	Pol. (H/V)	Fctr. (dB/m)			Result (dB µV/m)			Result

^{*} No emission in the restricted bands was detected.

Above 1 @

Freq.	Freg. Reading Ta	Table	Pstn	,	Antenna			Pre	Meas	Limit	Mgn	
(MHz)	(dB _{\(\mu\)} /m)	(Deg)	(axis)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	Amp (dB)	Result (dB µV/m)	(dB _{\(\mu\)} /m)	(dB)	Result
1,83025	45.67	80	Y	1.5	V	25.33	4.63	30	45.63	54.00	8.37	Pass

Report No: KST-FCR-090009

Page: 33 / 39

Above	Aug. 1. 1		
1,83017	Nil emission		

* above listed emission is not falling in the restricted bands of 15.205

■ Higest Channel_25 (919.080 MHz)

Below 1 GHz

Freq.	Reading	Table	Pstn	Antenna			Cbl	Pre	Pre Meas	Limit	Mgn	
(MHz)	(dB≠W/m)	(Deg)	(axis)	Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)		Result (dB≠V/m)	(dB#V/m)	_	Result

^{*} No emission in the restricted bands was detected.

Above 1 @

Freq.	Readin g (dB,₩/m)	Table (Deg)	Pstn (axis)	Antenna			Cbl	Pre	Meas	Limit	Mgn	
				Height (m)	Pol. (H/V)	Fctr. (dB/m)	(dB)	Amp (dB)	Result (dB,W/m)	(dB W/m)	(dB)	Result
1.83850	44.33	105	Υ	1.5	V	25.33	4.63	30	44.29	54.00	9.71	Pass
Above 1.83820	Nil emission									-		

 $\mbox{\em \ast}$ above listed emission is not falling in the restricted bands of 15.205

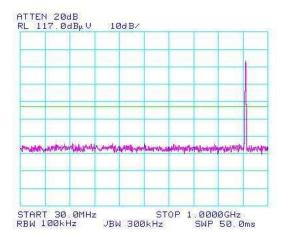
Freq.(Mb): Measurement frequency, Reading(dB,\mu/m): Indicated value for test receiver,

Table (Deg): Directional degree of Turn table, Pstn(axis): Location axis of EUT

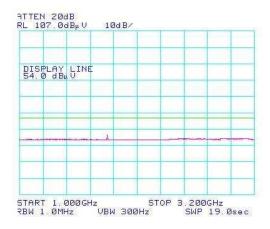
Antenna(Height, Pol, Fctr): Antenna Height, Polarization and Factor

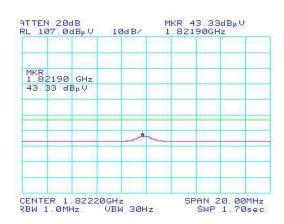
Cbl(dB): Cable loss, Pre amp(dB): Pre amplifier gain, Meas Result (dB,W/m): Reading(dB,W/m)+ Antenna

factor.(dB/m)+ CL(dB) - Pre-amp gain(dB)

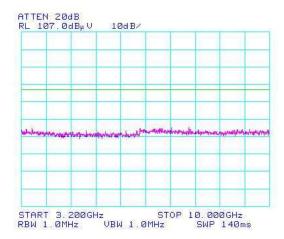

Limit(dB,\mu/m): Limit value specified with FCC Rule, Mgn(dB): FCC Limit (dB,\mu/m) - Meas Result(dB,\mu/m),

Report No: KST-FCR-090009 Page: 34 / 39
KST-IRF-FCR-Rev.0.2



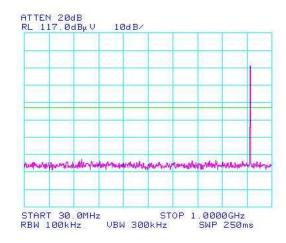

5.7.5 Test Plot (Hopping off)

⇒Lowest Channel30 MHz ~ 1 000 MHz

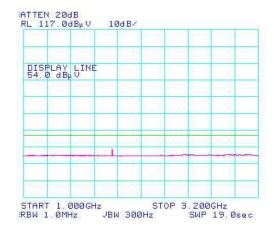


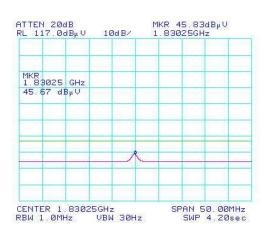
⇒Lowest Channel1.0 GHz ~ 3.2 GHz

⇒ Lowest Channel3.2 GHz ~ 10 GHz

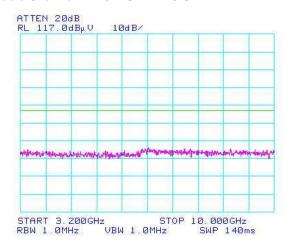

Report No: KST-FCR-090009

Page: 35 / 39




Continuous

⇒Middle Channel30 MHz ~ 1 000 MHz

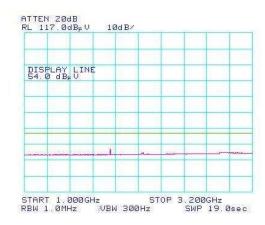


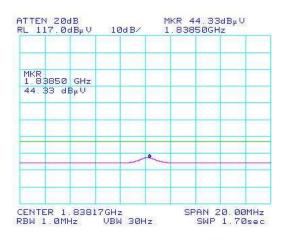
⇒ Middle Channel1.0 GHz ~ 3.2 GHz

⇒ Middle Channel3.2 GHz ~ 10 GHz

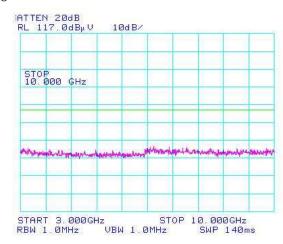

Report No: KST-FCR-090009

Page: 36 / 39



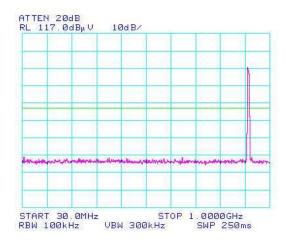

Continuous

⇒Highest Channel30 MHz ~ 1 000 MHz

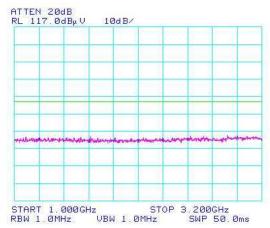


⇒ Highest Channel1.0 GHz ~ 3.2 GHz

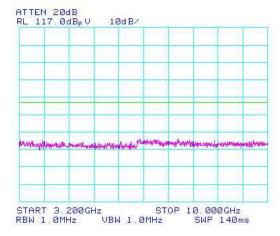
⇒ Highest3.2 GHz ~ 10 GHz


Report No: KST-FCR-090009

Page: 37 / 39



5.7.6 Test Plot (Hopping on)


⇒Frequency range.....30 MHz ~ 1 000 MHz

⇒ Frequency range1.0 GHz ~ 3.2 GHz

- * No emission in the restricted bands was detected.
- \Rightarrow Frequency range3.2 GHz ~ 10 GHz

Report No: KST-FCR-090009

Page: 38 / 39

5.8 General requirement

5.8.1 Antenna requirement [FCC §15.203, §15.247(4)(1)] [RSS-Gen 7.1.5]

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that user a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The manufacturer may design the unit so that broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(4)(1), the conducted output power limit specified in paragraph (b) of this section. is based on the use of antennas with directional gains that do not exceed 6dBi.

According to above requirement standard's This product's antenna type is an helical type and it's gain is -3.832dBi, So radiated emission field strength from EUT is below requirement standard limit

Report No: KST-FCR-090009 Page: 39 / 39
KST-IRF-FCR-Rev.0.2