

TEST REPORT

r	RAPA11-O-314
nent	Keyless Entry System
U.S.A	MR1060
Canada	EZ100-R
	VA5JR1060-1A433
	7087A-R1060A433
Name	SEGI LIMITED
Logo	SEGI
Address	Room 1808, 18/F, Tower 2, Admiralty Center, 18 Harcourt Rd., Hongkong
Name	SEGI ELECTRONICS CO., LTD.
Address	Chenjiapucun, Liaobu Town Dongguan City, Guandong Province, China
on	July 13, 2011
	July 18, 2011 to August 25, 2011
	August 26, 2011
	17 pages (including this page)
	Name Logo Address Name

SUMMARY

The equipment complies with FCC CFR 47 Part 15 Subpart C Section 15.231 and IC RSS-210 Issue8 Annex I-2010.

This test report contains only the results of a single test of the sample supplied for the examination. It is not a general valid assessment of the features of the respective products of the mass-production.

Date : August 26, 2011

Tested by Chang Young, Choi

Duputy General Manager

Date: August 26, 2011

Reviewed by **Sukil, Park**Executive Managing Director

Report No.: RAPA11-O-314

Page : 2 of 17 Report No. : RAPA11-O-314

CONTENTS

	<u>Page</u>
1. General description of EUT	3
1.1 Applicant	3
1.2 Manufacturer	3
1.3 Basic description of EUT	3
1.4 Technical specification of EUT	4
2. General information of test	5
2.1 Standard for measurement method	5
2.2 Description of EUT modification	5
2.3 Test configuration	5
3. Measurement data	6
3.1 Transmission time	6
3.2 Field strength of fundamental and spurious emission	12
3.3 20 dB bandwidth	15
4. List of measuring equipments	17
Appendix 1 : Test Setup Photos Appendix 2 : FCC ID Label and location	
Appendix 3 : External Photos of EUT	
Appendix 5 : Ricak Diagram	
Appendix 5 : Block Diagram Appendix 6 : Schematics	
Appendix 7 : Parts list	
Appendix 8 : Antenna Specification	
Appendix 9 : Operational Description	
Appendix 10 : User's Manual	

Agency Page: 3 of 17 Report No.: RAPA11-O-314

1. General description of EUT

1.1 Applicant

Company name : SEGI LIMITED

• Address : Room 1808, 18/F, Tower 2, Admiralty Center, 18 Harcourt Rd.,

Hongkong

Contact person : Eui Seok, Chung

Phone/Fax : +82-32-623-5550 / +82-32-623-6667

1.2 Manufacturer

Company name : SEGI ELECTRONICD CO., LTD

• Address : Chenjiapucun, Liaobu Town, Dongguan City, Guandong Province,

China

Contact person : Eui Seok, Chung

Phone / Fax
 82-32-623-5550 / 82-32-623-6667

1.3 Basic description of EUT

Product name : Keyless Entry System

Model name : MR1060(U.S.A.) / EZ100-R(Canada)

Serial number : Not available(Proto Type)

Frequency : TX / 433.92 MHz, RX / 20 kHz

Channel number : 1 Channel

Modulation method : ASK

• FCC Rule Part(s) : FCC CFR47 Part 15 Subpart C Section 15.231

• IC Rule Part(s) : IC RSS-210 Issue8 Annex I-2010

• FCC classification : DSC / Part 15 Security/Remote control Transmitter

IC classification : Annex 1 / Momentarily Operated Devices and Remote Control

Date of test : July 18, 2011 to August 25, 2011

• Date of issue : August 26, 2011

Place of test : Head office

C-3601, Dongil Technotown, 889-1, Gwanyang-dong, Dongan-gu,

Anyang-si, Gyeonggi-do, Korea, 483-060

Open area test site

80, Jeil-ri, Yangji-myun, Cheoin-gu, Yongin-si, Gyeonggi-do,

Korea, 449-825

(FCC Registration Number : 337229) (IC Submission Number : 143881) (KCC Designation Number : KR0027)

Page : 4 of 17 Report No. : RAPA11-O-314

1.4 Technical specification of EUT

Product Name	Keyless Entry System
Product Type	One Way Remote
Size(mm)	26.8 x 37.3 x 8.3 (W x L x H)
Battery Size	CR2032
Transmit Frequency	433.92 MHz by pattern antenna
Receive Frequency	20 kHz by coil inductor for RFID
Modulation Method	ASK

Page : 5 of 17 Report No. : RAPA11-O-314

2. General information of test

2.1 Standard for measurement methods

Applied Standard : FCC CFR47 Part 15 Subpart C, IC RSS-210 Issue8 Annex I-2010						
FCC	IC	Description of Test	Limit	Result		
15.207	-	Conducted Emission(dBµV/m)	Various	N/A[note 1]		
15.231(a)	A1.1.1	Transmission Time(s)	5 sec	Pass		
15.231(b)	A1.1.2	Field Strength of Fundamental (dBµV/m)	100.82(Peak) / 80.82(AV)	Pass		
15.231(b) & 15.209	A1.1.2	Radiated Emission(dBµV/m)	80.82(Peak) / 60.82(AV)	Pass		
15.231(c)	A1.1.3	Occupied Bandwidth(kHz)	1 084.8 kHz	Pass		

Note1: This equipment is battery operated.

2.2 Description of EUT modification

During the test, there was no mechanical or circuitry modification to improve RF and spurious characteristic, and any RF and spurious suppression device(s) was not added against the device tested.

2.3 Test configuration

• Type of peripheral equipment used

Description	Model Name	Serial No.	Manufacturer	FCC ID
EUT	MR1060	N/A	SEGI LIMITED	VA5JR1060-1A433

• Type of cable used

Device from	Device to	Type of Cable	Cable Number	Length
-	-	-	-	-

Page : 6 of 17 Report No. : RAPA11-O-314

3. Measurement data

3.1 Transmission time

3.1.1 Definitions

A transmission time is a switching time that will automatically deactivate the transmission of transmitter of EUT.

3.1.2 Specification

FCC Rules Part 15 Subpart C Section 15.231(a)(1) IC Rules RSS-210 Issue8 Annex I-2010 A1.1.1

3.1.3 Measurement method

The device output is connected to the spectrum analyzer.

3.1.4 Set-Up

3.1.5 Test equipment list

Equipment	Model Name	Manufacture
EUT	MR1060	SEGI LIMITED
Spectrum Analyzer	N9020A	Agilent

3.1.6 Test procedure

Spectrum analyzer setting:

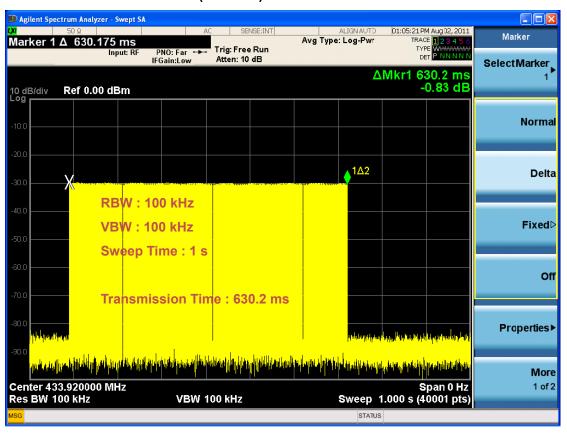
• Center Frequency: 433.92 MHz

Span : Zero
RBW : 100 kHz
VBW : 100 kHz
Sweep time : 1 s
Detect Mode : Peak

3.1.7 Test condition

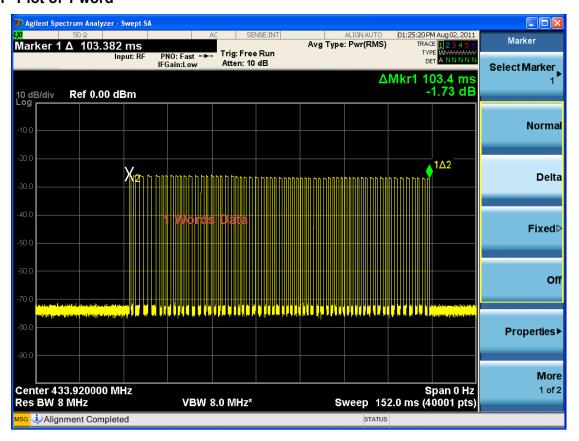
Test place : Shield Room
Test mode : Normal Operation
Test environment : 28 °C, 61 %R.H.

Page : 7 of 17 Report No. : RAPA11-O-314

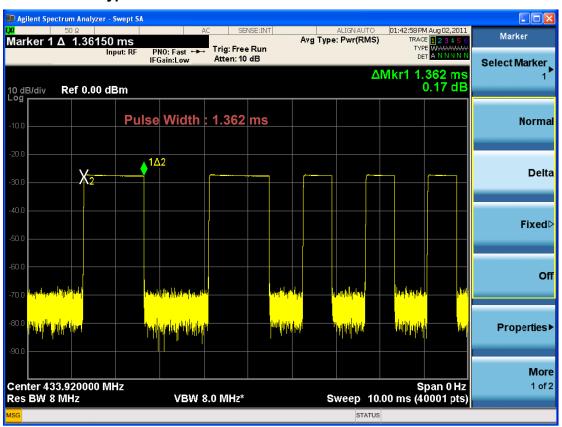

3.1.8 Test result

Frequency (MHz)	Transmission Time (s)	Limit (s)
433.92	0.63	5.00

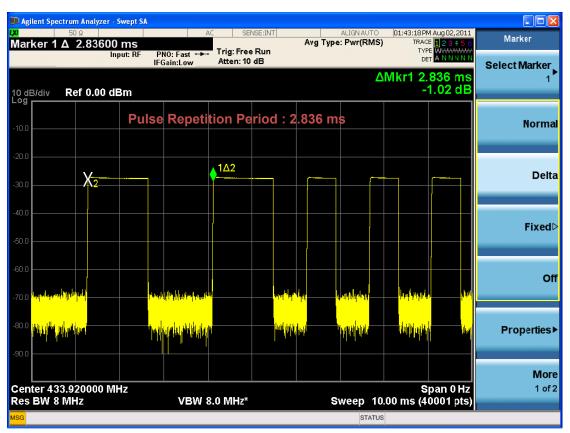
3.1.9 Limit


Less than 5 seconds.

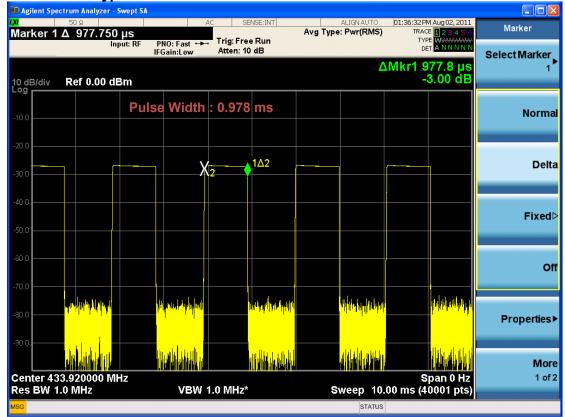
3.1.10 Plots of transmission time (6 words)



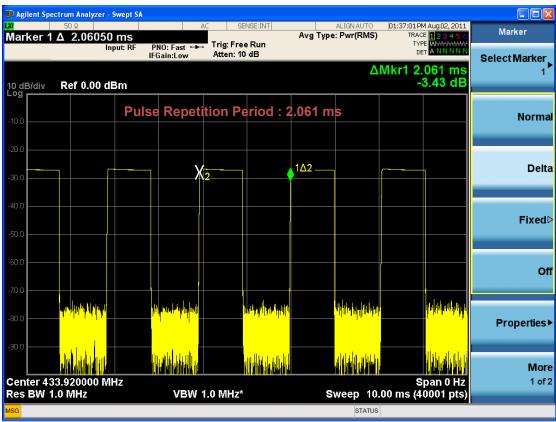
Page : 8 of 17 Report No. : RAPA11-O-314


3.1.11 Plot of 1 word

3.1.12 Plot of data type 1

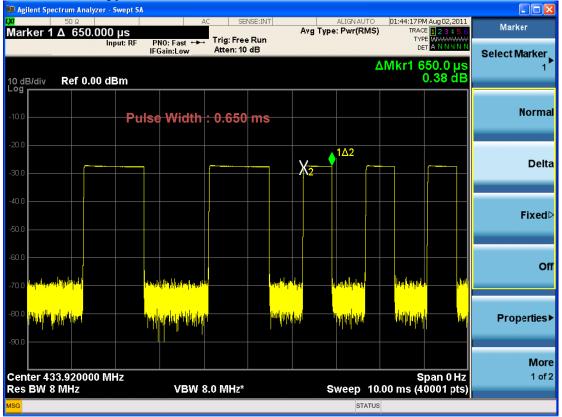


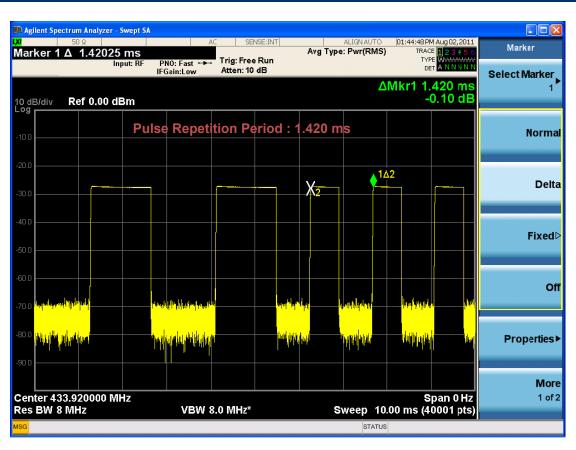
Page : 9 of 17 Report No. : RAPA11-O-314



Average Factor 1 =
$$20 log \left[\frac{1.362 ms}{2.836 ms} \right] dB = -6.37 dB$$

3.1.13 Plot of data type 2





Average Factor 2 = $20 \log \left[\frac{0.978 \text{ ms}}{2.061 \text{ ms}} \right] dB = -6.47 \text{ dB}$

3.1.14 Plot of data type 3

Report No.: RAPA11-O-314

Average Factor 3 =
$$20 log \left[\frac{0.650 ms}{1.420 ms} \right] dB = -6.79 dB$$

3.1.15 Total Averaging Factor

$$\begin{split} \text{Total Average Factor} &= \ 20 \, log \left[\frac{data \ type \ 1 + data \ type \ 2 + data \ type \ 3}{3} \right] \\ &= 20 \, log \left[\frac{\left(\frac{1.362 \ ms}{2.836 \ ms} + \frac{0.978 \ ms}{2.061 \ ms} + \frac{0.650 \ ms}{1.420 \ ms} \right)}{3} \right] \\ &= -6.54 \ (dB) \end{split}$$

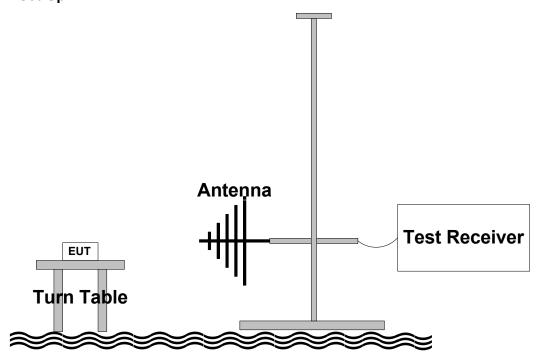
Report No.: RAPA11-O-314

Page : 12 of 17 Report No. : RAPA11-O-314

3.2 Field strength of fundamental and spurious emission

3.2.1 Definitions

A field strength emission is a emission from the equipment when transmitting into a nonradiating load on fundamental frequency and frequencies that are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.


3.2.2 Specification

FCC Rules Part 15 Subpart C Section 15.231(b) IC Rules RSS-210 Issue8 Annex I-2010 A1.1.2

3.2.3 Measurement method

ANSI Standard C63.4-2009 8.3

3.2.4 Set-Up

3.2.5 Test equipment list

Equipment	Model Name	Manufacturer
EUT	MR1060	SEGI LIMITED
Spectrum Analyzer	N9020A	Agilent
Loop Antenna	EMCO 6502	EMCO
Bi-conical Antenna	VHA9103	Schwarzbeck
Log Periodic Antenna	VULP9118A	Schwarzbeck
Horn Antenna	BBHA-9120D	Schwarzbeck
Pre-Amplifier	JS4-00102600-26-5P	MITEQ

Page: 13 of 17 Report No.: RAPA11-O-314

3.2.6 Test procedure

The EUT is placed on a turntable, which is 0.8 meter high above ground.

The turntable rotates 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, broadband antenna, which is mounted on an antenna mast.

The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level form the EUT. Both horizontal and vertical polarizations of the antenna are set on measurement.

In order to find out the maximum emission levels, all of the EUT location were manipulated according to ANSI 63.4 during the radiated emission measurement.

The EUT was tested in 3 orthogonal planes. The worst case position was reported.

The bandwidth of test receiver is set at 120 kHz between 30 to 1 000 MHz, and 1 MHz between 1 to 4 GHz.

3.2.7 Test condition

Test place : Open area test site
 Test mode : Normal operation
 Test environment : 18 °C, 59 % R.H.

3.2.8 Test result

Frequency [MHz]	Polarization [H/V]	Detect Mode [Peak/QP/ AVG]	Reading [dBµV]	Antenna Factor [dB/m]	Cable Loss [dB]	AVG Factor [dB]	Pre-Amp Gain [dB]	Emission Level [dBµV]	Limit [dBµV]	Margin [dB]
433.92	V	Peak	91.2	15.9	4.5	0	40.5	71.1	100.8	29.7
455.92	V	**AVG	91.2	15.9	4.5	-6.5	40.5	64.6	80.8	16.2
867.84	V	Peak	53.7	22.4	9.0	0	40.5	44.6	80.8	36.2
007.04	V	**AVG	55.7	22.4	9.0	-6.5	40.5	38.1	60.8	22.7
*1301.76		Peak	35.6	24.3	13.6	0	27.1	46.4	74.0	27.6
1301.70	-	**AVG	35.0	24.3	13.0	-6.5	27.1	39.9	54.0	14.1
1735.68		Peak	34.5	24.8	18.1	0	27.1	50.3	80.8	30.5
1735.00	-	**AVG	34.5	24.0	10.1	-6.5	27.1	43.8	60.8	17.0
2169.60		Peak	31.1	25.4	22.6	0	27.1	52.0	80.8	28.8
2109.00	-	**AVG	31.1	25.4	22.0	-6.5	27.1	45.5	60.8	15.3
2603.52		Peak	27.8	27.9	27.1	0	27.1	55.7	80.8	25.1
2003.32	-	**AVG	21.0	21.9	21.1	-6.5	27.1	49.2	60.8	11.6
3037.44		Peak	31.4	28.4	31.6	0	27.1	64.3	80.8	16.5
3037.44	-	**AVG	31.4	20.4	31.0	-6.5	27.1	57.8	60.8	3.0
3471.36		Peak	26.6	29.1	36.1	0	27.1	64.7	80.8	16.1
347 1.30	-	**AVG	20.0	29.1	30.1	-6.5	27.1	58.2	60.8	2.6
*3905.28		Peak	9.0	29.7	40.7	0	27.1	52.3	74.0	21.7
3803.20	_	**AVG	9.0	23.1	40.7	-6.5	21.1	45.8	54.0	8.2
*4339.20		Peak	2.8	30.3	45.2	0	27.1	51.2	74.0	22.8
4008.20	_	**AVG	2.0	30.3	45.2	-6.5	21.1	44.7	54.0	9.3

Here, * is restricted frequency, ** is the average value applied with average factor.

Page : 14 of 17 Report No. : RAPA11-O-314

3.2.9 Limit

Fundamental

Fundamental Frequency (MHz)	Field Strength of Fundamental (μV/m)	Field Strength of Fundamental (dBµV/m)
40.66 – 40.70	2 250	67.04
70 – 130	1 250	61.94
130 – 174	1 250 to 3 750	61.94 to 71.48
174 – 260	3 750	71.48
260 – 470	3 750 to 12 500	71.48 to 81.94
Above 470	12 500	81.94

· Spurious emission

Fundamental Frequency (MHz)	Field Strength of Spurious Emission (μV/m)	Field Strength of Spurious Emission (dBµV/m)
40.66 – 40.70	225	47.04
70 – 130	125	41.94
130 – 174	125 to 375	41.94 to 51.48
174 – 260	375	51.48
260 – 470	375 to 1 250	51.48 to 61.94
Above 470	1 250	61.94

· Spurious emission at restricted band

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	48.52 to 13.80	300
0.490 – 1.705	24000/F(kHz)	33.80 to 22.97	30
1.705 – 30.0	30	29.54	30
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 – 960	200	46.02	3
Above 470	500	53.98	3

Here, Restricted band are 1301 to 1427 MHz and 3600 to 4400

Page : 15 of 17 Report No. : RAPA11-O-314

3.3 20 dB Bandwidth

3.3.1 Definitions

A 20 dB Bandwidth is width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each lower 20 dB of the total mean power of a given emission

3.3.2 Specification

FCC Rules Part 15, Subpart C, Section 15.231(c)

3.3.3 Measurement methods

ANSI Standard C63.4-2009 10.1.8.8

3.3.4 Set-Up

3.3.5 Test equipment list

Equipment	Model Name	Manufacture	
EUT	MR1060	SEGI LIMITED	
Spectrum Analyzer	N9020A	Agilent	

3.3.6 Test procedure

Spectrum Analyzer setting

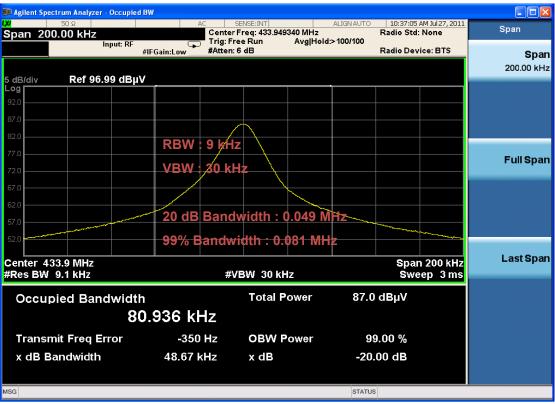
Center Frequency
 Span
 RBW
 VBW
 433.92 MHz
 0.5 MHz / 1 MHz
 9 kHz / 120 kHz
 30 kHz / 300 kHz

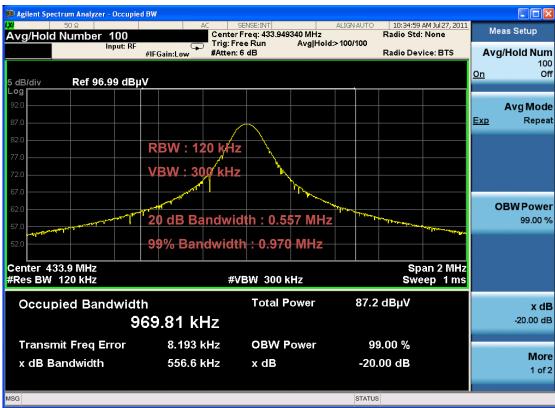
• Detect Mode : Peak

3.3.7 Test condition

Test Place : Shield Room
 Test Mode : Normal Operation
 Test Environment : 22 °C, 53 %R.H.

3.3.8 Test result


Frequency (MHz) RBW (MHz)		20 dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)
433.95	9 kH	0.049	0.081	1.085
	120 kHz	0.557	0.970	


Page : 16 of 17 Report No. : RAPA11-O-314

3.3.9 Limit

Less than 0.25 % (1.085 MHz).

3.3.10 Plots of 20 dB bandwidth and 99% Bandwidth

Page : 17 of 17 Report No. : RAPA11-O-314

4. Test equipments list

The listing below denotes the test equipments for the test(s).

No.	Equipment	Model	Manufacturer	Serial Number	Calibration Due date
1	Spectrum Analyzer	N9020A	Agilent	MY48010456	03/10/12
2	Power Supply	E3633A	Agilent	SG400022272	10/02/11
3	Loop Antenna	6502	EMCO	9609-9087	03/03/12
4	Biconical Antenna	BBAK9137	Schwarzbeck	2217	02/23/12
5	Log-Periodic Antenna	VULP9118A	Schwarzbeck	382	02/23/12
6	Horn Antenna	BBHA 9120 D	Schwarzbeck	395	08/13/12
7	Pre-Amplifier	JS4-00102600-26-5	Miteq	383521	03/10/12
8	Turn Table	N/A	Daeil EMC	N/A	N/A
9	Antenna Mast	EAM4.5	Daeil EMC	N/A	N/A
10	Controller	DE200	Daeil EMC	AAA69813111	N/A