

# **TEST REPORT**

# Part 15 Subpart C 15.247 & IC RSS-210(Issue 8)

| Equipment under test | Keyless Entry System                    |
|----------------------|-----------------------------------------|
| Model name           | MR1040-2WAY(Variant model: REB500-2WAY) |
| FCC ID               | VA5JR1040-2WSSL                         |
| IC Certification     | 7087A-2WR1040SSL                        |
| Applicant            | SEGI LIMITED                            |
| Manufacturer         | SEGI ELECTRONICS CO.,LTD.               |
| Date of test(s)      | $2012.03.27 \sim 2012.04.10$            |
| Date of issue        | 2012.04.17                              |
|                      |                                         |

Issued to

**SEGI LIMITED** 

ROOM 1808, 18/F, Tower 2, Admiralty Centre, 18 Harcourt Rd., Admiralty, Hong Kong, China

Issued by

KES Co., Ltd.

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea 477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

| Test and report completed by : | Report approval by : |
|--------------------------------|----------------------|
| Gentlerg                       | Sci                  |
| Jeff Do                        | Gyu-cheol Shin       |
| Test engineer                  | Technical manager    |

Test report No.: KES-RF-120026

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.



## **Revision history**

| Revision | Date of issue | Test report No. | Description |
|----------|---------------|-----------------|-------------|
| -        | 2012.04.17    | KES-RF-120026   | Initial     |



## **TABLE OF CONTENTS**

| 1.0 | G        | eneral product description                | 4  |
|-----|----------|-------------------------------------------|----|
| 1.1 | Te       | est frequency                             |    |
| 1.2 | In       | formation about variant model             | 4  |
| 1.3 | D        | evice modifications                       | 4  |
| 1.4 | Τe       | est facility                              | 5  |
| 1.5 | Te       | est measurement procedure                 | 5  |
| 1.6 | La       | aboratory accreditations and listings     | 5  |
| 2.0 | Sı       | ummary of tests                           | 6  |
| 2.1 | Te       | est data                                  | 7  |
|     | 2.1.1    | Maximum peak power                        |    |
|     | 2.1.2    | Conducted spurious emission & band edge   | 10 |
|     | 2.1.3    | 20 dB bandwidth & 99 % occupied bandwidth | 16 |
|     | 2.1.4    | Frequency separation                      | 19 |
|     | 2.1.5    | Number of hopping frequency               |    |
|     | 2.1.6    | Time of occupancy (Dwell time)            |    |
|     | 2.1.7    | Radiated spurious emission & band edge    | 25 |
|     |          | dix A. Test equipment used for test       |    |
| App | bendix E | B. Test setup photos                      |    |
|     |          |                                           |    |



#### 1.0 General product description

| Equipment under test         Keyless Entry System  |                              |  |  |  |  |  |  |
|----------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Model name MR1040-2WAY(Variant model: REB500-2WAY) |                              |  |  |  |  |  |  |
| Serial number                                      | N/A                          |  |  |  |  |  |  |
| Frequency Range                                    | 910.92 MHz ~ 919.08 MHz      |  |  |  |  |  |  |
| Modulation technique                               | FHSS                         |  |  |  |  |  |  |
| Number of channels                                 | 25                           |  |  |  |  |  |  |
| Antenna type & gain                                | Helical antenna / -8.586 dBi |  |  |  |  |  |  |
| Power source                                       | DC 6 V                       |  |  |  |  |  |  |

#### **1.1** Test frequency

|                | Low channel | Middle channel | High channel |
|----------------|-------------|----------------|--------------|
| Frequency (Mz) | 910.92      | 915.00         | 919.08       |

#### **1.2** Information about variant model

Please refer to the family model cover letter.

#### **1.3** Device modifications

No modifications were made during testing.



#### 1.4 Test facility

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea 477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

#### **1.5** Test measurement procedure

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.4-2003) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"

| Country | Agency | Scope of accreditation                                                                                                               | Logo                |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| USA     | FCC    | 3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.                                     | <b>FC</b><br>343818 |
| KOREA   | KC     | EMI<br>(10 meter Open Area Test Site and two conducted sites)<br>Radio<br>(3 & 10 meter Open Area Test Sites and one conducted site) | KR0100              |
| Canada  | IC     | 3 & 10 meter Open Area Test Sites<br>and one conducted site                                                                          | 4769B-1             |

#### **1.6** Laboratory accreditations and listings



| <b>2.0</b> Summary of test          | ts                                            |        |
|-------------------------------------|-----------------------------------------------|--------|
| Section in<br>FCC Part 15 & RSS-210 | Parameter                                     | Status |
| 15.247(b)(2)<br>RSS-210 8.4(1)      | Maximum peak output power                     | С      |
| 15.247(d)<br>RSS-210 A8.5           | Conducted spurious emission & band edge       | С      |
| 15.247(a)(1)(i)<br>RSS-210 A8.1(c)  | 20 dB bandwidth                               | С      |
| 15.247(a)(1)<br>RSS-210 A8.1(b)     | Frequency separation                          | С      |
| 15.247(b)(2)<br>RSS-210 A8.1(c)     | Number of hopping frequency                   | С      |
| 15.247(a)(1)(i)<br>RSS-210 A8.1(c)  | Time of occupancy(Dwell time)                 | С      |
| 15.247(d)<br>RSS-210 A8.5           | Radiated spurious emission & band edge        | С      |
| RSS-Gen 4.6.1                       | 99 % Occupied bandwidth                       | С      |
| Note 1: C=Complies NC               | =Not complies NT=Not tested NA=Not applicable | ·      |



#### 2.1 Test data

#### 2.1.1 Maximum peak power

#### Test setup

| EUT | <br>Attenuator | Spectrum analyzer |
|-----|----------------|-------------------|
| 201 |                |                   |

#### **Test procedure**

- 1. Use the following spectrum analyzer setting
  - Center frequency: Lowest, middle and highest channels
  - Span = 5 MHz (Approximately 5 times the 20 dB bandwidth, centered on a hopping channel)
  - RBW = 1 M/z (the 20 dB bandwidth of the emission being measured)

VBW = 1 M/z ( $\geq RBW$ )

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

#### Limit

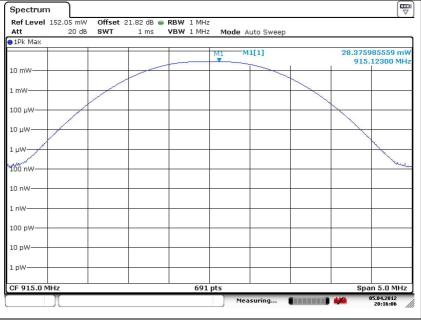
For frequency hopping systems operating in the  $902 \sim 928$  MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.



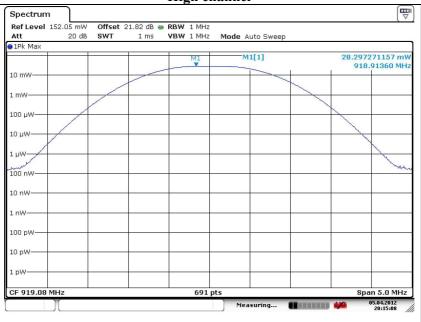
#### **Test results**

| Frequency(Mz) | Output power (W) | Limit (W) |
|---------------|------------------|-----------|
| 910.92        | 0.027            | 0.25      |
| 915.00        | 0.028            | 0.25      |
| 919.08        | 0.028            | 0.25      |

| Spectrum         |                    |                 |        | Service & source in    |        |           |   |     |                       |
|------------------|--------------------|-----------------|--------|------------------------|--------|-----------|---|-----|-----------------------|
| Ref Level<br>Att | 151.01 mW<br>20 dB | Offset 2<br>SWT |        | RBW 1 MHz<br>VBW 1 MHz | Mode A | uto Sweep |   |     |                       |
| ●1Pk Max         | 20 00              | ont             | 2 1115 |                        | mode A | uto Sweep |   |     |                       |
|                  |                    |                 |        |                        | M1 M   | 1[1]      |   |     | 71129 mV<br>08640 MH: |
| 10 mW            |                    | /               |        |                        |        |           |   |     |                       |
| 1.mW             |                    | /               |        |                        |        |           | 1 |     |                       |
| 100 μW           |                    |                 |        |                        |        |           |   | 1   |                       |
| 10 µW            |                    |                 |        |                        |        |           |   | 1   | /                     |
| 1 μW             |                    |                 |        |                        |        |           |   |     | herde                 |
| 10 nW            |                    |                 |        |                        |        |           |   |     |                       |
| 1 nW             |                    |                 |        |                        |        |           |   |     |                       |
| 100 pW           |                    |                 |        |                        |        |           |   |     |                       |
| 10 pW            |                    |                 |        |                        |        |           |   |     |                       |
| 1 pW             |                    |                 |        |                        |        |           |   |     |                       |
| CF 910.92        | MHz                |                 |        | 691                    | ots    | 1         |   | Spa | n 5.0 MHz             |
|                  | ][]                |                 |        |                        | Mea    | suring    |   |     | 5.04.2012<br>20:16:45 |

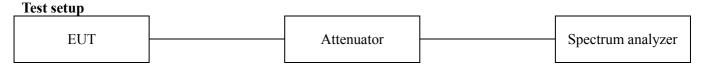

#### Low channel




#### KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

#### Middle channel




#### High channel





## 2.1.2 Conducted spurious emission & band edge



#### Test procedure for band edge

- 1. Use the following spectrum analyzer setting
  - Center frequency: Low, middle and high channel.

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100 kHz

 $VBW = 100 \text{ kHz} (\geq RBW)$ Sweep = auto Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation on product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission

#### Test procedure for spurious emission

- 1. Use the following spectrum analyzer setting
  - Center frequency: Low, middle and high channel.

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100 kHz

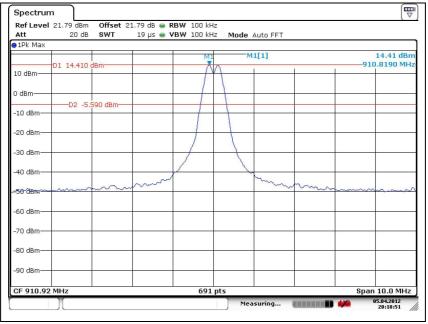
 $VBW = 100 \text{ kHz} (\geq RBW)$ Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.




#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))



#### **Test results**

Low channel



| Ref Level<br>Att |      | 20 dB   | SWT              |           |            | 100 kH<br>100 kH |           | Auto Sweep      |            |              |            |
|------------------|------|---------|------------------|-----------|------------|------------------|-----------|-----------------|------------|--------------|------------|
| 1Pk Max          |      |         | 1                |           |            |                  |           |                 | 1          |              |            |
| 10 dBm           | D1 1 | 4.410   | dBm              |           |            |                  |           |                 |            |              |            |
| 0 dBm            |      |         |                  |           |            |                  |           |                 |            |              |            |
| -10 dBm          | (    | 02 -5.  | 590 dBm          |           |            |                  |           |                 |            |              |            |
| -20 dBm          | -    |         |                  |           | <br>       |                  |           |                 |            |              |            |
| -30 dBm          |      |         |                  |           |            |                  |           |                 |            |              |            |
| -40 dBm          |      |         | 1                |           | <br>Monard | man              | workery . | munder          | hi uz      |              | a marine i |
| 5areter          | unul | whenthe | And and the star | guradar . |            |                  | wa        | to the order to | and an the | July and and |            |
| -60 dBm          |      |         |                  |           |            |                  |           |                 |            |              |            |
| -70 dBm          |      |         |                  |           |            |                  |           |                 |            |              |            |
| -80 dBm          |      |         |                  |           |            |                  |           |                 |            |              |            |
| -90 dBm          |      |         |                  |           |            |                  |           |                 |            |              |            |



#### Middle channel

| Spectrur<br>Ref Level | n<br>21.82 dBm                               | Offset : | 21.82 dB 👄 F | <b>BW</b> 100 kH | z        |          |   |      |                        |
|-----------------------|----------------------------------------------|----------|--------------|------------------|----------|----------|---|------|------------------------|
| Att                   | 20 dB                                        | SWT      |              | BW 100 kH        |          | Auto FFT |   |      |                        |
| ∋1Pk Max              |                                              |          |              |                  |          |          |   |      |                        |
|                       |                                              |          |              | MI               | M        | 1[1]     |   |      | 14.51 dBm              |
| 10 dBm                | D1 14.510                                    | dBm      |              | -                | <u> </u> |          |   | -91  | 4.8990 MHz             |
| 0 dBm                 |                                              |          |              |                  |          |          |   |      |                        |
| -10 dBm—              | D2 -5.                                       | 490 dBm  |              |                  |          |          |   |      |                        |
| -20 dBm—              |                                              |          |              |                  |          |          |   |      |                        |
| -30 dBm—              |                                              |          |              |                  | -        |          |   |      |                        |
| -40 dBm—              |                                              |          | ~            |                  | 1        | <u></u>  |   |      |                        |
| -50 dBm- /\           | <u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | m        |              |                  |          | m        | m | -    |                        |
| -60 dBm               |                                              |          |              |                  |          |          |   |      |                        |
| -70 dBm—              |                                              |          |              |                  |          |          |   |      |                        |
| -80 dBm               |                                              |          |              |                  |          |          |   |      |                        |
| -90 dBm—              |                                              |          |              |                  |          |          |   |      |                        |
| CF 915.0              | MHz                                          |          | 1            | 691              | pts      | 1        | 1 | Spai | n 10.0 MHz             |
|                       |                                              |          |              |                  | ) Mea    | isuring  |   | 444  | 05.04.2012<br>20:20:47 |

| Att         | 21.82 | 20 dB     | SWT       | 21.82 c<br>128 m |                |       | 100 kH |            | Auto Sweep      |                               |                  |                |
|-------------|-------|-----------|-----------|------------------|----------------|-------|--------|------------|-----------------|-------------------------------|------------------|----------------|
| 1Pk Max     |       |           |           |                  |                |       |        |            | · ·             |                               |                  |                |
| 10 dBm      | D1 14 | 4.510 (   | dBm       |                  |                |       |        |            |                 |                               |                  |                |
| TO UBIII    |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
| 0 dBm       |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
| -10 dBm —   | C     | )2 -5.4   | 190 dBm-  |                  |                | -     |        |            |                 |                               |                  |                |
| -20 dBm     | Ŧ     | _         |           |                  |                |       |        |            |                 |                               |                  |                |
| -30 dBm     |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
| -40 dBrr    |       |           |           | 1.00.004         | and the states | Marth | munder | weddy 1    | phanhum         | a an ata                      |                  | a collected as |
| 50 dBrt Hud | mand  | regentery | whentrush | and an an an     |                |       |        | - lach Con | pr sur · winner | and and a construction of the | and an all a she | of the concern |
| -60 dBm     |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
| -70 dBm—    |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
|             |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
| -80 dBm     |       |           |           |                  |                |       |        |            |                 |                               |                  |                |
|             |       |           |           |                  |                |       |        |            |                 |                               |                  |                |



#### High channel

|            | 21.82 dBm |         | 21.82 dB 🔵 F |            |        |          |    |     |                        |
|------------|-----------|---------|--------------|------------|--------|----------|----|-----|------------------------|
| Att        | 20 dB     | SWT     | 19 µs 🖷 🕻    | 'BW 100 kH | z Mode | Auto FFT |    |     |                        |
| JIFK MdA   |           |         | -            | MI         | M      | 1[1]     |    |     | 14.51 dBm              |
|            | D1 14.510 | dBm     |              | X          | Δ      | -1-1     |    |     | 8.9790 MHz             |
| 10 dBm     |           |         |              | -          | 1      |          |    |     | -                      |
| 0 dBm      |           |         |              |            |        |          |    |     |                        |
|            | D2 -5.    | 490 dBm | -            |            |        |          |    |     |                        |
| -10 dBm    |           |         |              |            |        |          |    |     | -                      |
| -20 dBm    |           |         |              |            |        |          |    |     |                        |
|            |           |         |              |            | (      |          |    |     |                        |
| -30 dBm    |           |         |              |            |        |          |    |     | -                      |
| -40 dBm    |           |         | -            | r          | 7      |          |    |     |                        |
| ~58.dBm~~~ | amar      | nom     |              |            |        | mon      | mm |     | 1.0.0                  |
|            | 5 N       |         |              |            |        |          |    |     |                        |
| -60 dBm    |           |         |              |            |        |          |    |     | -                      |
| -70 dBm    |           |         |              |            |        |          |    |     |                        |
| yo abiii   |           |         |              |            |        |          |    |     |                        |
| -80 dBm    |           |         |              |            |        |          |    |     |                        |
| -90 dBm    |           |         |              |            |        |          |    |     |                        |
|            |           |         |              |            |        |          |    |     |                        |
| CF 919.08  | MHz       |         |              | 691        | pts    |          |    | Spa | n 10.0 MHz             |
|            | 1         |         |              |            | Mea    | suring   |    | -   | 05.04.2012<br>20:21:44 |

|           |                    |               | -               |        |           |            |             |                |           |
|-----------|--------------------|---------------|-----------------|--------|-----------|------------|-------------|----------------|-----------|
| 1Pk Max   |                    | 1             |                 |        | 1         |            | I           |                | 1         |
| 10 dBm    | D1 14.510          | dBm           |                 |        |           |            |             |                |           |
| D dBm     | D2 _5              | .490 dBm      |                 |        |           |            |             |                |           |
| -10 dBm—  | 02.0               |               |                 |        |           |            |             |                |           |
| -20 dBm—  | 1                  |               |                 |        |           |            |             |                |           |
| -30 dBm—  |                    |               |                 |        |           |            |             |                |           |
| -40 dBm—  | uns for the handle | woodenterrand | hupertinithered | mannin | hall have | uwa butata | bridenstand | Were Worth and | mohnure   |
| -60 dBm—  |                    |               |                 |        |           |            |             |                |           |
| -70 dBm—  |                    |               |                 |        |           |            |             |                |           |
| -80 dBm—  |                    |               |                 |        |           |            |             |                |           |
| -90 dBm—  |                    |               |                 |        |           |            |             |                |           |
| Start 320 | .0 MHz             |               | 1               | 691    | pts       |            |             | Stop           | 12.75 GHz |



#### KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

#### Band edge (Hopping mode)

| Ref Level 21.82 dBm         Offset 21.82 dB & RBW 100 kHz           Mode Auto FFT           • VBW 100 kHz         Mode Auto FFT           • IPk Max         • Image Autor FT         Image Autor FT         Image Autor FT           • IPk Max         • Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT           • In Also         Image Autor FT         Image Autor FT         Image Autor FT         Image Autor FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spectrun            |           |           |             |                   | - T T - E |          |       |        |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------|-------------|-------------------|-----------|----------|-------|--------|-----------|
| ID I 14.550 dBm     //**/////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |           |           |             |                   |           |          |       |        |           |
| D1 14.550 dBm     //**/////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100-0-100-000       | 20 dB     | SWT       | 37.9 µs 👄 🕻 | <b>/BW</b> 100 kH | z Mode .  | Auto FFT |       |        |           |
| 10 dBm 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) 1Pk Max           |           | 1         |             |                   |           |          |       |        |           |
| -10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-80 dBm<br>-70 |                     | D1 14.550 | dBm       | hundred     | wwwwww            | wwwww     | ppppp    |       |        |           |
| -10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-40 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 dBm               |           |           |             |                   |           |          |       |        |           |
| -30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm<br>-80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -10 dBm             | D2 -5.    | 450 dBm   |             |                   |           |          |       |        |           |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -20 dBm             |           |           | 1           |                   |           |          |       |        |           |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -30 dBm             |           |           |             |                   |           |          |       |        |           |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -40 dBm             |           |           |             |                   |           | }        |       |        |           |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.dB00             | munt      | men Ander | pre         |                   |           |          | mound | walnut | montal    |
| -80 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |           |           |             |                   |           |          |       |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |           |           |             |                   |           |          |       |        |           |
| -9U @BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |           |           |             |                   |           |          |       |        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.00000 10000000000 | 0.001-    |           |             |                   |           |          |       | 01     | 00.0.1    |
| Start 902.0 MHz         691 pts         Stop 928.0 MH;           Measuring         Measuring         ##         05.04.2012<br>2002301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | start 902.          |           |           |             | 691               | <u> </u>  | suring   |       |        | 5.04.2012 |

| Ref Level<br>Att | 21.0    | 20 dB    | SWT         |          |       |        | 100 kH<br>100 kH |       | Auto Sweep           | )       |             |               |
|------------------|---------|----------|-------------|----------|-------|--------|------------------|-------|----------------------|---------|-------------|---------------|
| 1Pk Max          |         |          |             |          |       |        |                  |       |                      |         |             |               |
| 10 dBm           | D1      | 14.550   | dBm         |          |       |        |                  |       |                      |         |             |               |
| D dBm—           |         |          |             |          |       | _      |                  |       |                      |         |             |               |
| -10 dBm —        |         | -U2 -5.  | 450 dBm     |          |       |        |                  |       |                      |         |             |               |
| -20 dBm —        |         |          |             |          |       |        |                  |       |                      |         |             |               |
| -30 dBr —        |         |          |             |          |       |        |                  |       |                      |         |             |               |
| -40 dBm —        |         | unterest | all and all | undulula | Andre | mohren | rowand           | human | about the work where | manutar | Contraction | Mupetingetime |
| 5Q-demail        | المراجع | X0000-0V |             |          |       |        |                  |       |                      |         |             |               |
| -60 dBm          |         |          |             |          |       |        |                  |       |                      |         |             |               |
| -70 dBm          |         |          |             |          |       |        |                  |       |                      |         |             |               |
| -80 dBm          |         |          |             |          |       |        |                  |       |                      |         |             |               |
| -90 dBm          |         |          |             |          |       |        |                  |       |                      |         |             | 12.75 GHz     |



## 2.1.3 20 dB bandwidth & 99 % occupied bandwidth



#### **Test procedure**

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = 1 Mz (Approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel)

RBW = 10 kHz ( $\geq$  1% of the span)

 $VBW = 10 \text{ kHz} (\geq RBW)$ 

Sweep = auto

Detector function = peak

Trace = max hold

2. The EUT should be transmitting at its maximum data rate. Allow the trance to stabilize. Use the marker-topeak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down on side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level.

#### Limit

Not applicable



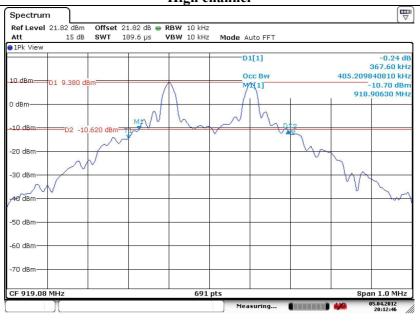
#### **Test results**

| Frequency(Mz) | 20 dB bandwidth(khz) | 99 % occupied bandwidth(始z) |
|---------------|----------------------|-----------------------------|
| 910.92        | 361.80               | 396.53                      |
| 915.00        | 347.30               | 382.05                      |
| 919.08        | 367.60               | 405.21                      |



#### Low channel

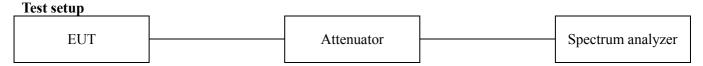



#### KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

#### Middle channel




#### High channel





Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

#### 2.1.4 Frequency separation



#### **Test procedure**

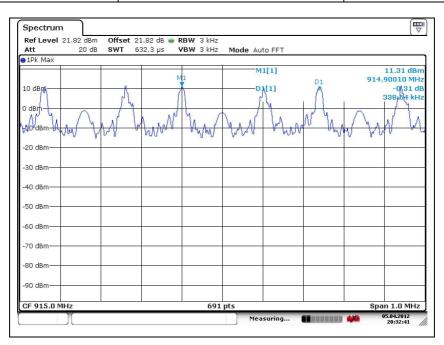
- 1. The EUT must have its hopping function enabled.
- 2. Use the following spectrum analyzer setting
  - Span = 1 MHz (wide enough to capture the peaks of two adjacent channels)
  - $RBW = 3 \text{ kHz} (\geq 1\% \text{ of the span})$
  - $VBW = 3 \text{ kHz} (\geq RBW)$

Sweep = auto

Detector function = peak

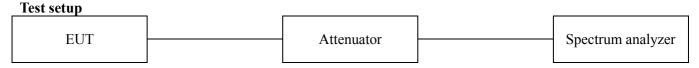
Trace = max hold

3. All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.


#### Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.




#### **Test results**

| Operation mode | Channel separation(姑z) | Minimum bandwidth (龀) |
|----------------|------------------------|-----------------------|
| Hopping mode   | 338.64                 | 25                    |

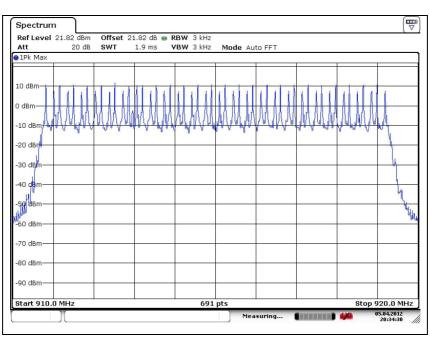




### 2.1.5 Number of hopping frequency

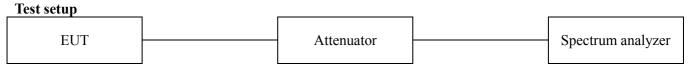


#### **Test procedure**


- 1. The EUT must have its hopping function enabled.
- 2. Use the following spectrum analyzer setting
- Frequency range: 910 M½ ~ 920 M½
  Span = the frequency band of operation
  RBW = 3 kH₂ (≥ 1% of the span)
  VBW = 3 kH₂ (≥ RBW)
  Sweep = auto
  Detector function = peak
  Trace = max hold
  All the trace to stabilize. Use the marker-operation
- 3. All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

#### Limit

For frequency hopping systems operating in the  $902 \sim 928$  MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.




# Test resultsOperation modeNumber of hopping frequencyLimitGFSK25≥25





## 2.1.6 Time of occupancy (Dwell time)



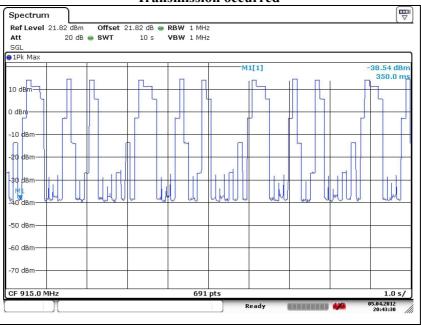
#### **Test procedure**

 Use the following spectrum analyzer setting Operation frequency: center frequency Span = Zero span, centered on a hopping channel RBW = 300 kHz
 VBW = 300 kHz (≥ RBW) Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold

#### Limit

For frequency hopping systems operating in the  $902 \sim 928$  MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.




#### **Test results**

| Frequency | Dwell time | Transmission | Result | Limit |
|-----------|------------|--------------|--------|-------|
| (Mz)      | (ms)       | occurred     | (ms)   | (ms)  |
| 915       | 107.25     | 3            | 321.75 | 400   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 | Jwen um                           | e                               |    |                     |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|----|---------------------|----------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                                                                                 |                                   |                                 |    |                     | (E             |
| Ref Level 41.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBm Offset                | 21.72 dB 🔵 RB                                                                                                   | <b>W</b> 300 kHz                  |                                 |    |                     |                |
| Att 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D dB 👄 SWT                | 1 s <b>VB</b>                                                                                                   | <b>W</b> 300 kHz                  |                                 |    |                     |                |
| SGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                                                                 |                                   |                                 |    |                     |                |
| 1AP Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   | D1[1]                           |    |                     | 0.07 d         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     | 107.25 n       |
| 30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                                 |                                   | _M1[1]                          |    |                     | 14.51 dB       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   | 1                               | T  | 1                   | 701.45 n       |
| 20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                                 |                                   |                                 |    |                     |                |
| co abiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                                                                                 |                                   | N                               | 11 | D1                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 | -  | 1                   |                |
| LO dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     |                |
| ) dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     |                |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     |                |
| 🗂 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.15                     |                                                                                                                 |                                   |                                 |    |                     | 1              |
| And and the second states of t | Repair Manual Manual      | and all and a provided of the p | والمالية والقريدية الجم ومطابقهما | ali ali da la sur blandise, bia | 1  | atherited seaton by | all the former |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    | +                   |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   |                                 |    | -+-                 |                |
| dimension and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                                                                                 | over a seller                     | sardine a                       |    |                     |                |
| CF 915.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in the data of the second | National district dist                                                                                          | dal ut. mana a l.<br>691 pts      | dia dina dia kana sa dia        |    | to an har hard      | 100.0 ms       |
| 5F 913.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                                                                                 | Dathes                            |                                 |    |                     | 16.04.2012     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                 |                                   | Ready                           |    |                     | 09:48:33       |

#### **Dwell time**

#### Transmission occurred





### KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

#### 2.1.7 Radiated spurious emission & band edge

#### **Test location**

Testing was performed at a test distance of 3 meter Open Area Test Site

#### **Test procedures**

[9 kHz to 30 MHz]

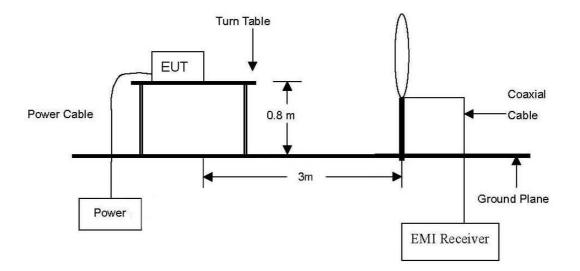
The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter OATS. The table was rotated 360 degrees to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Quasi-peak function and specified bandwidth with maximum hold mode.

The spectrum analyzer is set to:

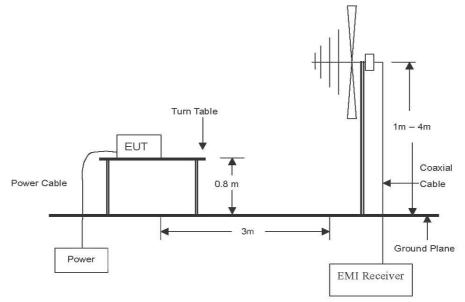
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 200 Hz for Quasi-peak detection (QP) at frequency below 9 kHz~150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 9 kHz for Quasi-peak detection (QP) at frequency below 150 kHz~ 30 MHz.

[30 MHz to 1 GHz and 1 GHz to 24 GHz]

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

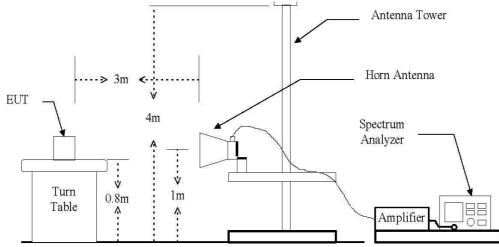

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mz for Peak detection at frequency above 1 Gz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.



The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.




The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.





The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz emissions.



#### Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

| Frequency (Mz) | Distance (Meters) | Radiated (µV/m) |
|----------------|-------------------|-----------------|
| 0.009 ~ 0.490  | 300               | 2400 / F(kllz)  |
| 0.490 ~ 1.705  | 30                | 24000 / F(kHz)  |
| 1.705 ~ 30.0   | 30                | 30              |
| 30 ~ 88        | 3                 | 100**           |
| 88~216         | 3                 | 150**           |
| 216~960        | 3                 | 200**           |
| Above 960      | 3                 | 500             |

\*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands  $54 \sim 72$  Mb,  $76 \sim 88$  Mb,  $174 \sim 216$  Mb or  $470 \sim 806$  Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.



#### Test results (Below 30 M拉)

| Radiated e         | emissions         | Ant. | (                     | Correction factor  | °S                     | Total              | Liı               | nit            |
|--------------------|-------------------|------|-----------------------|--------------------|------------------------|--------------------|-------------------|----------------|
| Frequency<br>(Mbz) | Reading<br>(dBµV) | Pol. | Ant. Factor<br>(dB/m) | Cable loss<br>(dB) | F <sub>d</sub><br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |
|                    |                   |      |                       |                    |                        |                    |                   |                |
|                    | Not applicable    |      |                       |                    |                        |                    |                   |                |
|                    |                   |      |                       |                    |                        |                    |                   |                |

#### **※** Remark

- 1. All spurious emission at channels are almost the same below 30 Mz, so that N/A was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Cable loss +  $F_d$

3.  $F_d = 40 \log(D_m / D_s)$ 

Where:

- $F_d$  = Distance factor in dB
- $D_m$  = Measurement distance in meters
- $D_s$  = Specification distance in meters

#### Test results (Below 1 000 Mz)

The frequency spectrum from 30 MHz to 1 000 MHz was investigated.

| Radiated e         | emissions                                                                 | Ant. | Correction factors    |                  | Total              | Liı               | nit            |  |  |
|--------------------|---------------------------------------------------------------------------|------|-----------------------|------------------|--------------------|-------------------|----------------|--|--|
| Frequency<br>(Mbz) | Reading<br>(dBµV)                                                         | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB) | Actual<br>(dBµN/m) | Limit<br>(dBµN/m) | Margin<br>(dB) |  |  |
|                    |                                                                           |      |                       |                  |                    |                   |                |  |  |
|                    | Emission levels are not reported much lower than the limits by over 20 dB |      |                       |                  |                    |                   |                |  |  |
|                    |                                                                           |      |                       |                  |                    |                   |                |  |  |

#### **※** Remark

- 1. All spurious emission at channels are almost the same below 1 GHz, so that <u>high channel</u> was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 3. Detector mode: Quasi peak
- 4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.



# Test results (Above 1 000 Mz) – Basic model

|                   | Low channel       |                  |      |                       |                  |                    |                   |                |  |  |
|-------------------|-------------------|------------------|------|-----------------------|------------------|--------------------|-------------------|----------------|--|--|
| Rad               | liated emissions  | 5                | Ant. | Correctio             | on factors       | Total              | Li                | mit            |  |  |
| Frequency<br>(Mz) | Reading<br>(dBµN) | Detector<br>mode | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |  |
| 2732.76           | 66.41             | Peak             | V    | 29.01                 | -38.33           | 57.09              | 74.00             | 16.91          |  |  |
| 2732.76           | 62.46             | Average          | V    | 29.01                 | -38.33           | 53.14              | 54.00             | 0.86           |  |  |
| 3643.68           | 58.68             | Peak             | Н    | 30.65                 | -36.12           | 53.21              | 74.00             | 20.79          |  |  |
| 4554.60           | 58.32             | Peak             | V    | 33.08                 | -33.64           | 57.76              | 74.00             | 16.24          |  |  |
| 4554.60           | 54.36             | Average          | V    | 33.08                 | -33.64           | 53.80              | 54.00             | 0.20           |  |  |
| 4554.60           | 56.88             | Peak             | Н    | 33.08                 | -33.64           | 56.32              | 74.00             | 17.68          |  |  |
| 4554.60           | 53.71             | Average          | Н    | 33.08                 | -33.64           | 53.15              | 54.00             | 0.85           |  |  |

|                   | Middle channel    |                  |      |                       |                  |                    |                   |                |  |  |
|-------------------|-------------------|------------------|------|-----------------------|------------------|--------------------|-------------------|----------------|--|--|
| Rad               | liated emissions  | 5                | Ant. | Correctio             | on factors       | Total              | Li                | mit            |  |  |
| Frequency<br>(Mz) | Reading<br>(dBµN) | Detector<br>mode | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |  |
| 2745.00           | 64.87             | Peak             | V    | 29.03                 | -38.31           | 55.59              | 74.00             | 18.41          |  |  |
| 2745.00           | 61.66             | Average          | V    | 29.03                 | -38.31           | 52.38              | 54.00             | 1.62           |  |  |
| 3660.00           | 59.71             | Peak             | Н    | 30.68                 | -36.05           | 54.34              | 74.00             | 19.66          |  |  |
| 3660.00           | 57.09             | Average          | Н    | 30.68                 | -36.05           | 51.72              | 54.00             | 2.28           |  |  |
| 4575.00           | 58.00             | Peak             | V    | 33.15                 | -33.48           | 57.67              | 74.00             | 16.33          |  |  |
| 4575.00           | 54.01             | Average          | V    | 33.15                 | -33.48           | 53.68              | 54.00             | 0.32           |  |  |
| 4575.00           | 56.99             | Peak             | Н    | 33.15                 | -33.48           | 56.66              | 74.00             | 17.34          |  |  |
| 4575.00           | 53.74             | Average          | Н    | 33.15                 | -33.48           | 53.41              | 54.00             | 0.59           |  |  |



#### KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

|                    | High channel      |                  |      |                       |                           |                    |                   |                |  |  |
|--------------------|-------------------|------------------|------|-----------------------|---------------------------|--------------------|-------------------|----------------|--|--|
| Rad                | liated emissions  | 5                | Ant. | Correctio             | <b>Correction factors</b> |                    | Liı               | mit            |  |  |
| Frequency<br>(Mbz) | Reading<br>(dBµV) | Detector<br>mode | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB)          | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |  |
| 2757.24            | 65.23             | Peak             | V    | 29.06                 | -38.29                    | 56.00              | 74.00             | 18.00          |  |  |
| 2757.24            | 61.43             | Average          | V    | 29.06                 | -38.29                    | 52.20              | 54.00             | 1.80           |  |  |
| 4595.40            | 57.63             | Peak             | V    | 33.22                 | -33.32                    | 57.53              | 74.00             | 16.47          |  |  |
| 4595.40            | 53.73             | Average          | V    | 33.22                 | -33.32                    | 53.63              | 54.00             | 0.37           |  |  |
| 3676.32            | 61.28             | Peak             | Н    | 30.71                 | -35.97                    | 56.01              | 74.00             | 17.99          |  |  |
| 3676.32            | 57.42             | Average          | Н    | 30.71                 | -35.97                    | 52.15              | 54.00             | 1.85           |  |  |
| 4595.40            | 56.99             | Peak             | Н    | 33.22                 | -33.32                    | 56.89              | 74.00             | 17.11          |  |  |
| 4595.40            | 53.73             | Average          | Н    | 33.22                 | -33.32                    | 53.63              | 54.00             | 0.37           |  |  |

#### **※** Remark

1. "\*" means the restricted band.

2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

3. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.

4. Average test would be performed if the peak result were greater than the average limit.

5. Actual = Reading + Ant. factor + Amp + CL (Cable loss)

6. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.



## Test results (Above 1 000 Mz) – Variant model

|                   | Low channel       |                  |      |                       |                  |                    |                   |                |  |  |
|-------------------|-------------------|------------------|------|-----------------------|------------------|--------------------|-------------------|----------------|--|--|
| Rad               | liated emissions  | 5                | Ant. | Correctio             | on factors       | Total              | Li                | mit            |  |  |
| Frequency<br>(Mz) | Reading<br>(dBµN) | Detector<br>mode | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |  |
| 2732.76           | 66.29             | Peak             | V    | 29.01                 | -38.33           | 56.97              | 74.00             | 17.03          |  |  |
| 2732.76           | 62.65             | Average          | V    | 29.01                 | -38.33           | 53.33              | 54.00             | 0.67           |  |  |
| 3643.68           | 58.45             | Peak             | Н    | 30.65                 | -36.12           | 52.98              | 74.00             | 21.02          |  |  |
| 4554.60           | 58.22             | Peak             | V    | 33.08                 | -33.64           | 57.66              | 74.00             | 16.34          |  |  |
| 4554.60           | 53.77             | Average          | V    | 33.08                 | -33.64           | 53.21              | 54.00             | 0.79           |  |  |
| 4554.60           | 56.96             | Peak             | Н    | 33.08                 | -33.64           | 56.40              | 74.00             | 17.60          |  |  |
| 4554.60           | 53.24             | Average          | Н    | 33.08                 | -33.64           | 52.68              | 54.00             | 1.32           |  |  |

|                   | Middle channel    |                  |      |                       |                  |                    |                   |                |  |  |
|-------------------|-------------------|------------------|------|-----------------------|------------------|--------------------|-------------------|----------------|--|--|
| Rad               | liated emissions  | 5                | Ant. | Correctio             | on factors       | Total              | Liı               | mit            |  |  |
| Frequency<br>(Mz) | Reading<br>(dBµV) | Detector<br>mode | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |  |
| 2745.00           | 64.70             | Peak             | V    | 29.03                 | -38.31           | 55.42              | 74.00             | 18.58          |  |  |
| 2745.00           | 61.71             | Average          | V    | 29.03                 | -38.31           | 52.43              | 54.00             | 1.57           |  |  |
| 3660.00           | 59.38             | Peak             | V    | 30.68                 | -36.05           | 54.01              | 74.00             | 19.99          |  |  |
| 3660.00           | 57.49             | Average          | V    | 30.68                 | -36.05           | 52.12              | 54.00             | 1.88           |  |  |
| 4575.00           | 58.13             | Peak             | Н    | 33.15                 | -33.48           | 57.80              | 74.00             | 16.20          |  |  |
| 4575.00           | 53.73             | Average          | Н    | 33.15                 | -33.48           | 53.40              | 54.00             | 0.60           |  |  |
| 4575.00           | 56.70             | Peak             | Н    | 33.15                 | -33.48           | 56.37              | 74.00             | 17.63          |  |  |
| 4575.00           | 53.28             | Average          | Н    | 33.15                 | -33.48           | 52.95              | 54.00             | 1.05           |  |  |



#### KES Co., Ltd.

C-3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

| High channel       |                   |                  |      |                       |                  |                    |                   |                |  |
|--------------------|-------------------|------------------|------|-----------------------|------------------|--------------------|-------------------|----------------|--|
| Rad                | liated emission   | 5                | Ant. | Correctio             | on factors       | Total              | Li                | mit            |  |
| Frequency<br>(Mbz) | Reading<br>(dBµV) | Detector<br>mode | Pol. | Ant. factor<br>(dB/m) | Amp + CL<br>(dB) | Actual<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) |  |
| 2757.24            | 65.32             | Peak             | V    | 29.06                 | -38.29           | 56.09              | 74.00             | 17.91          |  |
| 2757.24            | 61.01             | Average          | V    | 29.06                 | -38.29           | 51.78              | 54.00             | 2.22           |  |
| 4595.40            | 58.05             | Peak             | V    | 33.22                 | -33.32           | 57.95              | 74.00             | 16.05          |  |
| 4595.40            | 53.63             | Average          | V    | 33.22                 | -33.32           | 53.53              | 54.00             | 0.47           |  |
| 3676.32            | 61.64             | Peak             | Н    | 30.71                 | -35.97           | 56.37              | 74.00             | 17.63          |  |
| 3676.32            | 57.81             | Average          | Н    | 30.71                 | -35.97           | 52.54              | 54.00             | 1.46           |  |
| 4595.40            | 57.00             | Peak             | Н    | 33.22                 | -33.32           | 56.90              | 74.00             | 17.10          |  |
| 4595.40            | 53.32             | Average          | Н    | 33.22                 | -33.32           | 53.22              | 54.00             | 0.78           |  |

#### **※** Remark

1. "\*" means the restricted band.

2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

3. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.

4. Average test would be performed if the peak result were greater than the average limit.

5. Actual = Reading + Ant. factor + Amp + CL (Cable loss)

6. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.



| Appendix A. Test equipment used for test |                       |                 |                  |  |  |  |  |  |  |
|------------------------------------------|-----------------------|-----------------|------------------|--|--|--|--|--|--|
| Equipment                                | Manufacturer          | Model           | Calibration due. |  |  |  |  |  |  |
| Spectrum Analyzer                        | R&S                   | FSV30           | 2013.01.10       |  |  |  |  |  |  |
| Vector Signal Generator                  | R&S                   | SMBV2100A       | 2013.01.10       |  |  |  |  |  |  |
| DC Power Supply                          | Agilent               | 6632B           | 2012.05.06       |  |  |  |  |  |  |
| DC Power Supply                          | SMTECHNO              | SDP 30-5D       | 2012.11.14       |  |  |  |  |  |  |
| Trilog-Broadband Antenna                 | SCHWARZBECK           | VULB 9168       | 2013.10.25       |  |  |  |  |  |  |
| Horn Antenna                             | A.H. System           | SAS-571         | 2013.03.22       |  |  |  |  |  |  |
| High Pass Filter                         | Wainwright Instrument | WHKX1.5/15G-6SS | 2013.03.30       |  |  |  |  |  |  |
| Preamplifier                             | A.H. System           | PAM-0118        | 2012.05.04       |  |  |  |  |  |  |
| EMI Test Receiver                        | R&S                   | ESVS10          | 2012.05.20       |  |  |  |  |  |  |

## **Peripheral devices**

| Device | Manufacturer | Model No. | Serial No. |
|--------|--------------|-----------|------------|
| N/A    |              |           |            |



#### Appendix B. Test setup photos

**Radiated field emissions** 

