

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180200114704 Page: 1 of 51

TEST REPORT

Application No.: Applicant: Address of Applicant:	SZEM1802001147CR(SGS SZ No.:T51810200006EM) Toy State International Ltd. Unit 905, 9/F, West Wing, Tsim Sha Tsui Centre, 66 Mody Road, TST East, Kowloon, Hong Kong	
Equipment Under Test (EUT):	
EUT Name:	Mini FPV Racer	
Model No.:	22615	
Country of Origin:	China	
FCC ID:	V9Q-22615X58	
Standard(s) :	47 CFR Part 15, Subpart E 15.407	
Date of Receipt:	2018-02-05	
Date of Test:	2018-03-15 to 2018-04-04	
Date of Issue:	2018-04-10	
Test Result:	Pass*	

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180200114704 Page: 2 of 51

		Revision Record		
Version	Chapter	Date	Modifier	Remark
01		2018-04-10		Original

Authorized for issue by:		
	Gebin Sun	
	Gebin Sun /Project Engineer	-
	EvicFu	
	Eric Fu /Reviewer	-

Report No.: SZEM180200114704 Page: 3 of 51

2 Test Summary

Radio Spectrum Tech	nical Requirement			
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart E 15.407	N/A	47 CFR Part 15, Subpart C 15.203	Pass
Transmission in the Absence of Data	47 CFR Part 15, Subpart E 15.407	N/A	47 CFR Part 15, Subpart E 15.407 (c)	Pass

N/A: Not applicable

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
99% Bandwidth	47 CFR Part 15, Subpart E 15.407	KDB 789033 II D	N/A	Pass
Minimum 6 dB bandwidth (5.725- 5.85 GHz band)	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II C 2	47 CFR Part 15, Subpart E 15.407 (e)	Pass
Maximum Conducted output power	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II E	47 CFR Part 15, Subpart E 15.407 (a)	Pass
Peak Power spectrum density	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II F	47 CFR Part 15, Subpart E 15.407 (a)	Pass
Radiated Emissions	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart E 15.407	KDB 789033 D02 II G	47 CFR Part 15, Subpart C 15.209 & 15.407(b)	Pass
Frequency Stability	47 CFR Part 15, Subpart E 15.407	ANSI C63.10 (2013) Section 6.8	47 CFR Part 15, Subpart E 15.407 (g)	Pass

N/A: Not applicable

Report No.: SZEM180200114704 Page: 4 of 51

3 Contents

		Pa	ge
1	COVE	R PAGE	1
~	TEOT		•
2	TEST	SUMMARY	3
3	CONT	ENTS	4
	OFNE	RAL INFORMATION	c
4			
		ETAILS OF E.U.T.	-
		DESCRIPTION OF SUPPORT UNITS	
		EST LOCATION EST FACILITY	
		EST FACILITY EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARDS	
5	EQUIF	MENT LIST	8
c		SPECTRUM TECHNICAL REQUIREMENT	4.4
6			
		NTENNA REQUIREMENT	
	6.1.1	Test Requirement:	
	6.1.2		
		RANSMISSION IN THE ABSENCE OF DATA	
	6.2.1 6.2.2	Test Requirement: Conclusion	
	0.2.2	Conclusion	. 12
_			
7	RADIC	SPECTRUM MATTER TEST RESULTS	.13
7		9% Bandwidth	.13
7	7.1 9 <i>7.1.1</i>	9% Bandwidth E.U.T. Operation	.13 . <i>13</i>
7	7.1 9 <i>7.1.1</i> <i>7.1.2</i>	9% Валдwidтн E.U.T. Operation Test Setup Diagram	.13 . <i>13</i> . <i>13</i>
7	7.1 9 <i>7.1.1</i> <i>7.1.2</i> <i>7.1.3</i>	9% BANDWIDTH E.U.T. Operation Test Setup Diagram Measurement Procedure and Data	.13 . <i>13</i> . <i>13</i> . <i>13</i>
7	7.1 9 <i>7.1.1</i> <i>7.1.2</i> <i>7.1.3</i> 7.2 M	9% Bandwidth E.U.T. Operation Test Setup Diagram Measurement Procedure and Data Inimum 6 dB bandwidth (5.725-5.85 GHz band)	.13 . <i>13</i> . <i>13</i> . <i>13</i> .13
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1	9% Bandwidth E.U.T. Operation Test Setup Diagram Measurement Procedure and Data IINIMUM 6 dB BANdwidth (5.725-5.85 GHz BAND) E.U.T. Operation	.13 . <i>13</i> . <i>13</i> . <i>13</i> .14 .14
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2	9% BANDWIDTH E.U.T. Operation Test Setup Diagram Measurement Procedure and Data INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) E.U.T. Operation Test Setup Diagram	.13 . <i>13</i> . <i>13</i> .13 .14 .14 .14
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>MINIMUM</i> 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i>	.13 .13 .13 .13 .14 .14 .14 .14
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> MAXIMUM CONDUCTED OUTPUT POWER.	.13 . <i>13</i> . <i>13</i> .14 .14 .14 .14 .14
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>INIMUM</i> 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>IAXIMUM</i> CONDUCTED OUTPUT POWER <i>E.U.T. Operation</i>	.13 .13 .13 .14 .14 .14 .14 .15 .15
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3 N 7.3.1	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> MAXIMUM CONDUCTED OUTPUT POWER.	.13 .13 .13 .13 .14 .14 .14 .15 .15
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.1 7.3.2 7.3.3	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>INIMUM</i> 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>IAXIMUM</i> CONDUCTED OUTPUT POWER <i>E.U.T. Operation</i> <i>Test Setup Diagram</i>	.13 .13 .13 .13 .14 .14 .14 .15 .15 .15
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.1 7.3.2 7.3.3	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> MAXIMUM CONDUCTED OUTPUT POWER <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i>	.13 .13 .13 .13 .14 .14 .14 .14 .15 .15 .15 .15 .16 .16
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> MAXIMUM CONDUCTED OUTPUT POWER <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>EAK POWER SPECTRUM DENSITY</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i>	.13 .13 .13 .13 .14 .14 .14 .15 .15 .15 .16 .16
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 M 7.2.1 7.2.2 7.2.3 7.3 M 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>INIMUM</i> 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>AXIMUM CONDUCTED OUTPUT POWER</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Test Setup Diagram</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i>	.13 .13 .13 .13 .14 .14 .14 .14 .15 .15 .15 .15 .16 .16
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5 F	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>MINIMUM</i> 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Procedure and Proced</i>	.13 .13 .13 .13 .14 .14 .14 .15 .15 .15 .15 .16 .16 .16 .17
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5 F 7.5.1	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> MAXIMUM CONDUCTED OUTPUT POWER <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> Measurement Procedure and Data <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i>	.13 .13 .13 .13 .14 .14 .14 .15 .15 .16 .16 .16 .17 .17
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5 F 7.5.1 7.5.2	9% BANDWIDTH <i>E.U.T. Operation</i> . <i>Test Setup Diagram</i> . <i>Measurement Procedure and Data</i> . INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> . <i>Test Setup Diagram</i> . <i>Measurement Procedure and Data</i> . IAXIMUM CONDUCTED OUTPUT POWER. <i>E.U.T. Operation</i> . <i>Test Setup Diagram</i> . <i>Measurement Procedure and Data</i> . Yeak POWER SPECTRUM DENSITY <i>E.U.T. Operation</i> . <i>Test Setup Diagram</i> . <i>Measurement Procedure and Data</i> . Yeak POWER SPECTRUM DENSITY <i>E.U.T. Operation</i> . <i>Test Setup Diagram</i> . <i>Measurement Procedure and Data</i> . <i>Measurement Procedur</i>	.13 .13 .13 .14 .14 .14 .15 .15 .16 .16 .17 .17 .17
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5.1 7.5.1 7.5.2 7.5.3	9% BANDWIDTH E.U.T. Operation Test Setup Diagram Measurement Procedure and Data INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) E.U.T. Operation Test Setup Diagram Measurement Procedure and Data AXIMUM CONDUCTED OUTPUT POWER E.U.T. Operation Test Setup Diagram Measurement Procedure and Data EAK POWER SPECTRUM DENSITY E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS E.U.T. Operation Test Setup Diagram Measurement Procedure and Data Measurement Procedure and Data Measurement Procedure and Data Measurement Procedure and Data	.13 .13 .13 .14 .14 .14 .15 .15 .15 .15 .16 .16 .17 .17 .17
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5 F 7.5.1 7.5.2 7.5.3 7.6 F	9% BANDWIDTH E.U.T. Operation Test Setup Diagram Measurement Procedure and Data INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) E.U.T. Operation Test Setup Diagram Measurement Procedure and Data AXIMUM CONDUCTED OUTPUT POWER. E.U.T. Operation Test Setup Diagram Measurement Procedure and Data EAK POWER SPECTRUM DENSITY E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	.13 .13 .13 .14 .14 .14 .15 .15 .16 .16 .17 .17 .18 .28
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5 F 7.5.1 7.5.2 7.5.3 7.6 F 7.6.1	9% BANDWIDTH <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> INMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> MAXIMUM CONDUCTED OUTPUT POWER. <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>Measurement Procedure and Data</i> <i>Reasurement Procedure and Data</i> <i>EXT. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>ADIATED EMISSIONS</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>ADIATED EMISSIONS</i> <i>E.U.T. Operation</i> <i>Test Setup Diagram</i> <i>Measurement Procedure and Data</i> <i>ADIATED EMISSIONS</i> WHICH FALL IN THE RESTRICTED BANDS <i>E.U.T. Operation</i>	.13 .13 .13 .14 .14 .14 .14 .15 .15 .15 .16 .16 .17 .17 .17 .17 .28 .29
7	7.1 9 7.1.1 7.1.2 7.1.3 7.2 N 7.2.1 7.2.2 7.2.3 7.3 N 7.3.1 7.3.2 7.3.3 7.3 N 7.3.1 7.3.2 7.3.3 7.4 F 7.3.3 7.4 F 7.4.1 7.4.2 7.4.3 7.5 F 7.5.1 7.5.2 7.5.3 7.6 F	9% BANDWIDTH E.U.T. Operation Test Setup Diagram Measurement Procedure and Data INIMUM 6 DB BANDWIDTH (5.725-5.85 GHz BAND) E.U.T. Operation Test Setup Diagram Measurement Procedure and Data AXIMUM CONDUCTED OUTPUT POWER. E.U.T. Operation Test Setup Diagram Measurement Procedure and Data EAK POWER SPECTRUM DENSITY E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS E.U.T. Operation Test Setup Diagram Measurement Procedure and Data ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	.13 .13 .13 .14 .14 .14 .15 .15 .15 .16 .16 .17 .17 .17 .17 .18 .29 .29

Report No.: SZEM180200114704 Page: 5 of 51

7.7	FREQUENCY STABILITY	35
7	7.7.1 E.U.T. Operation	
7	7.7.2 Test Setup Diagram	35
7	7.7.3 Measurement Procedure and Data	
8 A	APPENDIX	36
8.1	Appendix 15.407	

Report No.: SZEM180200114704 Page: 6 of 51

4 General Information

4.1 Details of E.U.T.

Operation Frequency	5.8GHz(5732MHz, 5769MHz, 5806MHz, 5843MHz)	
Channel number:	4	
Modulation Type:	FM	
Sample Type:	Portable production	
Antenna Type:	Integral	
Antenna Gain:	3dBi	
Power supply:	Rechargeable battery DC3.7V for Drone	
Cable:	Charging Cable:60cm unshielded	

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.25 x 10 ⁻⁸	
2	Duty cycle	0.37%	
3	Occupied Bandwidth	3%	
4	RF conducted power	0.75dB	
5	RF power density	2.84dB	
6	Conducted Spurious emissions	Conducted Spurious emissions 0.75dB	
7	DE Dedicted newer	4.5dB (below 1GHz)	
/	RF Radiated power	4.8dB (above 1GHz)	
0	Dedicted Courieus emission test	4.5dB (Below 1GHz)	
8	Radiated Spurious emission test	4.8dB (Above 1GHz)	
9	Temperature test 1 ℃		
10	Humidity test	3%	
11	Supply voltages	1.5%	
12	Time	3%	

Report No.: SZEM180200114704 Page: 7 of 51

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180200114704 Page: 8 of 51

5 Equipment List

99% Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Minimum 6 dB bandwidth (5.725-5.85 GHz band)
--

Equipment Manufacturer		Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Maximum Conducted output power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Peak Power spectrum density					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Report No.: SZEM180200114704 Page: 9 of 51

Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer Model		Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-02	2020-05-01
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-13
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Frequency Stability					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Report No.: SZEM180200114704 Page: 10 of 51

Transmission in the Absence of Data					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

General used equipment					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-17

Report No.: SZEM180200114704 Page: 11 of 51

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Antenna location: Refer to Appendix(Internal photos)

Report No.: SZEM180200114704 Page: 12 of 51

6.2 Transmission in the Absence of Data

6.2.1 Test Requirement:

47 CFR Part 15, Subpart E 15.407 (c)

6.2.2 Conclusion

Standard Requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Applicants shall include in their application for equipment authorization a description of how this requirement is met.

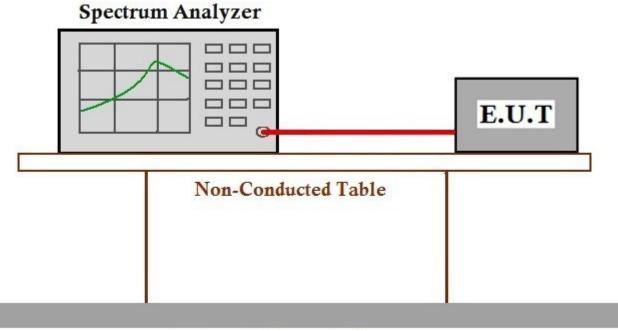
EUT Details:

WIFI chip (AR9342) support automatically discontinue transmission in case of either absence of information to transmit or operational failure, if the chip detect absence of information to transmit or operational failure, it will be automatically shut off.

Report No.: SZEM180200114704 Page: 13 of 51

7 Radio Spectrum Matter Test Results

7.1 99% Bandwidth


Test Requirement	KDB 789033 II D
Test Method:	KDB 789033 II D

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:22.7 °CHumidity:43.6 % RHAtmospheric Pressure:1015mbarTest moded:5.8G TX mode_Keep the EUT(Drone) in transmitting with modulation mode.

7.1.2 Test Setup Diagram

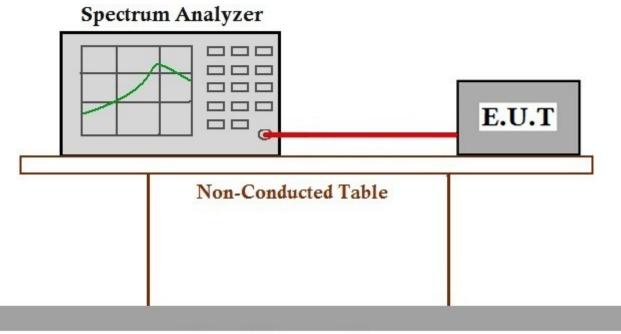
Ground Reference Plane

7.1.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180200114704 Page: 14 of 51

7.2 Minimum 6 dB bandwidth (5.725-5.85 GHz band)


Test Requirement	47 CFR Part 15, Subpart E 15.407 (e)
Test Method:	KDB 789033 D02 II C 2
Limit:	≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:22.7 °CHumidity:43.7 % RHAtmospheric Pressure:1015mbarTest moded:5.8G TX mode_Keep the EUT(Drone) in transmitting with modulation mode.

7.2.2 Test Setup Diagram

Ground Reference Plane

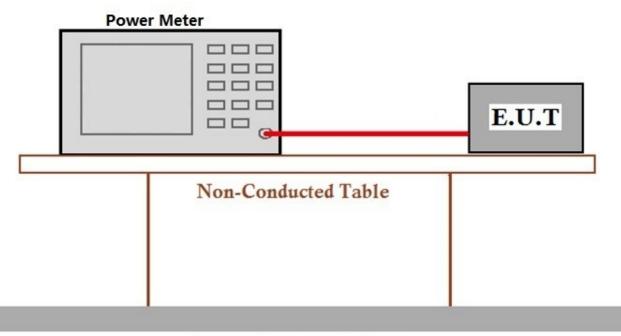
7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180200114704 Page: 15 of 51

7.3 Maximum Conducted output power

Test Requirement	47 CFR Part 15, Subpart E 15.407 (a)
Test Method:	KDB 789033 D02 II E
Limit:	


Frequenc	y band(MHz)	Limit		
E1E0 E	250	≤1W(30dBm) for master device		
5150-5	250	≤250mW(24dBm) for client device		
5250-5	350	≤250mW(24dBm) for client device or 11dBm+10logB*		
5470-5	5725	≤250mW(24dBm) for client device or 11dBm+10logB*		
5725-5	850	≤1W(30dBm)		
Remark:	* Where B is the 26dB emission bandwidth in MHz.			
	The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.			

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:22.7 °CHumidity:43.7 % RHAtmospheric Pressure:1015mbarTest moded:5.8G TX mode_Keep the EUT(Drone) in transmitting with modulation mode.Test Seture Discurrent

7.3.2 Test Setup Diagram

Ground Reference Plane

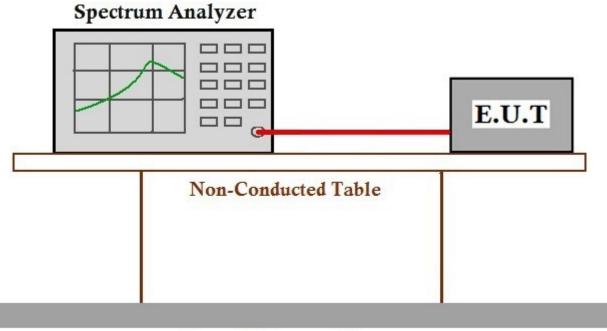
7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180200114704 Page: 16 of 51

7.4 Peak Power spectrum density

Test Requirement	47 CFR Part 15, Subpart E 15.407 (a)
Test Method:	KDB 789033 D02 II F
Limit:	


Frequenc	y band(MHz)	Limit					
E1E0 E	250	≤17dBm in 1MHz for master device					
5150-5	230	≤11dBm in 1MHz for client device					
5250-5	350	≤11dBm in 1MHz for client device					
5470-5	725	≤11dBm in 1MHz for client device					
5725-5	850	≤30dBm in 500 kHz					
Remark:	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.						

7.4.1 E.U.T. Operation

Operating Environment:

Test mode	d:5.8G TX mod	le_Keep the	EUT(Drone) in tra	ansmitting with modulatio	n mode) .
Temperature:	22.7 °C	Humidity:	43.7 % RH	Atmospheric Pressure:	1015	mbar

7.4.2 Test Setup Diagram

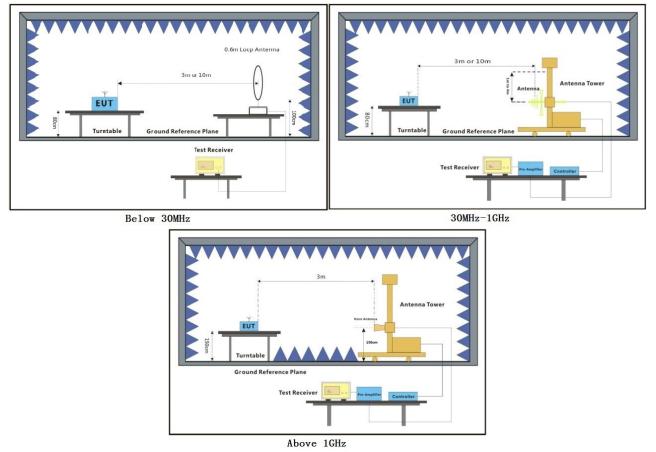
Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

Report No.: SZEM180200114704 Page: 17 of 51

7.5 Radiated Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.407(b)
Test Method:	KDB 789033 D02 II G

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:22.7 °CHumidity:43.7 % RHAtmospheric Pressure:1015mbarTest moded:5.8G TX mode_Keep the EUT(Drone) in transmitting with modulation mode.

7.5.2 Test Setup Diagram

Report No.: SZEM180200114704 Page: 18 of 51

7.5.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

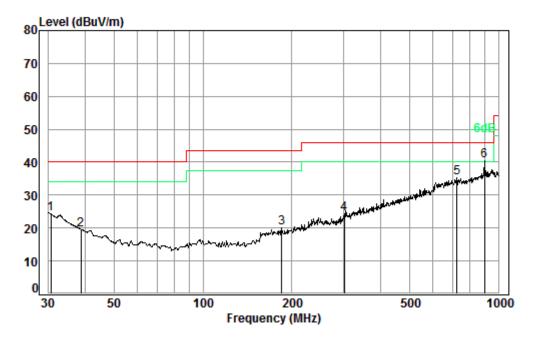
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. For emission below 1GHz, through the pre-scan found the worst case is the lowest channel of 802.11a. Only the worst case is recorded in the report.

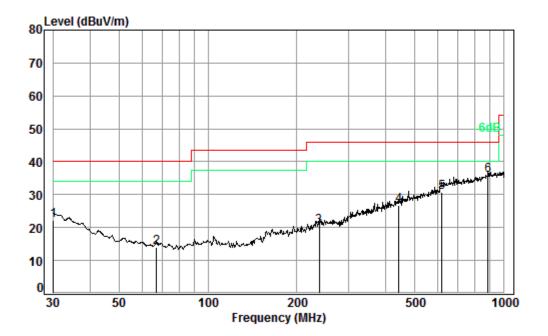
3. Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180200114704 Page: 19 of 51

Below 1GHz:

Mode:d; Polarization:Horizontal;


Condition: 3m HORIZONTAL Job No. : 01147CR Test mode: d

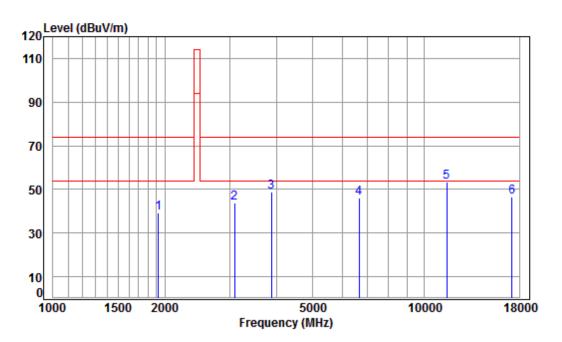
Freq				Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	30.64 38.75	0.60		27.67 27.63				
3	184.49 300.37		16.04	27.53	30.26	20.15	43.50	-23.35
5 6 pi	721.73	2.97	28.04	27.52 27.10	31.73	35.22	46.00	-10.78

Report No.: SZEM180200114704 Page: 20 of 51

Mode:d; Polarization: Vertical

Condition: 3m VERTICAL Job No. : 01147CR

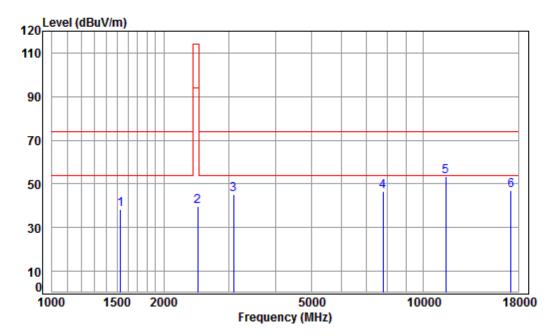
Test mode: d


				Preamp				0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.11	0.60	22.44	27.67	26.96	22.33	40.00	-17.67
2	66.97	0.80	12.91	27.54	27.69	13.86	40.00	-26.14
3	237.48	1.61	18.61	27.53	27.72	20.41	46.00	-25.59
4	441.74	2.38	23.38	27.80	28.69	26.65	46.00	-19.35
5	618.54	2.74	26.86	27.67	28.79	30.72	46.00	-15.28
6 pp	884.50	3.54	29.61	27.13	29.96	35.98	46.00	-10.02

Report No.: SZEM180200114704 Page: 21 of 51

above 1GHz

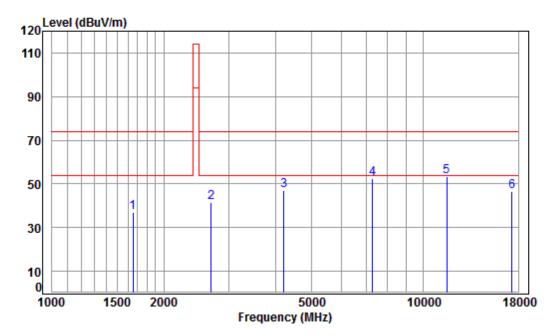
Mode:d; Polarization: Horizontal; Modulation:FM ;Channel:Low


Condition:	3m HORIZONTAL
Job No :	01147CR
Mode :	5732 TX SE
Note :	

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4004 707	4 00	27 52	44 65	40 40	70.07	74.00	74 77	Dest
1	1921.727	4.98	27.52	41.65	48.42	39.27	74.00	-34./3	Реак
2	3087.140	6.07	31.47	42.12	48.22	43.64	74.00	-30.36	Peak
3	3879.027	6.86	33.28	42.30	50.86	48.70	74.00	-25.30	Peak
4	6659.763	11.08	35.56	41.10	40.75	46.29	74.00	-27.71	Peak
5	pp11464.000	12.10	38.07	38.17	41.25	53.25	74.00	-20.75	Peak
6	17196.000	16.27	43.04	40.45	27.79	46.65	74.00	-27.35	Peak

Report No.: SZEM180200114704 Page: 22 of 51

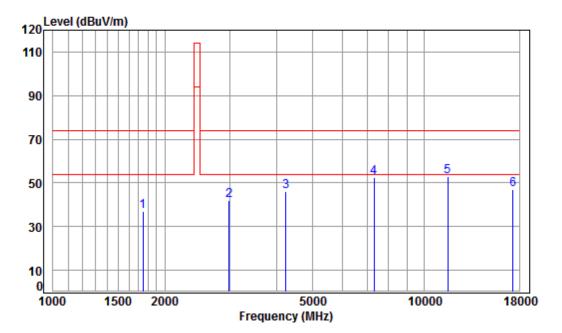
Mode:d; Polarization:Vertical; Modulation:FM; Channel:Low


Condition:	3m VERTICAL
Job No :	01147CR
Mode :	5732 TX SE
Note :	

NOLE	-								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1529.414	5.44	25.94	41.43	48.58	38.53	74.00	-35.47	Peak
2	2471.157	5.58	29.32	41.91	46.63	39.62	114.00	-74.38	Peak
3	3087.140	6.07	31.47	42.12	49.72	45.14	74.00	-28.86	Peak
4	7784.729	9.97	36.47	40.33	40.28	46.39	74.00	-27.61	Peak
5	pp11464.000	12.10	38.07	38.17	41.53	53.53	74.00	-20.47	Peak
6	17196.000	16.27	43.04	40.45	28.07	46.93	74.00	-27.07	Peak

Report No.: SZEM180200114704 Page: 23 of 51

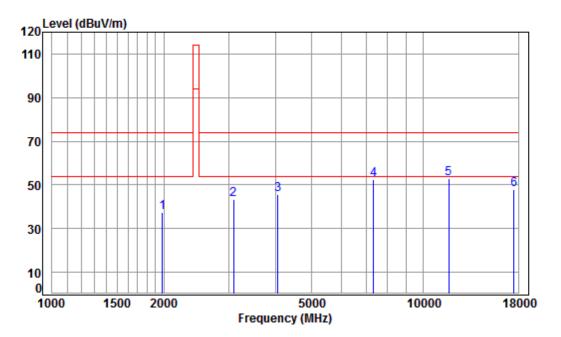
Mode:d; Polarization:Horizontal; Modulation:FM; Channel:middle


Condition:	3m HORIZONTAL
Job No :	01147CR
Mode :	5769 TX SE
Note :	

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1653.550	5.28	26.48	41.50	46.61	36.87	74.00	-37.13	Peak
2	2679.464	5.76	30.12	41.99	47.80	41.69	74.00	-32.31	Peak
3	4206.011	7.23	33.60	42.36	48.41	46.88	74.00	-27.12	Peak
4	7284.038	10.06	36.38	40.66	46.83	52.61	74.00	-21.39	Peak
5	pp11538.000	12.15	38.14	38.22	41.54	53.61	74.00	-20.39	Peak
6	17307.000	16.02	43.17	40.54	27.98	46.63	74.00	-27.37	Peak

Report No.: SZEM180200114704 Page: 24 of 51

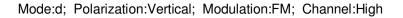
Mode:d; Polarization:Vertical; Modulation:FM; Channel:middle

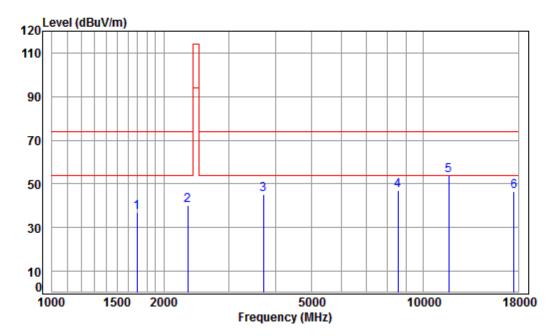

Condition:	3m VERTICAL
Job No :	01147CR
Mode :	5769 TX SE
Note :	

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 3 4	2981.899 4242.641 7305.122	5.97 7.27 10.05	31.24 33.60 36.38	42.37 40.64	46.84 47.51 46.86	41.96 46.01 52.65	74.00 74.00 74.00	-32.04 -27.99 -21.35	Peak Peak Peak
	pp11538.000 17307.000								

Report No.: SZEM180200114704 Page: 25 of 51

Mode:d; Polarization:Horizontal; Modulation:FM; Channel:High




Condition:	3m HORIZONTAL
Job No :	01147CR
Mode :	5843 TX SE
Note :	

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1983.808	4.92	27.74	41.69	46.60	37.57	74.00	-36.43	Peak
2	3087.140	6.07	31.47	42.12	47.79	43.21	74.00	-30.79	Peak
3	4062.629	7.06	33.60	42.34	47.45	45.77	74.00	-28.23	Peak
4	7347.474	10.04	36.36	40.62	46.58	52.36	74.00	-21.64	Peak
5	pp11686.000	12.21	38.29	38.31	40.65	52.84	74.00	-21.16	Peak
6	17529.000	15.63	43.45	40.72	29.41	47.77	74.00	-26.23	Peak

Report No.: SZEM180200114704 Page: 26 of 51

Condition:	3m VERTICAL
Job No :	01147CR
Mode :	5843 TX SE
Note :	

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1692.231	5.24	26.64	41.53	46.42	36.77	74.00	-37.23	Peak
2	2318.912	5.38	28.86	41.84	47.70	40.10	74.00	-33.90	Peak
3	3714.443	6.69	32.82	42.27	48.08	45.32	74.00	-28.68	Peak
4	8539.102	10.28	36.05	39.32	40.06	47.07	74.00	-26.93	Peak
5	pp11686.000	12.21	38.29	38.31	41.45	53.64	74.00	-20.36	Peak
	17529.000								

Report No.: SZEM180200114704 Page: 27 of 51

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

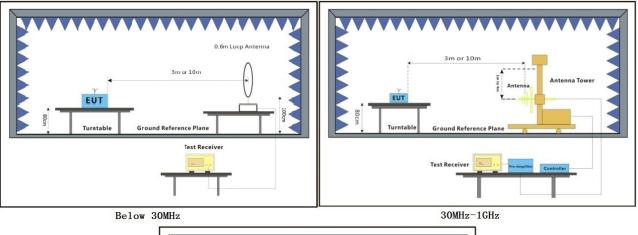
Report No.: SZEM180200114704 Page: 28 of 51

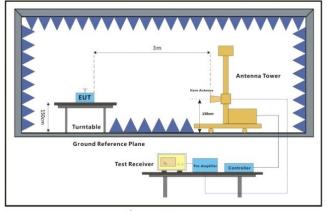
7.6 Radiated Emissions which fall in the restricted bands

Test Requirement47 CFR Part 15, Subpart C 15.209 & 15.407(b)Test Method:KDB 789033 D02 II GMeasurement Distance:3mLimit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Report No.: SZEM180200114704 Page: 29 of 51


7.6.1 E.U.T. Operation

Operating Environment:

Temperature:21.2 °CHumidity:60.8 % RHAtmospheric Pressure:1015mbarTest moded:5.8G TX mode_Keep the EUT(Drone) in transmitting with modulation mode.

7.6.2 Test Setup Diagram

Above 1GHz

Report No.: SZEM180200114704 Page: 30 of 51

7.6.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

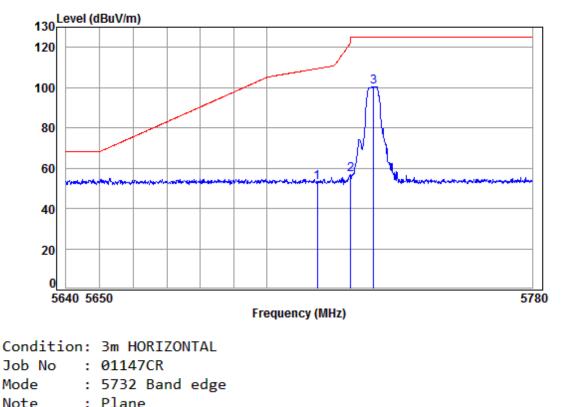
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

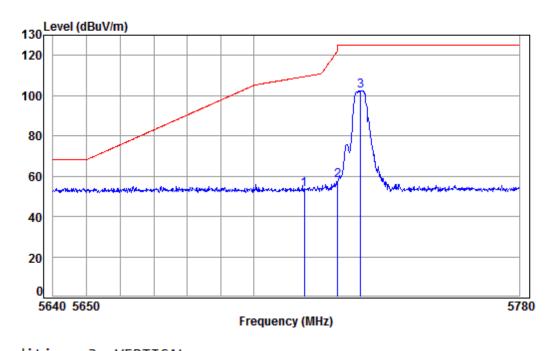
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180200114704 Page: 31 of 51

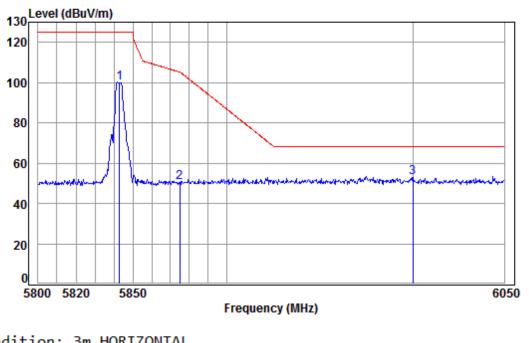
Mode:d; Polarization:Horizontal; Modulation:FM; Channel:Low



lo c c									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	5715.000	9.61	34.53	41.85	50.51	52.80	109.40	-56.60	peak
2	5725.000	9.64	34.54	41.84	54.59	56.93	122.20	-65.27	peak
3 pp	5732.000	9.71	34.55	41.82	97.94	100.38	125.20	-24.82	peak

Report No.: SZEM180200114704 Page: 32 of 51

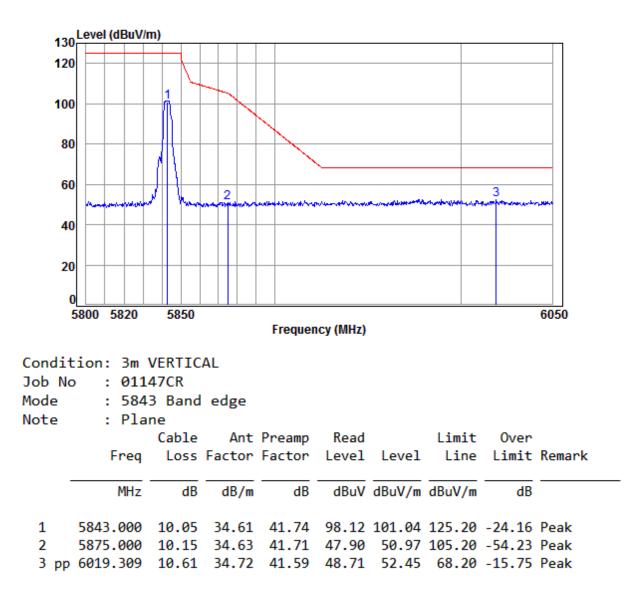
Mode:d; Polarization:Vertical; Modulation:FM; Channel:Low


Condition:	3m VERTICAL
Job No .	01117CP

JOD NO	IO : 0114/CR										
Mode	: 5732 Band edge										
Note	-										
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
-											
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	5715.000	9.61	34.53	41.85	51.26	53.55	109.40	-55.85	peak		
2	5725.000	9.64	34.54	41.84	55.37	57.71	122.20	-64.49	peak		
3 pp	5732.000	9.67	34.54	41.83	99.89	102.27	125.20	-22.93	Peak		

Report No.: SZEM180200114704 Page: 33 of 51

Mode:d; Polarization:Horizontal; Modulation:FM; Channel:High



Condit	tion: 3m	HORIZO	NIAL										
Job No	Job No : 01147CR												
Mode	Mode : 5843 Band edge												
Note	: Pla	ne											
		Cable	Ant	Preamp	Read		Limit	0ver					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB					
1	5843.000	10.05	34.61	41.74	96.89	99.81	125.20	-25.39	Peak				
2	5875.000	10.15	34.63	41.71	47.24	50.31	105.20	-54.89	Peak				
3 pp	6000.053	10.57	34.70	41.61	49.11	52.77	68.20	-15.43	Peak				

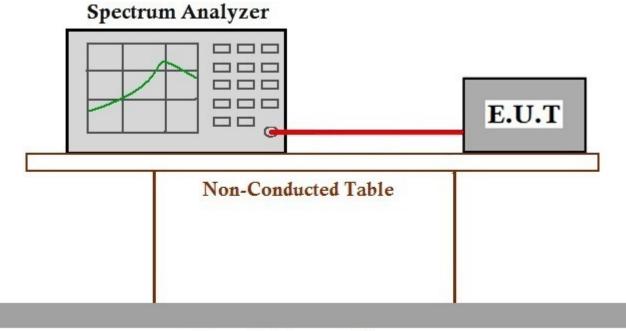
Report No.: SZEM180200114704 Page: 34 of 51

Remark:

As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SZEM180200114704 Page: 35 of 51

7.7 Frequency Stability


Test Requirement	47 CFR Part 15, Subpart E 15.407 (g)
Test Method:	ANSI C63.10 (2013) Section 6.8
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

7.7.1 E.U.T. Operation

Operating Environment:

Temperature:	22.7 °C	,	43.7 % RH	Atmospheric Pressure: 1015	
Test mode	d:5.8G TX mo	de_Keep the	EUI (Drone) in t	transmitting with modulation mod	e.

7.7.2 Test Setup Diagram

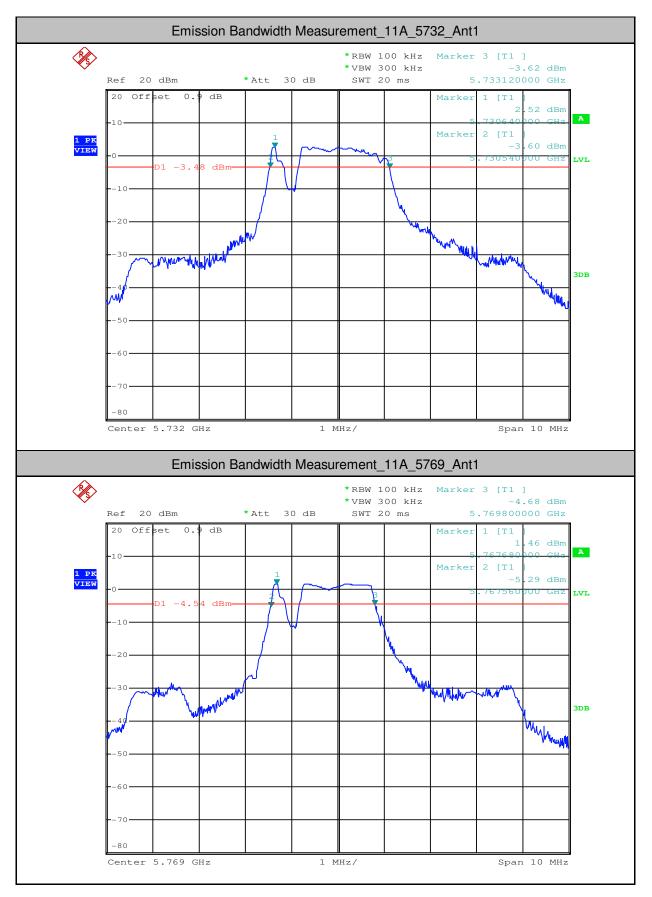
Ground Reference Plane

7.7.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.407

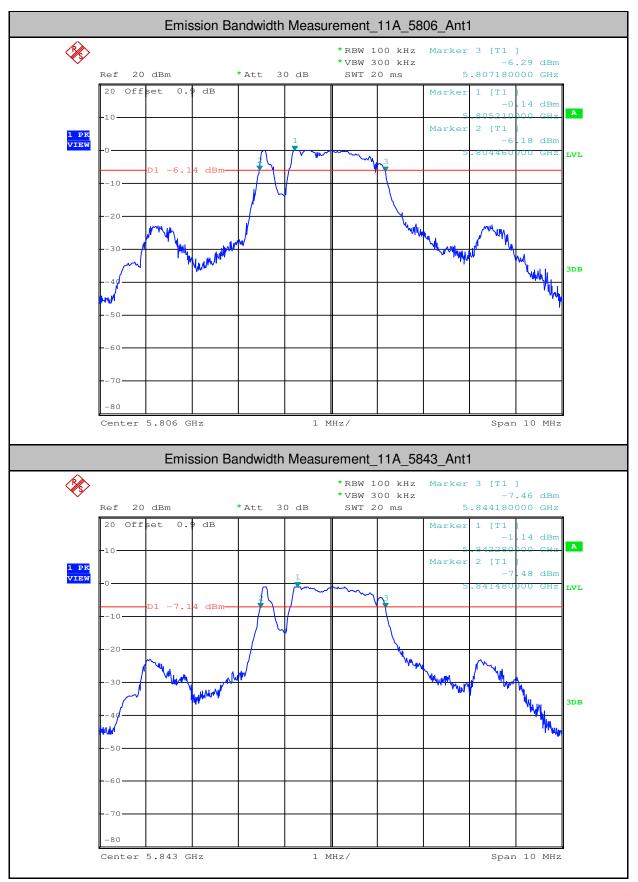
Report No.: SZEM180200114704 Page: 36 of 51

8 Appendix


8.1 Appendix 15.407

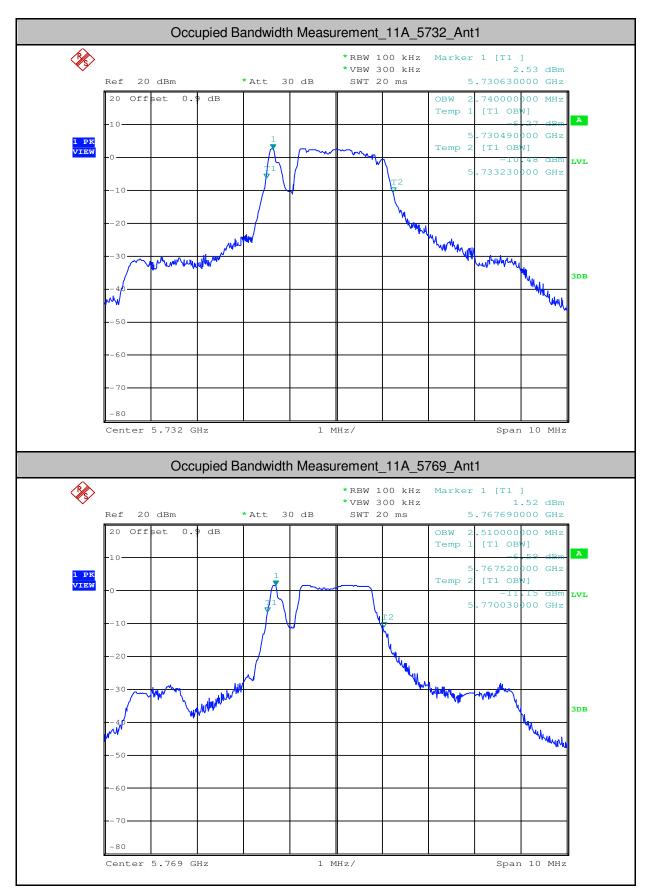
1. Emission Bandwidth Measurement

Test Mode	Test Channel	Ant	EBW[MHz]	Limit[MHz]	Verdict
FM	5732	Ant1	2.580	>=0.5	PASS
FM	5769	Ant1	2.240	>=0.5	PASS
FM	5806	Ant1	2.720	>=0.5	PASS
FM	5843	Ant1	2.700	>=0.5	PASS



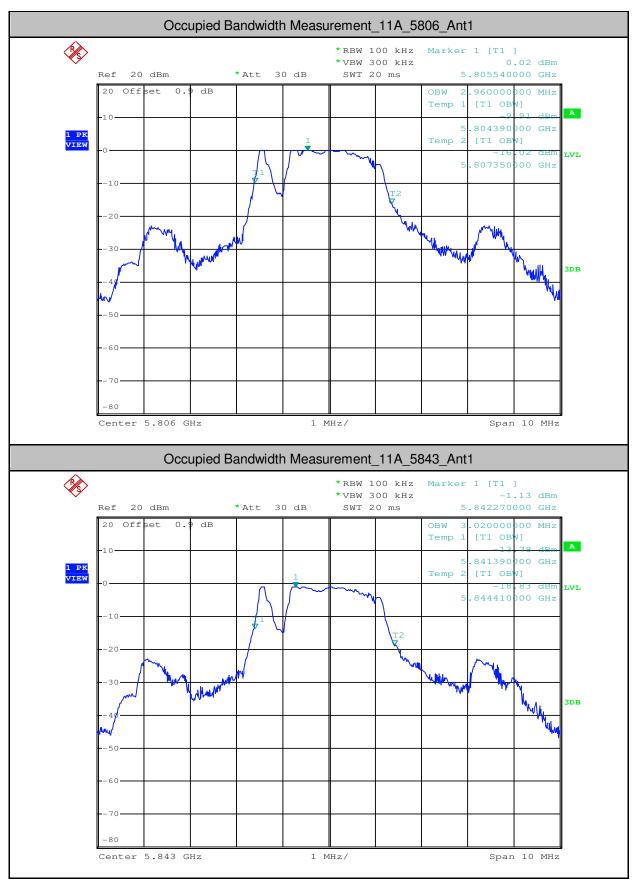
Report No.: SZEM180200114704 Page: 37 of 51

Report No.: SZEM180200114704 Page: 38 of 51


Report No.: SZEM180200114704 Page: 39 of 51

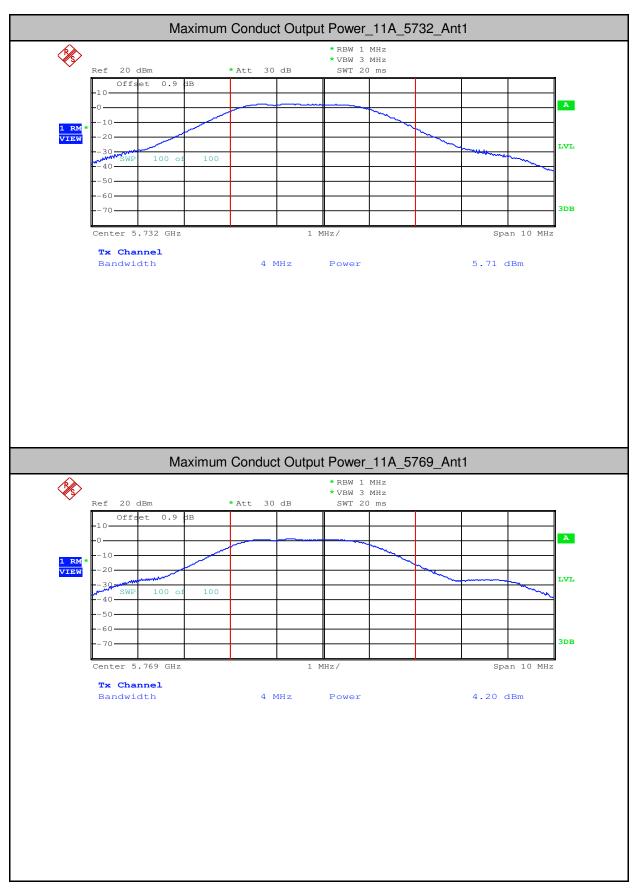
Test Mode	Test Channel	Ant	OBW[MHz]	Limit[MHz]	Verdict
FM	5732	Ant1	2.740		PASS
FM	5769	Ant1	2.510		PASS
FM	5806	Ant1	2.960		PASS
FM	5843	Ant1	3.020		PASS

2. Occupied Bandwidth Measurement



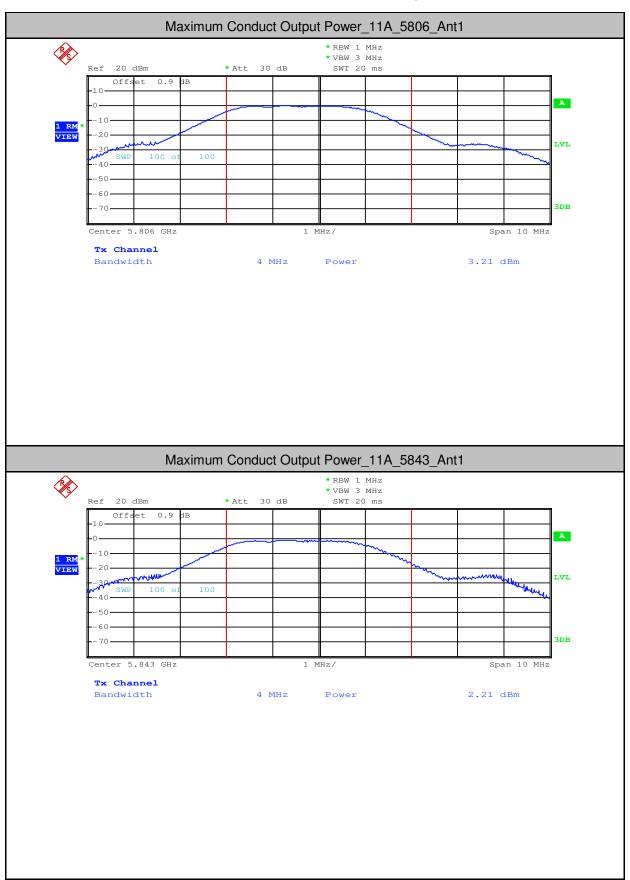
Report No.: SZEM180200114704 Page: 40 of 51

Report No.: SZEM180200114704 Page: 41 of 51


Report No.: SZEM180200114704 Page: 42 of 51

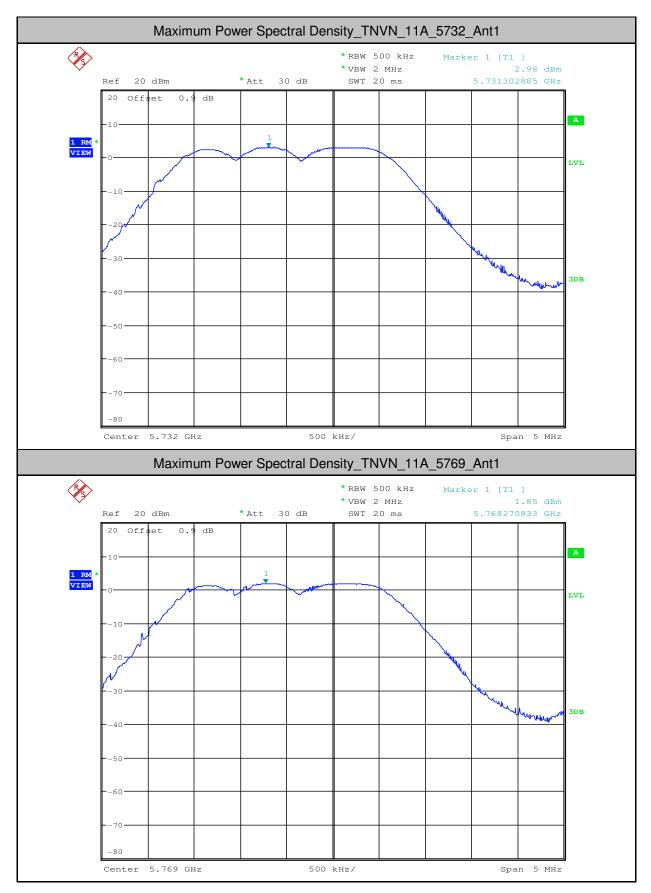
Test Mode	Test Channel	Ant	Level [dBm]	10log(1/x) Factor [dB]	Power [dBm]	Limit [dBm]	Verdict
FM	5732	Ant1	5.71	0	5.71	<30.00	PASS
FM	5769	Ant1	4.2	0	4.20	<30.00	PASS
FM	5806	Ant1	3.21	0	3.21	<30.00	PASS
FM	5843	Ant1	2.21	0	2.21	<30.00	PASS

3.Maximum Conduct Output Power



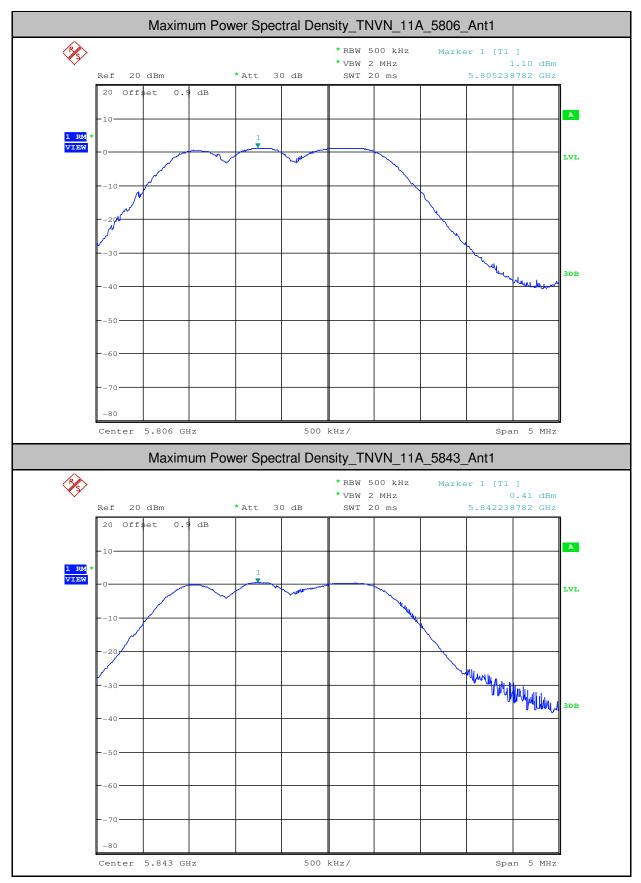
Report No.: SZEM180200114704 Page: 43 of 51

Report No.: SZEM180200114704 Page: 44 of 51


Report No.: SZEM180200114704 Page: 45 of 51

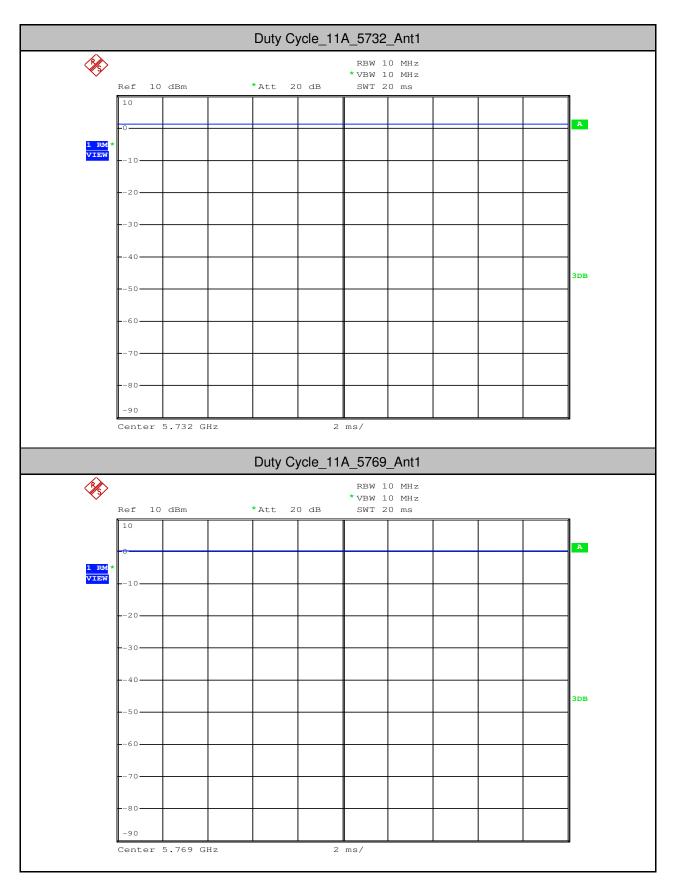
Test Mode	Test Channe	Ant	Level [dBm/500kHz]	10log(1/x) Factor[dB]	PSD [dBm/500kHz]	Limit [dBm/500kHz]	Verdict
FM	5732	Ant1	2.98	0	2.98	<30.00	PASS
FM	5769	Ant1	1.85	0	1.85	<30.00	PASS
FM	5806	Ant1	1.10	0	1.10	<30.00	PASS
FM	5843	Ant1	0.41	0	0.41	<30.00	PASS

4.Maximum Power Spectral Density



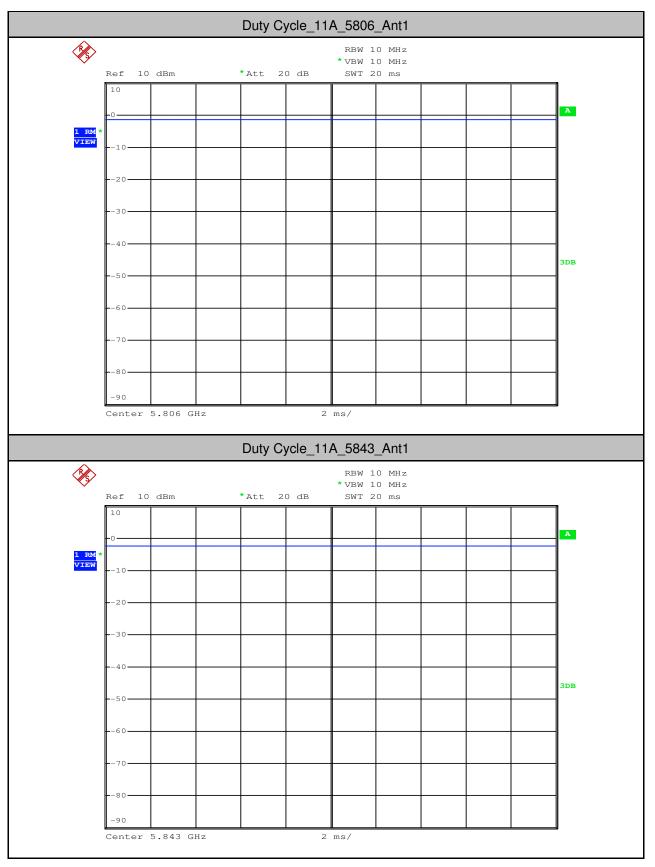
Report No.: SZEM180200114704 Page: 46 of 51

Report No.: SZEM180200114704 Page: 47 of 51


Report No.: SZEM180200114704 Page: 48 of 51

Test Mode	Test Channel	Ant	Duty Cycle[%]	10log(1/x) Factor[dB]
FM	5732	Ant1	100	0
FM	5769	Ant1	100	0
FM	5806	Ant1	100	0
FM	5843	Ant1	100	0

5.Duty Cycle (x)



Report No.: SZEM180200114704 Page: 49 of 51

Report No.: SZEM180200114704 Page: 50 of 51

Report No.: SZEM180200114704 Page: 51 of 51

5769

6. Frequency Stability

Test mode:	FM	Frequency(MHz):	5732				
Temperature (℃)	Voltage(VDC)	Measurement Frequency(MHz)	Result				
40		5732.2304	Pass				
30		5732.2307	Pass				
20	3.7	5732.2303	Pass				
10		5732.2305	Pass				
0		5732.2306	Pass				
	4.25	5732.2308	Pass				
25	3.7	5732.2303	Pass				
	3.15	5732.2310	Pass				

Test mode: FM Frequency(MHz):

Temperature (℃)	Voltage(VDC)	Measurement Frequency(MHz)	Result
40		5769.4821	Pass
30		5769.4816	Pass
20	3.7	5769.4824	Pass
10		5769.4823	Pass
0		5769.4826	Pass
	4.25	5769.4822	Pass
25	3.7	5769.4825	Pass
	3.15	5769.4827	Pass

Test mode:	FM	Frequency(MHz):	5843				
Temperature (℃)	Voltage(VDC)	Measurement Frequency(MHz)	Result				
40		5843.6736	Pass				
30		5843.6731	Pass				
20	3.7	5843.6734	Pass				
10		5843.6739	Pass				
0		5843.6736	Pass				
	4.25	5843.6733	Pass				
25	3.7	5843.6735	Pass				
	3.15	5843.6736	Pass				

- End of the Report -