Technical Description

For Model: 72000, it is a 2.4GHz transceiver (a RC car) that operating at 2410 to 2475MHz with 1MHz channel spacing. It is powered by 7.5V (1.5V X 5) 'AA' batteries. After switched on and paired with the corresponding controller, the EUT can be controlled to moving forward and backward directions.

For Model: 14300, it is a 2.4GHz transceiver (a RC car) that operating at 2410 to 2475MHz with 1MHz channel spacing. It is powered by 7.5V (1.5V X 5) 'AA' batteries. After switched on and paired with the corresponding controller, the EUT can be controlled to moving forward, backward, turning left and right directions.

Antenna Type: Internal integral antenna

Antenna Gain: 0dBi

Nominal rated field strength: 74.4dBµV/m at 3m

Maximum allowed field strength of production tolerance: +3dB / - 3dB

The Brief circuit description is listed as follows:

#72000

- 1. U1 acts as MCU.
- 2. U3 acts as DC Converter unit.
- 3. U5 acts as Start Driver unit.
- 4. Y2 acts as 12MHz Oscillator.

#14300

- 1. U1 acts as MCU.
- 2. U3 acts as DC Converter unit.
- 3. U4/U5 acts as Start Driver unit.
- 4. Y2 acts as 12MHz Oscillator.

宏智香港科技有限公司

RF24G228 Datasheet Revision 1.1

RF24G228

Low Cost 2.4GHz Radio Transceiver

GENERAL DESCRIPTION

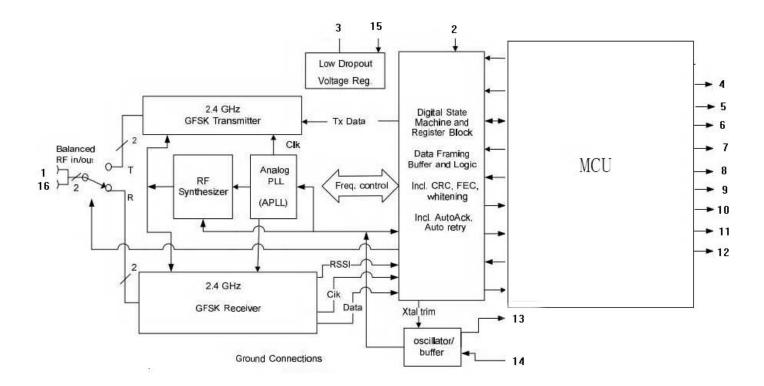
The RF24G228 is a low-cost, fully integrated CMOS RF transceiver, GFSK data modem, and packet framer, optimized for use in the 2.4 GHz ISM band. It contains transmit, receive, RF synthesizer, and digital modem functions, with few external components. The transmitter supports digital power control. The receiver utilizes extensive digital processing for excellent overall performance, even in the presence of interference and transmitter impairments.

The RF24G228 transmits GFSK data at approximately 6 dBm output power. The low-IF receiver architecture produces good selectivity, with sensitivity down to approx. -96 dBm@62.5Kdps. Digital RSSI values are available to monitor channel quality. On-chip transmit and receive FIFO registers are available to buffer the data transfer with MCU.

Built-in CRC, FEC, data whitening, and automatic retry/acknowledge are all available to simplify and optimize performance for individual applications. The digital baseband interface can be either 4-wire SPI or 2-wire I2C-bus. Three additional pins are available for optional reset and buffer control.

For extended battery life, power consumption is minimized all key areas. A sleep mode is available to reduce standby current consumption to just 1 uA typ. while preserving register settings. This product is available in RoHS compliant SSOP16 standard package.

Application


- **■** Remote controls
- Wireless keyboards and mice
- Proprietary Wireless Networks I Home automation
- Commercial and industrial short-range wireless
- Wireless voice, VoIP, Cordless headsets
- Robotics and machine connectivity

宏智香港科技有限公司

RF24G228 Datasheet Revision 1.1

1. Block Diagram

宏智香港科技有限公司

RF24G228 Datasheet Revision 1.1

2. Absolute Maximum Ratings

Table 1. Absolute Maximum Rating

Parameter	Symbol	MIN	TYP	MAX	Unit	
Operating Temp.	T _{OP}	-40		+85	°C	
Storage Temp.	T _{STORAGE}	-55		+125	°C	
LDO_VDD, VDD_IO Voltage	V _{IN_MAX}			+3.7	VDC	
VDD pins	VDD_MAX			+2.5	VDC	
Applied Voltages to Other Pins	V _{OTHER}	-0.3		+3.7	VDC	
Input RF Level	P _{IN}			+10	dBm	

Notes:

- 1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics section below.
- 2. These devices are electro-static sensitive. Devices should be transported and stored in anti-static containers. Equipment and personnel contacting the devices need to be properly grounded. Cover workbenches with grounded conductive mats.

宏智香港科技有限公司

RF24G228 Datasheet Revision 1.1

3. Electrical Characteristics

Table 2. Electrical Characteristics

The following specifications are guaranteed for TA = 25 C, LDO_VDD= VDD_IO = 3.3 VDC, unless otherwise noted.

Parameter	Symbol	MIN	TYP	MAX	Units	Test Condition and Notes
Supply Voltage						
DC power supply voltage range		2.2		3.6	VDC	Input to VDD_IO and LDO_VDD pins.
Current Consumption						·
Current Consumption - TX	IDD_TXH		18		mA	POUT = high power setting
Current Consumption - 1X	IDD_TXL		12		mA	POUT = low power setting
Current Consumption - RX	IDD_RX		17		mA	
Current Consumption –IDLE	IDD_IDLE1		1.4		mA	Configured for BRCLK output running.
Ourient Oorisamption -IDEE	IDD_IDLE2		1.1		mA	Configured for BRCLK output OFF.
Current Consumption - SLEEP	IDD_SLP		6		uA	
Digital Inputs						
Logic input high	VIH	0.8		1.2	V	
Logic input riigii	VIII	VDD_IN		VDD_IN		
Logic input low	VIL	0		0.8	V	
Input Capacitance	C_IN			10	pF	
Input Leakage Current	I_LEAK_IN			10	uA	
Digital Outputs						
Logic output high	VOH	0.8 VDD_IN		VDD_IN	V	
Logic output low	VOL			0.4	V	
Output Capacitance	C_OUT			10	pF	
Output Leakage Current	I_LEAK_OUT			10	uA	
Rise/Fall Time (SPI)	T_RISE_OUT			5	nS	
Clock Signals						
CLK rise, fall time (SPI)	Tr_spi			25	nS	Requirement for error-free register reading, writing.
CLK frequency range (SPI)	FSPI	0	12		MHz	
Overall Transceiver						
Operating Frequency Range	F_OP	2400		2482	MHz	
Antenna port mismatch	VSWR_I		<2:1		VSWR	Receive mode.
(Z0=50Ω)	VSWR_O		<2:1		VSWR	Transmit mode.

宏智香港科技有限公司

RF24G228 Datasheet Revision 1.1

Parameter		Symbol	MIN	TYP	MAX	Unis	Test Condition	and Notes	
Receive Section	า						Measured using BER ≤ 0.1%:	g 50 Ohm balun. For	
				-87		dBm	1Mbps		
				-90		dBm	250Kbps		
Receiver sensitivity				-93		dBm	125Kbps		
				-96		dBm	62.5Kbps		
Maximum useable s	signal		-20	1		dBm			
Data (Symbol) rate		Ts		1		us			
Min. Carrier/Interfer	ence ratio						For BER ≤ 0.19	%	
Co-Channel II	nterference	CI_cochanne I		+9		dB	-60 dBm desire	ed signal.	
1MHz(Adjace	nt Ch. Interference)	CI_1		+6		dB	-60 dBm desire	d signal.	
2MHz(Adjace	nt Ch. Interference)	CI_2		-12		dB	-60 dBm desire	d signal.	
3MHz(Adjace	nt Ch. Interference)	CI_3		-24		dB	-67 dBm desire	d signal.	
Out-of-Band Blocking		OBB_1	-10			dBm	30 MHz to 2000 MHz	Meas. with ACX	
		OBB_2	-27			dBm	2000 MHz to 2400 MHz	BF2520 ceramic filter 2 on ant. pin .	
		OBB_3	-27			dBm	2500 MHz to 3000 MHz	Desired sig6	
		OBB_4	-10			dBm	3000 MHz to 12.75 GHz	dBm, BER ≤ 0.1%.	
Transmit Section	on		•	•	•	•	Measured using	g 50 Ohm balun3:	
		PAV			6		POUT= maximum output power Reg09=0x4800		
RF Output Power				2		dBm	POUT = nom Reg09=0x1840	ninal output power)	
			-17				POUT=minimum outp power,Reg09=1FC0		
Second harmonic				-50		dBm	Conducted to ANT pin.		
Third harmonic				-50		dBm	Conducted to A	NT pin.	
Modulation Charact	teristics								
Peak FM	00001111 pattern	∆f1avg		280		kHz			
Deviation	01010101 pattern	∆f2max		225		kHz			
In-Band Spurious E	Emission								
2MHz offset		IBS_2			-40	dBm			
>3MHz offset		IBS_3			-60	dBm			
Out-of-Band Spurious		OBS_O_1		< -60	-36	dBm	30 MHz ~ 1 GH		
		OBS_O_2		-45	-30	dBm		1 GHz ~ 12.75 GHz, exclude desired signal and harmonics.	
Emission, Oper	ation	OBS_O_3		< -60	-47	dBm	1.8 GHz ~ 1.9 GHz		
		OBS_O_4		< -65	-47	dBm	5.15 GHz ~ 5.3	5.15 GHz ~ 5.3 GHz	

Note:

- 1. The test is run at one midband frequency, typically 2460 MHz. With blocking frequency swept in 1 MHz steps, up to 24 exception frequencies are allowed. Of these, no more than 5 shall persist with blocking signal reduced to -50dBm. For blocking frequencies below desired receive frequency, in-band harmonics of the out-of-band blocking signal are the most frequent cause of failure, so be sure blocking signal has adequate harmonic filtering.
- 2. In some applications, this filter may be incorporated into the antenna, or be approximated by the effective antenna bandwidth.
- 3. Transmit power measurement is corrected for insertion loss of Balun, in order to indicate the transmit power at the IC pins.

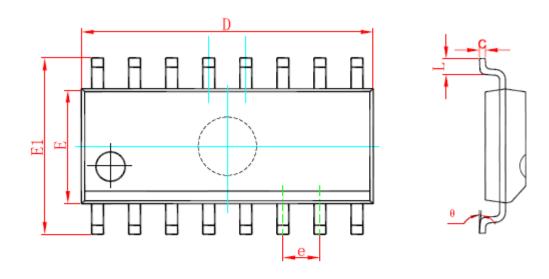
RF24G228 Page 5

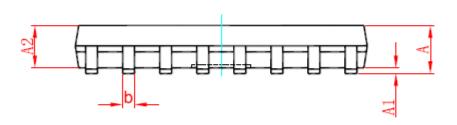
宏智香港科技有限公司

RF24G228 Datasheet Revision 1.1

Parameter	Symbol	MIN	TYP	MAX	Unit	Test Condition and Notes		
RF VCO and PLL Section								
Typical PLL lock range	FLOCK	2366		2516	MHz			
Tx, Rx Frequency Tolerance					ppm	Same as XTAL pins free	quency tolerance	
Channel (Step) Size			1		MHz			
CCD Dhara Naisa			≤ -95		dBc/Hz	550kHz offset		
SSB Phase Noise			≤ -115		dBc/Hz	2MHz offset		
Crystal oscillator freq. range (Reference Frequency)			12.00 0		MHz	Designed for 12 MHz crystal reference freq.		
Crystal oscillator digital trim range, typ.			±20		ppm	See Register 27 description. Amount of pull depends on crystal spec. and operating point.		
RF PLL Settling Time	THOP		75	150	uS	Settle to within 30 kHz of final value.		
Spurious Emissions	OBS_1		< -75	-57	dBm	30 MHz ~ 1 GHz	IDLE state,	
	OBS_2		-68	-47	dBm	1 GHz ~ 12.75 GHz	Synthesizer and VCO ON.	
LDO Voltage Regulator Section	n	•	•	•	•			
Dropout Voltage	Vdo		0.17	0.5	V	Measured during Receive state		

宏智香港科技有限公司


). D]b'8 YgW]dh]cb


Pin No	Pin Name	Туре	Description
1	ANT	Balanced RF	RF input/output
2	GND	GND	Ground reference connect
3	VDD_IO	Power	Power supply voltage
4	PB6	I/O	Input/output
5	VDD	Power	Power supply voltage
6	PA7	I/O	Input/output
7	PA6	I/O	Input/output
8	RST/PA5	I/O	Input/output
9	PA3	I/O	Input/output
10	PA4	I/O	Input/output
11	PA0	I/O	Input/output
12	GND	I/O	Ground reference connect
13	XTALO	AO	Output of the crystal oscillator gain block
14	XTALI	AI	Input of the crystal oscillator gain block
15	VCO_VDD	Power	RF Power supply voltage
16	ANTB	Balanœd RF	RF input/output

宏智香港科技有限公司

SOP16 PACKAGE OUTLINE DIMENSIONS

C. mh a I	Dimensions Ir	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
Α	1. 350	1. 750	0. 053	0. 069		
A1	0. 100	0. 250	0. 004	0. 010		
A2	1. 350	1. 550	0. 053	0. 061		
b	0. 330	0. 510	0. 013	0. 020		
С	0. 170	0. 250	0. 007	0. 010		
D	9. 800	10. 200	0. 386	0. 402		
E	3. 800	4. 000	0. 150	0. 157		
E1	5. 800	6. 200	0. 228	0. 244		
е	1. 270	(BSC)	0.050	(BSC)		
L	0. 400	1. 270	0. 016	0. 050		
θ	0°	8°	0°	8°		

宏智香港科技有限公司

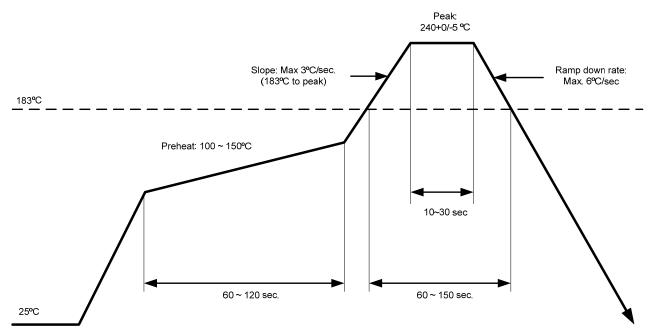
RF24G228 Datasheet Revision 1.1

7. IR Reflow Standard

Follow: IPC/JEDEC J-STD-020 B

Condition: Average ramp-up rate (183°C to peak): 3 °C/sec. max.

Preheat: 100~150°C 60~120sec


Temperature maintained above 183°C: 60~150 seconds Time within 5°C of actual peak temperature: 10 ~ 30 sec.

Peak temperature: 240+0/-5 °C Ramp-down rate: 6 °C/sec. max.

Time 25°C to peak temperature: 6 minutes max.

Cycle interval: 5 minutes

Figure 18. IR Reflow Diagram

