Global EMC Inc. Labs EMC & RF Test Report

As per CRSS 210 Issue 8:2010

&

FCC Part 15 Subpart C:2013

Unlicensed Intentional Radiators

on the

Wireless Door and Window Switch

Min Xie Project Engineer

11 Gordon Collins Dr, Gormley, ON, L0H 1G0 Canada Ph: (905) 883-8189 Testing produced for

See Appendix A for full customer & EUT details.

FCC REGISTRATION #377448

R-4023, G-506 T-1246, C-4498

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations	6
Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	8
Definitions and Acronyms	9
Testing Facility	10
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	12
6dB Bandwidth of Digitally Modulated Systems	21 30
Power Spectral Density - DM	
Appendix A – EUT Summary	64
Appendix B – EUT and Test Setup Photographs	65

Client	Viconics Technologies Inc	OLONA THE
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Report Scope

This report addresses the EMC verification testing and test results of Viconics Technologies Inc's Wireless Door and Window Switch, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 210 Issue 8:2010 FCC Part 15 Subpart C 15:2013

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of Global EMC Inc accreditation. Any opinions expressed do not necessarily reflect the opinions of Global EMC Inc, unless otherwise stated.

Client	Viconics Technologies Inc	OLONA THE
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	V95-VWAP	
EUT Industry Canada Certification #, IC:	7591A-VWAP	
EUT Passed all tests performed.	Yes (see test results summary)	
Tests conducted by	Min Xie	

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS 210 (Table 1)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207	Power line conducted emissions	QuasiPeak Average	N/A See Justifications
FCC 15.209 RSS-210 (Table 2)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-210 A8.2(a)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-210 A8.4(4)	Max output power	< 1 Watt	Pass
FCC 15.247(b)(4) RSS-210 A8.4(5)	Antenna Gain	< 6 dBi	Pass See Justifications
FCC 15.247(d) RSS-210 A8.5	Antenna conducted spurious	< 20 dBc	Pass
FCC 15.247(e) RSS-210 A8.2(b)	Spectral Density	< 8 dBm (3 kHz BW)	Pass
FCC 15.247(i) IC Safety code 6	Maximum Permissible Exposure	> 20 cm separation.	Pass See justification and calculations
Overall	Result		PASS

All tests were performed by Min Xie.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Client	Viconics Technologies Inc	OLON A LANGE
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMC'INC

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

525-0023_JOHANSON-TECH_2450AT42B100.pdf

For the Antenna requirement specified in FCC 15.203 (RSS 210 section 5.5), the unit uses a permanently connected ceramic chip antenna (0 dbi gain - Johanson 2450AT42B100) with less than 6 dBi gain.

For the Restricted Bands of operation, the EUT is designed to only operate between 2400 – 2483.5 MHz.

For maximum permissible exposure, this device operates at less than 1 Watt at 2400 – 2483.5 MHz and is designed to operate greater than 20 cm from any personnel during normal operation. No testing is required, however worst case calculated exposure compliance follows later in this report.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed later in this test report.

The EUT is a AAA battery powered device and does not have any provision to connect to AC mains outlet, therefore, FCC 15.207 does not apply.

All tests were performed with new batteries.

For the scope of this test report the EUT was mounted in three orthogonal axes to maximize emissions. Worst case results are presented.

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	

Applicable Standards, Specifications and Methods

ANSI C63.4:2009	- Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2009	- American national standard for testing unlicensed wireless devices
CFR 47 FCC 15	- Code of Federal Regulations – Radio Frequency Devices
CISPR 22:2008	- Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
FCC KDB 558074	- FCC KDB 558074 Digital Transmission Systems, measurements and procedures
ICES-003:2012	- Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	- General Requirements for the competence of testing and calibration laboratories
RSS-GEN	General Requirements and Information for the Certification of Radio Apparatus
RSS 210:2010	- Issue 8: Spectrum Management and Telecommunications Policy. Radio Standards Specification Low Power License-Exempt Radiocommunication Devices

Client	Viconics Technologies Inc	OLONIA TO
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMC'INC

Sample calculation(s)

 $\begin{aligned} & Margin = limit - (received\ signal + antenna\ factor + cable\ loss - pre-amp\ gain) \\ & Margin = 50.5dBuV/m - (50dBuV + 10dB + 2.5dB - 20dB) \end{aligned}$

Margin = 8.5 dB

Document Revision Status

Revision 1 - December 6, 2013 Initial release

Client	Viconics Technologies Inc	CLODA
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUTNU

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiallary Equipment.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility

EMI – Electro-Magnetic Immunity

EUT – Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR - No Calibration Required

RF – Radio Frequency

Client	Viconics Technologies Inc	OLODA THE
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog, and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The 3m semi-anechoic chamber is registered with Federal Communications Commission (FCC, 377448), Industry Canada (IC, 6844A-3) and VCCI (R-4023, G-506, T-1246, and C-4498). This semi-anechoic chamber complies with the requirements of EN55016-2-3:2006, section 7.5 and the site attenuation requirements of EN55016-1-4. This chamber was additionally calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. The NSA data is kept on file at Global EMC. For radiated susceptibility testing, a 16 point field calibration has been performed on the chamber. The field uniformity data is kept on file at Global EMC. Global EMC Inc is accredited to ISO 17025 by A2LA with Testing Certificate #2555.01. The laboratories current scope of accreditation listing can be found as listed on the A2LA website. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Client	Viconics Technologies Inc	OLON ATTACK
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing –

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
8/29 to 9/5, 2013	All	MX	23-26°C	35 - 41%	98 -103kPa

Client	Viconics Technologies Inc	AL AB
Product	Wireless Door and Window Switch	GLOB
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EM

Detailed Test Results Section

Client	Viconics Technologies Inc	OLONIA TO
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

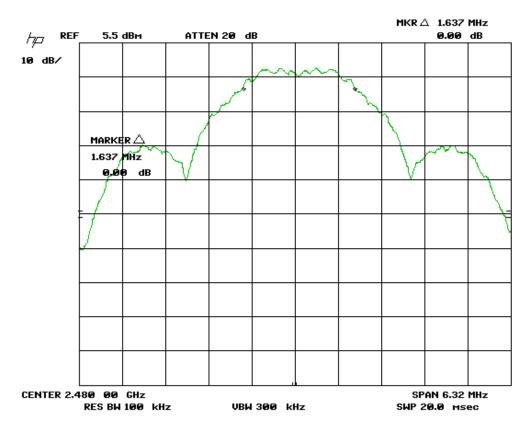
Limits

The Limit is as specified in FCC Part 15 and RSS 210.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

Results

The EUT passed. The minimum 6 dB BW measured was 1.66 MHz and the 20 dB BW is 2.89 MHz.

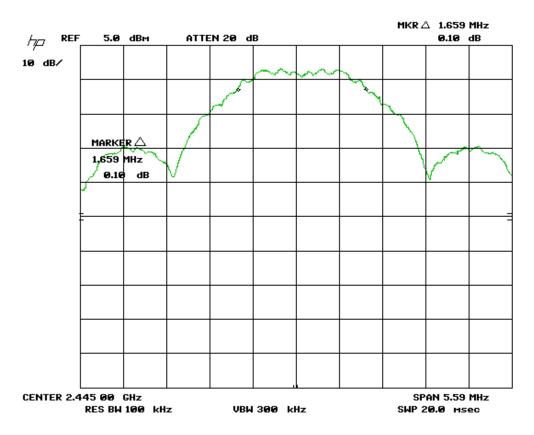

Page 13 of 74 Report issue date: 12/6/2013 GEMC File #: GEMC-FCC-21447(SW)R1

Client	Viconics Technologies Inc	CLODATE
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUINU

Graph(s)

The graphs showed below shows the OBW during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. This measurement is a peak measurement. Max hold is performed for a duration of not less then 1 minute.

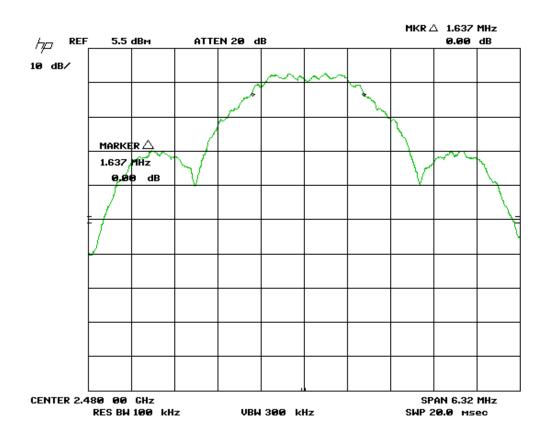
Hi Channel



6 dB BW = 1.64 MHz20 dB BW = 2.80 MHz

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013

Mid Channel



6 dB BW = 1.66 MHz20 dB BW = 2.80 MHz

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013

Low Channel

6 dB BW = 1.64 MHz20 dB BW = 2.80 MHz

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	Viconics Technologies Inc	OL OD A
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Quasi Peak Adapter	85650A	HP	12/21/ 2011	12/21/2013	GEMC 7
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Attenuator 10 dB	8493B	Agilent	NCR	NCR	GEMC 133
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics Technologies Inc	OLONIA TO
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Maximum Peak Envelope Conducted Power - DM

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an an excessive power level.

Limits

The limits are defined in FCC Part 15.247(b) and RSS 210. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

Results

The EUT passed. Three Channels 11, 19, and 26 were measured in the channel range. The following table show the peak powers measured

Internal Antenna						
Channel Frequency (MHz) Power (dBm) Power (mW)						
Lo Channel (11)	2405	3.22	2.09			
Mid Channel (19)	2445	3.30	2.14			
Hi Channel (26)	2480	3.21	2.09			

Page 18 of 74 Report issue date: 12/6/2013 GEMC File #: GEMC-FCC-21447(SW)R1

Client	Viconics Technologies Inc	OLODA TARA
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	

Table(s)

The photos shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Tests were conducted using a power meter.

Figure 1: Maximum power of Lo, Mid, and High channels

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Client	Viconics Technologies Inc	OLODA TARA
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUINU

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Power Head	PH 2000	AR	2013-02-07	2015-02-07	GEMC 15
Power meter	PM 2002	AR	2013-02-07	2015-02-07	GEMC 16
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics Technologies Inc	OLONIA TO
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Antenna Spurious Conducted Emissions (-20 dBc Requirement)

Purpose

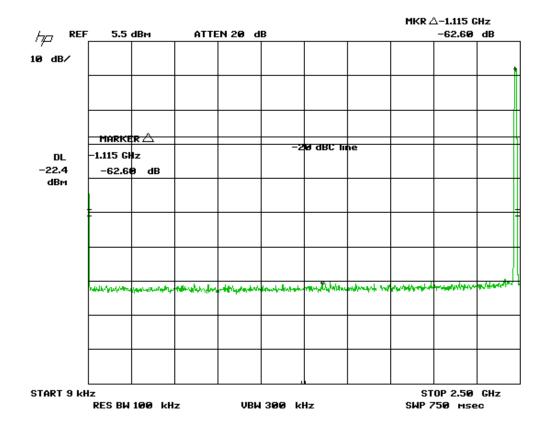
The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

Limits

The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 20 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -20 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

Results

The EUT passed the limits. Low, middle and high band was measured. The worst case is presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.

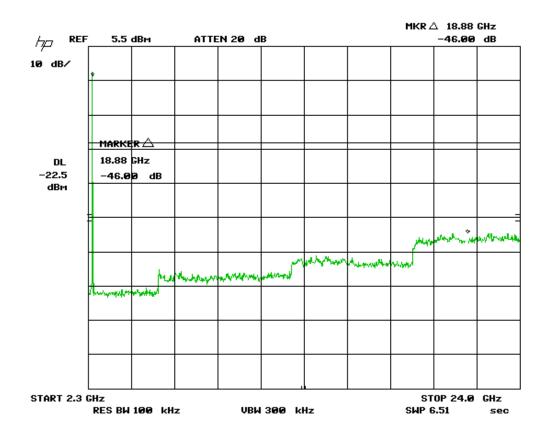

Page 21 of 74 Report issue date: 12/6/2013 GEMC File #: GEMC-FCC-21447(SW)R1

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

Graph(s)

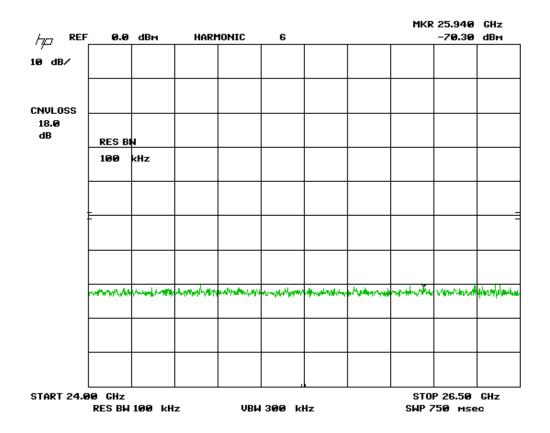
The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Hi Channel 9 kHz – 2.5 GHz

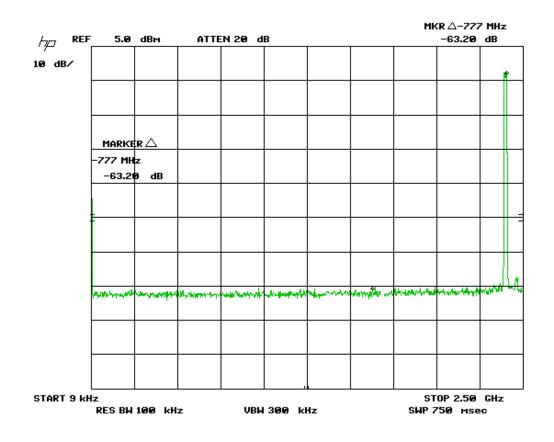


Page 22 of 74 Report issue date: 12/6/2013 GEMC File #: GEMC-FCC-21447(SW)R1

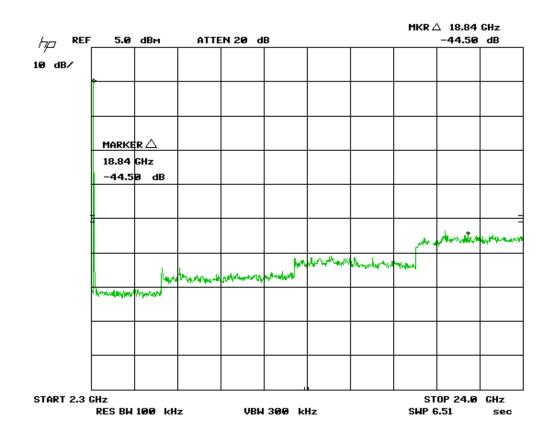
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel 2.3 GHz – 24 GHz

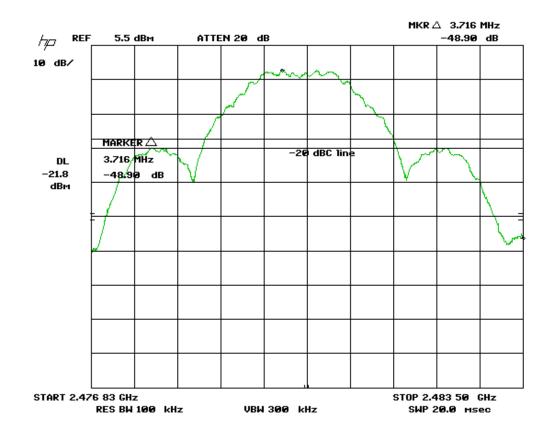
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel 24 GHz – 26 GHz

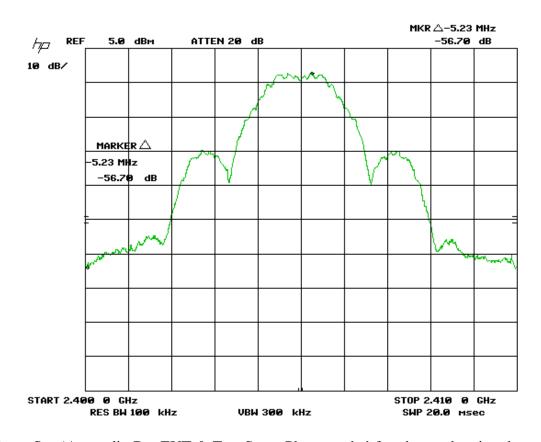
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Low Channel 9 kHz – 2.5 GHz

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Low Channel 2.3 GHz – 24 GHz

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 2483.5 Band Edge

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	

Low Channel – 2400 MHz

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Client	Viconics Technologies Inc	ALAB.
Product	Wireless Door and Window Switch	GLOBA
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Quasi Peak Adapter	85650A	HP	12/21/ 2011	12/21/2013	GEMC 7
18.0-26.5 GHz Harmonic Mixer	11970K	HP	21-Dec-11	21-Dec-13	GEMC 158
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics Technologies Inc	OLON A THE
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Transmitter Spurious Radiated Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s) and Method

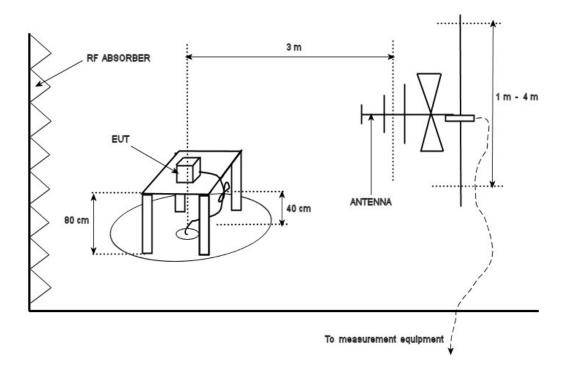
The method is as defined in ANSI C63.4:2003. The limits are as defined in FCC Part 15, Section 15.209:

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.

```
0.009~\mathrm{MHz} - 0.490~\mathrm{MHz},\ 2400/F(kHz)~\mathrm{uV/m}\ at\ 300~\mathrm{m}^1 0.490~\mathrm{MHz} - 1.705~\mathrm{MHz},\ 24000/F(kHz)~\mathrm{uV/m}\ at\ 30~\mathrm{m}^1 1.705~\mathrm{MHz} - 30~\mathrm{MHz},\ 30~\mathrm{uV/m}\ at\ 30~\mathrm{m}^1 30~\mathrm{MHz} - 88~\mathrm{MHz},\ 100~\mathrm{uV/m}\ (40.0~\mathrm{dBuV/m}^1)\ at\ 3~\mathrm{m} 88~\mathrm{MHz} - 216~\mathrm{MHz},\ 150~\mathrm{uV/m}\ (43.5~\mathrm{dBuV/m}^1)\ at\ 3~\mathrm{m} 216~\mathrm{MHz} - 960~\mathrm{MHz},\ 200~\mathrm{uV/m}\ (46.0~\mathrm{dBuV/m}^1)\ at\ 3~\mathrm{m} Above 960~\mathrm{MHz},\ 500~\mathrm{uV/m}\ (54.0~\mathrm{dBuV/m}^2)\ at\ 3~\mathrm{m} Above 1000~\mathrm{MHz},\ 500~\mathrm{uV/m}\ (54~\mathrm{dBuV/m}^2)\ at\ 3~\mathrm{m} Above 1000~\mathrm{MHz},\ 500~\mathrm{uV/m}\ (74~\mathrm{dBuV/m}^3)\ at\ 3~\mathrm{m}
```

Page 30 of 74 Report issue date: 12/6/2013 GEMC File #: GEMC-FCC-21447(SW)R1


¹Limit is with Quasi Peak detector with bandwidths as defined in CISPR-16-1-1

²Limit is with 1 MHz measurement bandwidth and using an Average detector

³Limit is with 1 MHz measurement bandwidth and using a Peak detector

Client	Viconics Technologies Inc	CLODATE
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUINU

Typical Radiated Emissions Setup

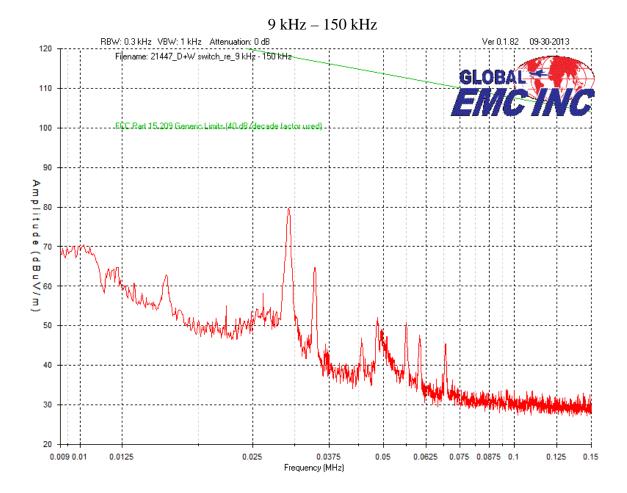
Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to the 10th harmonic (a minimum of a 24.835 GHz).


Devices scanned may be scanned at alternate test distances, and in accordance with FCC Part 15, Subpart A, Section 15.31, an extrapolation factor of 20 dB/decade was used above

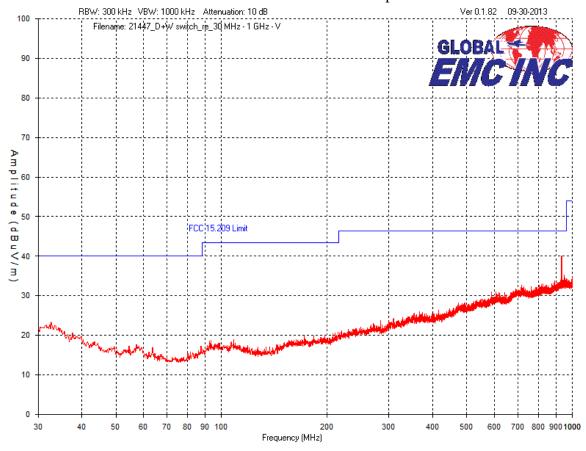
Client	Viconics Technologies Inc	OLONG THE RESERVE OF THE PARTY
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUINU

30 MHz and 40 dB/decade below 30 MHz. For example for 1 meter measurements, an extrapolation factor 9.5 dB from 20 Log (1m / 3m) is applied.

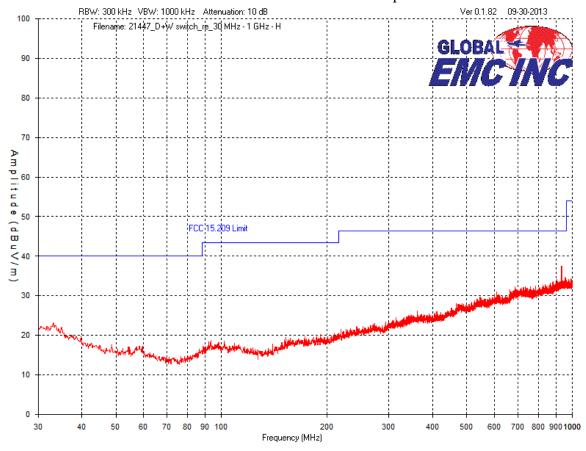
Low, middle and high channels, each in three orthogonal axes were checked; however the worst case graphs are presented.

Band edge measure graphs were shown for illustrations purpose. See final measurement section for all measurements.

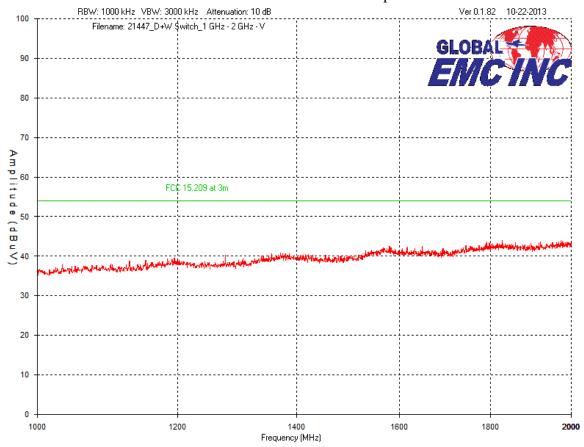
Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	


150 kHz - 30 MHz

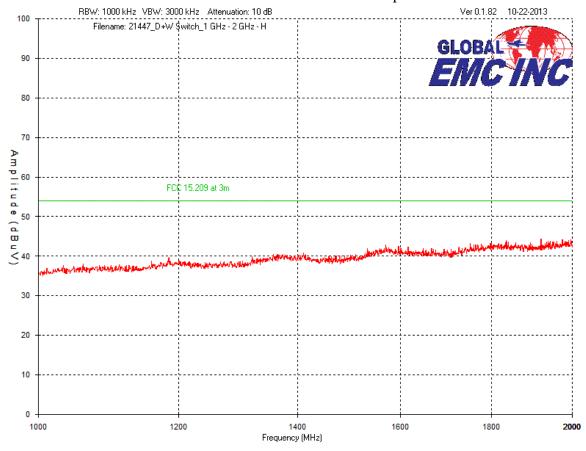
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel - 30 MHz - 1 GHz Vertical - Peak Emission Graph

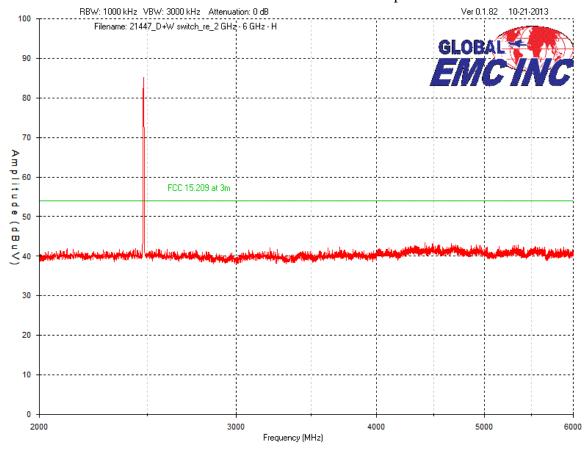
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 30 MHz – 1 GHz Horizontal - Peak Emission Graph

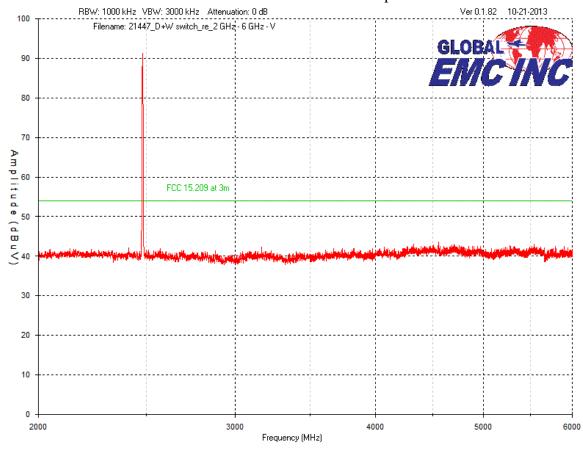
Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	


Hi Channel – 1 GHz – 2 GHz Vertical - Peak Emission Graph

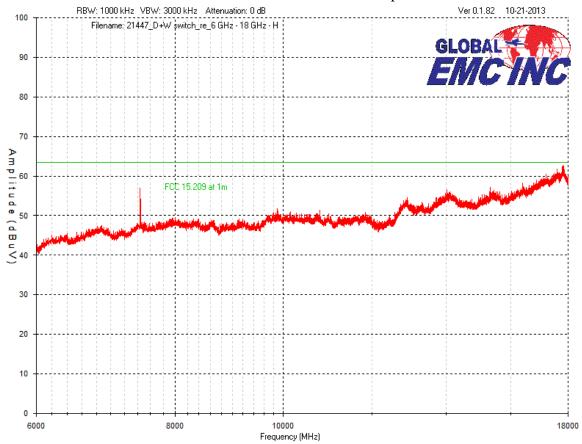
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 1 GHz – 2 GHz Horizontal - Peak Emission Graph

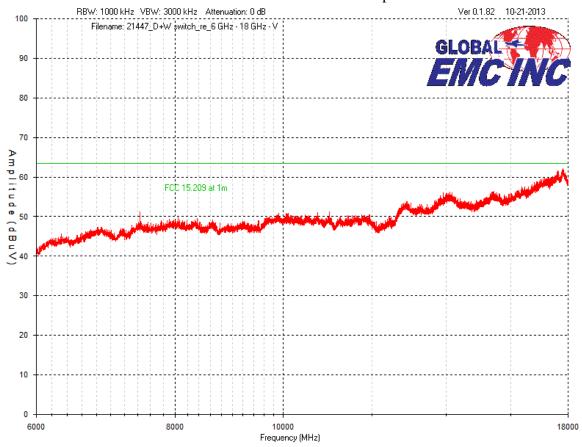
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 2 GHz – 6 GHz Horizontal - Peak Emission Graph

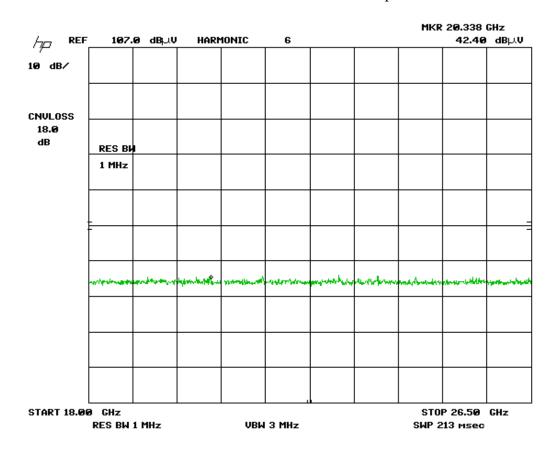
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 2 GHz – 6 GHz Vertical - Peak Emission Graph

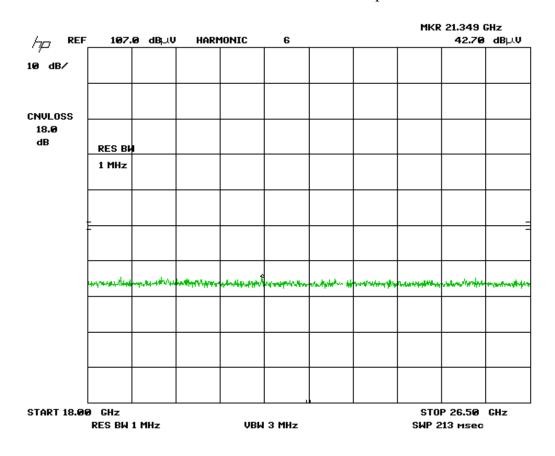
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 6 GHz – 18 GHz Horizontal - Peak Emission Graph

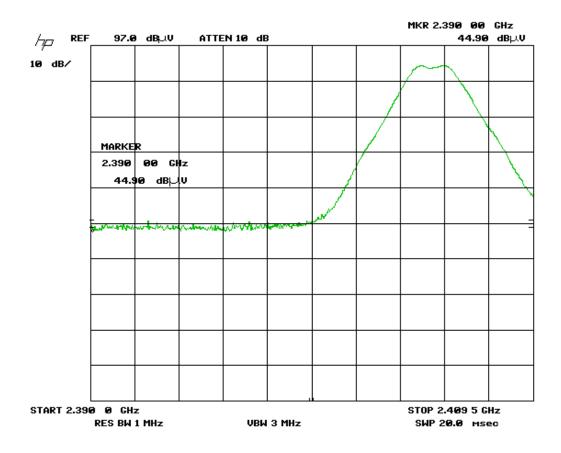
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Hi Channel – 6 GHz – 18 GHz Vertical - Peak Emission Graph

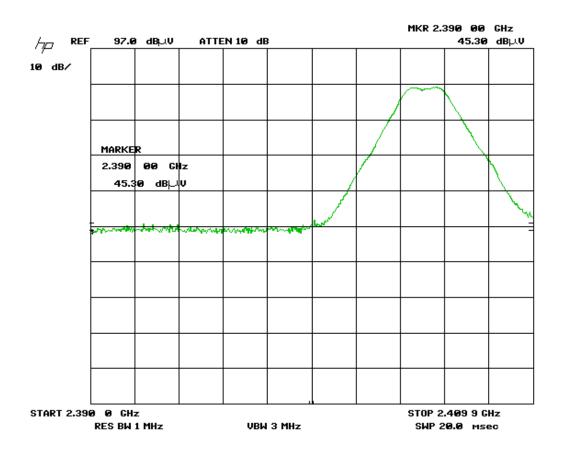
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Mid Channel – 18 GHz – 26 GHz Horizontal - Peak Emission Graph

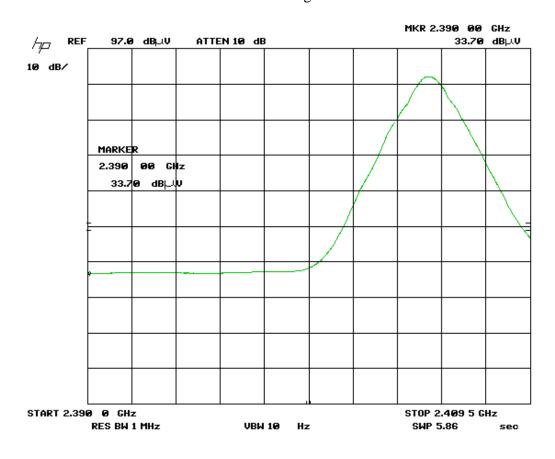
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Mid Channel – 18 GHz – 26 GHz Vertical - Peak Emission Graph

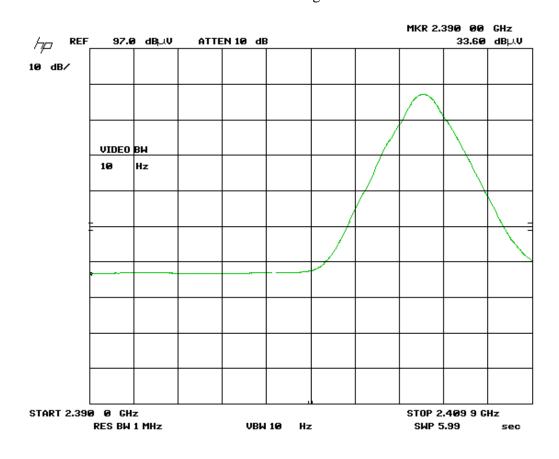
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Low Channel Vertical - Peak Emission

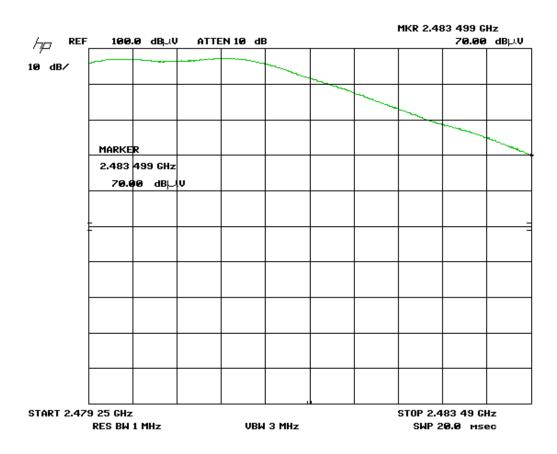
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Low Channel Horizontal - Peak Emission

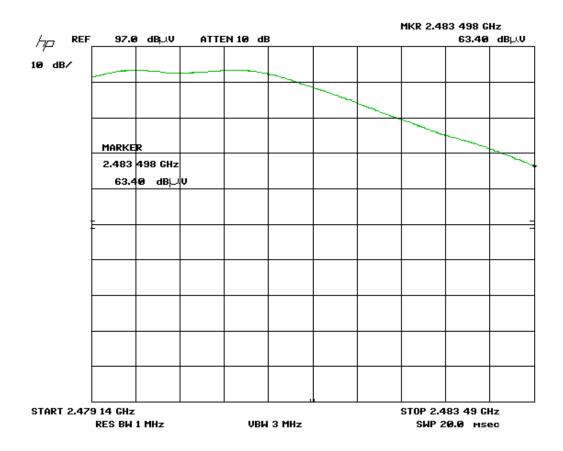
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Low Channel Vertical – Average Emission

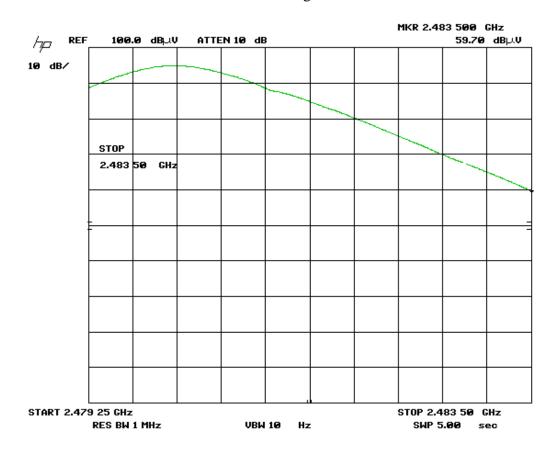
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Low Channel Horizontal - Average Emission

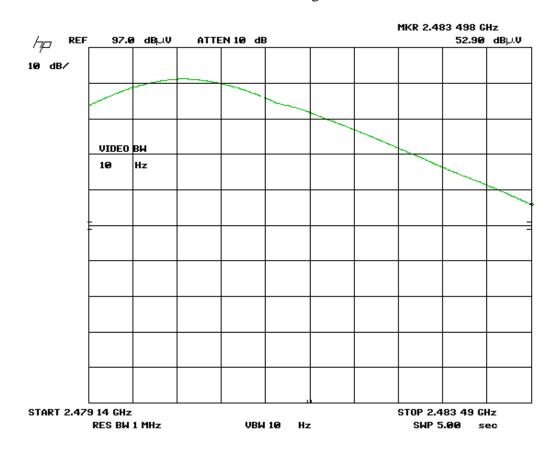
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Hi Channel Vertical - Peak Emission

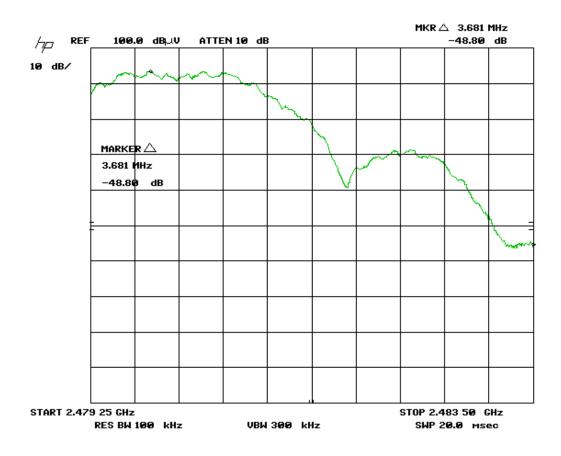
Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Hi Channel Horizontal - Peak Emission

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Hi Channel Vertical - Average Emission

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Band Edge – Hi Channel Horizontal - Average Emission

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013

Band Edge – High channel Vertical – Marker-Delta measurement

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	GLOB
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EM

Final Measurements

Note: In accordance with 15.247(d), only frequencies exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a final detector.

For frequency shown on the peak graphs and not listed in 15.205, measurements were taken for reference.

			Low	Channel (1	1) - Y a	xis (Hor	izontal)				
2405	Peak	Horz	84.2	30.6	5.4	0.0	36.2	84.0			PASS
2405	Avg	Horz	82.2	30.6	5.4	0.0	36.2	82.0			PASS
2405	Peak	Vert	89.4	30.6	5.4	0.0	36.2	89.2			PASS
2405	Avg	Vert	87.2	30.6	5.4	0.0	36.2	87.0			PASS
2390	Peak	Horz	45.8	30.6	5.4	0.0	36.2	45.6	74.0	28.4	PASS
2390	Avg	Horz	33.6	30.6	5.4	0.0	36.2	33.4	54.0	20.6	PASS
2390	Peak	Vert	46.3	30.6	5.4	0.0	36.2	46.1	74.0	27.9	PASS
2390	Avg	Vert	33.7	30.6	5.4	0.0	36.2	33.5	54.0	20.5	PASS
			L	ow Channe	el (11) -	X axis (I	Flat)				
2405	Peak	Horz	86.2	30.6	5.4	0.0	36.2	86.0			PASS
2405	Avg	Horz	84.2	30.6	5.4	0.0	36.2	84.0			PASS
2405	Peak	Vert	91.5	30.6	5.4	0.0	36.2	91.3			PASS
2405	Avg	Vert	89.3	30.6	5.4	0.0	36.2	89.1			PASS
2390	Peak	Horz	45.3	30.6	5.4	0.0	36.2	45.1	74.0	28.9	PASS
2390	Avg	Horz	33.6	30.6	5.4	0.0	36.2	33.4	54.0	20.6	PASS
2390	Peak	Vert	44.9	30.6	5.4	0.0	36.2	44.7	74.0	29.3	PASS
2390	Avg	Vert	33.7	30.6	5.4	0.0	36.2	33.5	54.0	20.5	PASS
4810	Peak	Horz	45.4	33.7	7.7	0.0	35.7	51.1	74.0	22.9	PASS
4810	Avg	Horz	30.9	33.7	7.7	0.0	35.7	36.6	54.0	17.4	PASS
4810	Peak	Vert	45.6	33.7	7.7	0.0	35.7	51.3	74.0	22.7	PASS
4810	Avg	Vert	32.1	33.7	7.7	0.0	35.7	37.8	54.0	16.2	PASS
7215	Peak	Vert	48.8	37.9	9.6	0.0	35.9	60.4	74.0	13.6	PASS
7215	Avg	Vert	34.7	37.9	9.6	0.0	35.9	46.3	54.0	7.7	PASS
7215	Peak	Horz	48.9	37.9	9.6	0.0	35.9	60.5	74.0	13.5	PASS
7215	Avg	Horz	34.7	37.9	9.6	0.0	35.9	46.3	54.0	7.7	PASS
			Lov	w Channel	(11) - Z	axis (Ve	ertical)				
2405	Peak	Horz	84.3	30.6	5.4	0.0	36.2	84.1			PASS
2405	Avg	Horz	82.0	30.6	5.4	0.0	36.2	81.8			PASS
2405	Peak	Vert	88.3	30.6	5.4	0.0	36.2	88.1			PASS
2405	Avg	Vert	86.2	30.6	5.4	0.0	36.2	86.0			PASS
2390	Peak	Horz	44.9	30.6	5.4	0.0	36.2	44.7	74.0	29.3	PASS
2390	Avg	Horz	33.6	30.6	5.4	0.0	36.2	33.4	54.0	20.6	PASS
2390	Peak	Vert	45.6	30.6	5.4	0.0	36.2	45.4	74.0	28.6	PASS
2390	Avg	Vert	33.7	30.6	5.4	0.0	36.2	33.5	54.0	20.5	PASS

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	

			N	/lid Channe	el (19) -	X axis (F	Flat)				
2445	Peak	Horz	92.7	30.6	5.4	0.0	36.2	92.5			PASS
2445	Avg	Horz	90.4	30.6	5.4	0.0	36.2	90.2			PASS
2445	Peak	Vert	90.6	30.6	5.4	0.0	36.2	90.4			PASS
2445	Avg	Vert	88.5	30.6	5.4	0.0	36.2	88.3			PASS
			Mid	Channel (1	9) - Y a	xis (Hor	izontal)				
2445	Peak	Horz	87.8	30.6	5.4	0.0	36.2	87.6			PASS
2445	Avg	Horz	85.6	30.6	5.4	0.0	36.2	85.4			PASS
2445	Peak	Vert	93.6	30.6	5.4	0.0	36.2	93.4			PASS
2445	Avg	Vert	91.4	30.6	5.4	0.0	36.2	91.2			PASS
4890	Peak	Horz	46.5	33.4	7.7	0.0	35.7	51.9	74.0	22.1	PASS
4890	Avg	Horz	33.5	33.4	7.7	0.0	35.7	38.9	54.0	15.1	PASS
4890	Peak	Vert	46.7	33.4	7.7	0.0	35.7	52.1	74.0	21.9	PASS
4890	Avg	Vert	33.3	33.4	7.7	0.0	35.7	38.7	54.0	15.3	PASS
7335	Peak	Vert	49.1	37.9	9.6	0.0	35.9	60.7	74.0	13.3	PASS
7335	Avg	Vert	35.1	37.9	9.6	0.0	35.9	46.7	54.0	7.3	PASS
7335	Peak	Horz	52.6	37.9	9.6	0.0	35.9	64.2	74.0	9.8	PASS
7335	Avg	Horz	40.9	37.9	9.6	0.0	35.9	52.5	54.0	1.5	PASS
9780	Peak	Horz	50.5	39.0	7.4	0.0	36.2	60.7	74.0	13.3	PASS
9780	Avg	Horz	35.9	39.0	7.4	0.0	36.2	46.1	54.0	7.9	PASS
9780	Peak	Vert	49.8	39.0	7.4	0.0	36.2	60.0	74.0	14.0	PASS
9780	Avg	Vert	35.9	39.0	7.4	0.0	36.2	46.1	54.0	7.9	PASS
12225	Peak	Horz	49.1	38.8	8.4	0.0	35.4	60.9	74.0	13.1	PASS
12225	Avg	Horz	35.3	38.8	8.4	0.0	35.4	47.1	54.0	7.0	PASS
12225	Peak	Vert	49.7	38.8	8.4	0.0	35.4	61.5	74.0	12.6	PASS
12225	Avg	Vert	35.2	38.8	8.4	0.0	35.4	47.0	54.0	7.0	PASS
			Mid	d Channel ((19) - Z	axis (Ve	rtical)				
2445	Peak	Horz	85.7	30.6	5.4	0.0	36.2	85.5			PASS
2445	Avg	Horz	82.7	30.6	5.4	0.0	36.2	82.5			PASS
2445	Peak	Vert	92.9	30.6	5.4	0.0	36.2	92.7			PASS
2445	Avg	Vert	90.7	30.6	5.4	0.0	36.2	90.5			PASS

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013

			-	ligh Chann	el (26) -	X axis	(Flat)				
2480	Peak	Horz	88.3	30.6	5.4	0.0	36.2	88.1			PASS
2480	Avg	Horz	85.7	30.6	5.4	0.0	36.2	85.5			PASS
2480	Peak	Vert	94.1	30.6	5.4	0.0	36.2	93.9			PASS
2480	Avg	Vert	91.6	30.6	5.4	0.0	36.2	91.4			PASS
2483.5	Peak	Horz	42.3	30.6	5.4	0.0	36.2	42.1	74.0	31.9	PASS
2483.5	Avg	Horz	39.7	30.6	5.4	0.0	36.2	39.5	54.0	14.5	PASS
2483.5	Peak	Vert	46.1	30.6	5.4	0.0	36.2	45.9	74.0	28.1	PASS
2483.5	Avg	Vert	43.6	30.6	5.4	0.0	36.2	43.4	54.0	10.6	PASS
2485.5	Peak	Horz	47.3	30.6	5.4	0.0	36.2	47.1	74.0	26.9	PASS
2485.5	Avg	Horz	35.5	30.6	5.4	0.0	36.2	35.3	54.0	18.7	PASS
2485.5	Peak	Vert	50.4	30.6	5.4	0.0	36.2	50.2	74.0	23.8	PASS
2485.5	Avg	Vert	39.2	30.6	5.4	0.0	36.2	39.0	54.0	15.0	PASS
2480	Peak	Horz	90.7	Channel (2 30.6	5.4	0.0	36.2	90.5			PASS
					5.4						PASS
2480	Avg	Horz	88.2	30.6		0.0	36.2	88.0			
2480	Peak	Vert	97.3	30.6	5.4	0.0	36.2	97.1			PASS
2480	Avg	Vert	95.0	30.6	5.4	0.0	36.2	94.8	740		PASS
2483.5	Peak	Horz	44.3	30.6	5.4	0.0	36.2	44.1	74.0	29.9	PASS
2483.5	Avg	Horz	41.8	30.6	5.4	0.0	36.2	41.6	54.0	12.4	PASS
2483.5	Peak	Vert	48.5	30.6	5.4	0.0	36.2	48.3	74.0	25.7	PASS
2483.5	Avg	Vert	46.2	30.6	5.4	0.0	36.2	46.0	54.0	8.0	PASS
2485.5	Peak	Horz	48.3	30.6	5.4	0.0	36.2	48.1	74.0	25.9	PASS
2485.5	Avg	Horz	36.8	30.6	5.4	0.0	36.2	36.6	54.0	17.4	PASS
2485.5	Peak	Vert	52.5	30.6	5.4	0.0	36.2	52.3	74.0	21.7	PASS
2485.5	Avg	Vert	42.1	30.6	5.4	0.0	36.2	41.9	54.0	12.1	PASS
4960	Peak	Horz	46.1	33.7	7.7	0.0	35.7	51.8	74.0	22.2	PASS
4960	Avg	Horz	32.4	33.7	7.7	0.0	35.7	38.1	54.0	15.9	PASS
4960	Peak	Vert	45.6	33.7	7.7	0.0	35.7	51.3	74.0	22.7	PASS
4960	Avg	Vert	33.2	33.7	7.7	0.0	35.7	38.9	54.0	15.1	PASS
7440	Peak	Vert	49.8	38.5	9.6	0.0	35.9	62.0	74.0	12.0	PASS
7440	Avg	Vert	36.1	38.5	9.6	0.0	35.9	48.3	54.0	5.7	PASS
7440	Peak	Horz	51.7	38.5	9.6	0.0	35.9	63.9	74.0	10.1	PASS
7440	Avg	Horz	38.9	38.5	9.6	0.0	35.9	51.1	54.0	2.9	PASS
9920	Peak	Horz	49.9	39.0	7.4	0.0	36.2	60.1	74.0	13.9	PASS
9920	Avg	Horz	35.8	39.0	7.4	0.0	36.2	46.0	54.0	8.0	PASS
9920	Peak	Vert	49.9	39.0	7.4	0.0	36.2	60.1	74.0	13.9	PASS
9920	Avg	Vert	35.8	39.0	7.4	0.0	36.2	46.0	54.0	8.0	PASS
12400	Peak	Horz	49.9	38.8	8.6	0.0	35.3	62.0	74.0	12.0	PASS
12400	Avg	Horz	35.9	38.8	8.6	0.0	35.3	48.0	54.0	6.0	PASS
12400	Peak	Vert	49.9	38.8	8.6	0.0	35.3	62.0	74.0	12.0	PASS
12400	Avg	Vert	35.7	38.8	8.6	0.0	35.3	47.8	54.0	6.2	PASS
			High Ch	nannel (26)	- Z axis	(Vertica	al)(20 dBm)				
2480	Peak	Horz	88.8	30.6	5.4	0.0	36.2	88.6			PASS
2480	Avg	Horz	86.7	30.6	5.4	0.0	36.2	86.5			PASS
2480	Peak	Vert	97.2	30.6	5.4	0.0	36.2	97.0			PASS
2480	Avg	Vert	94.7	30.6	5.4	0.0	36.2	94.5			PASS
2483.5	Peak	Horz	41.9	30.6	5.4	0.0	36.2	41.7	74.0	32.3	PASS
2483.5	Avg	Horz	39.8	30.6	5.4	0.0	36.2	39.6	54.0	14.4	PASS
2483.5	Peak	Vert	47.8	30.6	5.4	0.0	36.2	47.6	74.0	26.4	PASS
2483.5	Avg	Vert	45.3	30.6	5.4	0.0	36.2	45.1	54.0	8.9	PASS
2485.5	Peak	Horz	48.1	30.6	5.4	0.0	36.2	47.9	74.0	26.1	PASS
2485.5	Avg	Horz	36.1	30.6	5.4	0.0	36.2	35.9	54.0	18.1	PASS
2485.5	Peak	Vert	52.3	30.6	5.4	0.0	36.2	52.1	74.0	21.9	PASS
2485.5	Avg	Vert	41.8	30.6	5.4	0.0	36.2	41.6	54.0	12.4	PASS

Client	Viconics Technologies Inc	010
Product	Wireless Door and Window Switch	GLO
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	Elv

Note:

1. The marker-delta method was used at 2483.5 MHz band edge measurement. The RBW = 100 kHz is used to obtain the marker-delta value.

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEMC 160
Quasi Peak Adapter	85650A	HP	12/21/ 2011	12/21/2013	GEMC 7
Loop Antenna	EM 6871	Electro-Metrics	Feb 5, 2013	Feb 5, 2015	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 5, 2013	Feb 5, 2015	GEMC 71
BiLog Antenna	3142-C	ETS	Feb 4, 2013	Feb 4, 2015	GEMC 137
Attenuator 10 dB	8493B	Agilent	NCR	NCR	GEMC 133
4GHZ-12GHz High Pass filter	11SH10- 4000/T12000-0/0	K & L Microwave	NCR	NCR	GEMC 119
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	8/29/2012	8/29/2014	GEMC 6403
Q-Par 1.5-18 GHz Horn	6878/24	Q-par	8/23/2012	8/23/2014	GEMC 6365
Horn Antenna 18 GHz - 26.5 GHz	SAS-572	A.H. Systems	8/27/2012	8/27/2014	GEMC 6371
18.0-26.5 GHz Harmonic Mixer	11970K	HP	21-Dec-11	21-Dec-13	GEMC 158
1-26G pre-amp	HP 8449B	HP	8/22/2012	8/22/2014	GEMC 6351
RF Cable 7m	LMR-400-7M- 50OHM-MN-MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400-0.5M- 50OHM-MN-MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev1.doc"

Client	Viconics Technologies Inc	OLONIA TO
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Power Spectral Density - DM

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

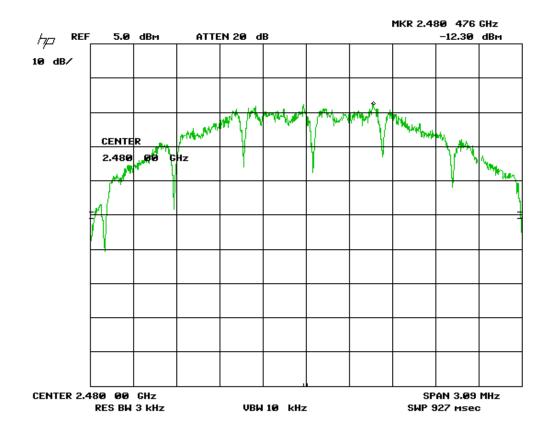
Limits

The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

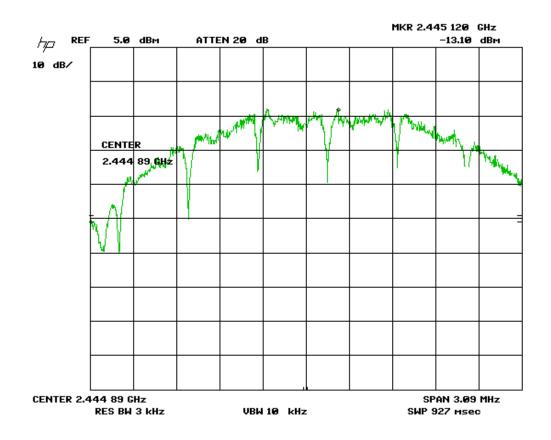
Results

The EUT passed. Low, medium, and high band was tested. The worst case value is -12.3 dBm as measured with a 3 kHz resolution bandwidth (peak power).

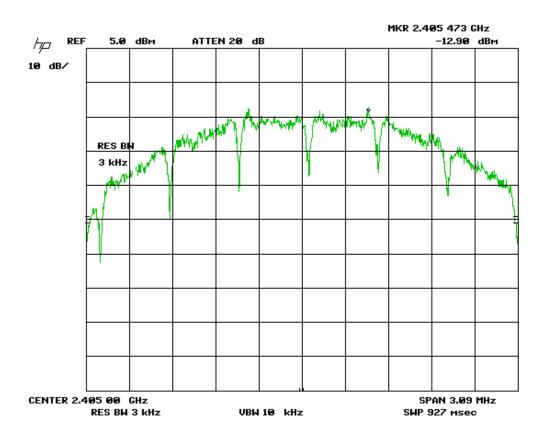

Graph(s)

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated in each mode, with the worst case being presented.

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


High Channel

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013


Mid Channel

Client	Viconics Technologies Inc
Product	Wireless Door and Window Switch
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013

Low Channel

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Client	Viconics Technologies Inc	4145
Product	Wireless Door and Window Switch	GLO
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EM

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Quasi Peak Adapter	85650A	HP	12/21/ 2011	12/21/2013	GEMC 7
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics Technologies Inc	OLONIA TO
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	ENCINC

Maximum Permissible Exposure

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined in FCC 15.247(i) and FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limit for the frequency range of 1.5 GHz to 100 GHz was applied. This is a limit of $1.0 \, \text{mW/cm}^2$. The distance used for calculations was 20cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

Client	Viconics Technologies Inc	ALAB
Product	Wireless Door and Window Switch	GLOB
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EM

Results

The EUT passed the requirements. The worst case calculated power density was 0.0004 mW/cm², this is significantly under the 1.0 mW/cm² requirement.

Calculations

Method 1 (conducted power) Internal antenna

$$P_d = (P_t *G) / (4*pi*R^2)$$

Where Pt = 3.30 dBm or 2.14 mW as per Peak power conducted output

Where G = 0 dBi, or numerically 1.0

Where R = 20 cm

$$P_d = (2.14 \text{ mW} * 1.0) / (4 * pi * 20 \text{cm}^2)$$

 $P_d = 2.14 \text{ mW} / 5026 \text{ cm}^2$ $P_d = 0.0004 \text{ mW/cm}^2$

Client	Viconics Technologies Inc	OLONA THE
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUINU

Appendix A – EUT Summary

For further details for filing purposes, refer to filing package.

General EUT Description

Client				
Organization	Viconics Electronics Inc. 9245 Langelier Blvd. Montreal, Quebec, Canada, H1P 3K9			
Contact	Paolo Primiani			
Phone	514-321-5660			
Email	Paolo.Primiani@schneider-electric.com			
	EUT Details			
EUT Name (for report title)	Wireless Door and Window Switch			
EUT Model / SN (if known)	VWAP			
FCC ID	V95-VWAP			
Industry Canada #	7591A-VWAP			
Equipment category	Wireless module			
EUT is powered using	DC			
Input voltage range(s) (V)	Two triple A battery			
Frequency range(s) (Hz)	DC			
Transmits RF energy? (describe)	Yes			
Basic EUT functionality description	EUT is a wireless door or window contact.			

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B-EUT & Test Setup Photographs'.

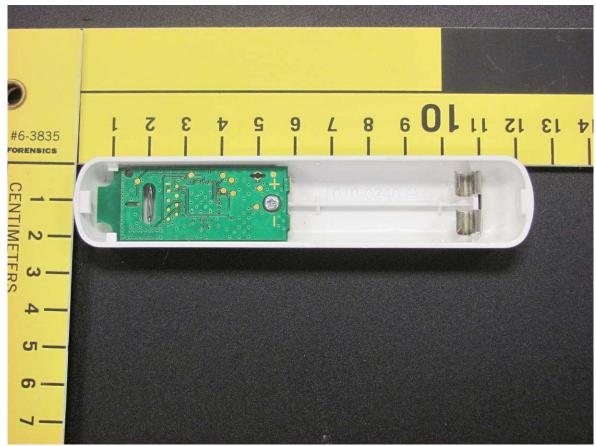
Page 64 of 74 Report issue date: 12/6/2013 GEMC File #: GEMC-FCC-21447(SW)R1

Client	Viconics Technologies Inc	AL AD
Product	Wireless Door and Window Switch	GLOB
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EM

Appendix B – EUT and Test Setup Photographs

Client	Viconics Technologies Inc	OLODA PARA
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMUINU

Note: These photos are for information purposes only. Also refer to PDF files that are separate from this test report.


Illustration 1: EUT front external view

Client	Viconics Technologies Inc	OLODA PARA
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

Illustration 2: EUT rear external view

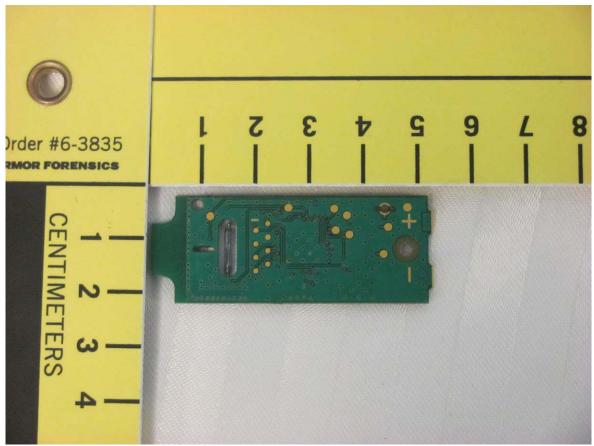

Client	Viconics Technologies Inc	
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMC

Illustration 3: EUT internal view

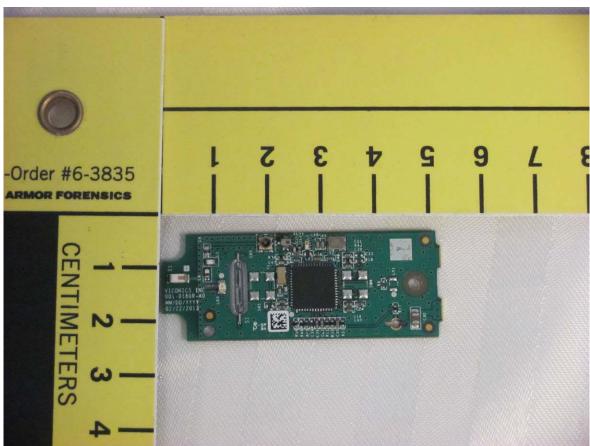

Client	Viconics Technologies Inc	OLANA.
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMC

Illustration 4: EUT PCB rear view

Client	Viconics Technologies Inc	OL ODA
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

Illustration 5: EUT PCB front view

Client	Viconics Technologies Inc	CLADA
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

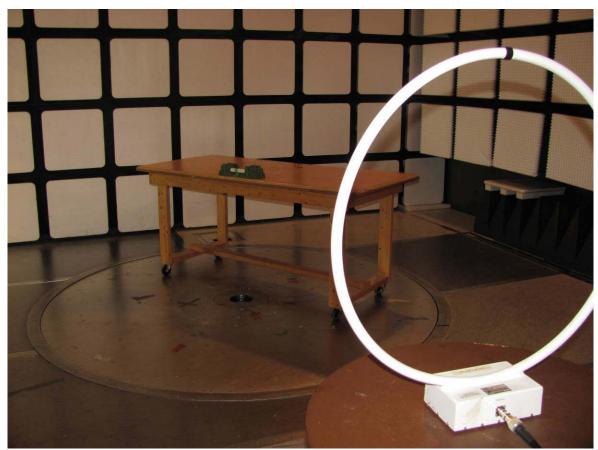


Illustration 6: Radiated emission setup – photo 1

Client	Viconics Technologies Inc	OLODA PARA
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

Illustration 7: Radiated emission setup - photo 2

Client	Viconics Technologies Inc	OLODA PARA
Product	Wireless Door and Window Switch	GLOBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC



Illustration 8: Radiated setup - photo 3

Client	Viconics Technologies Inc	OLONA PAR
Product	Wireless Door and Window Switch	GLUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2013	EMCINC

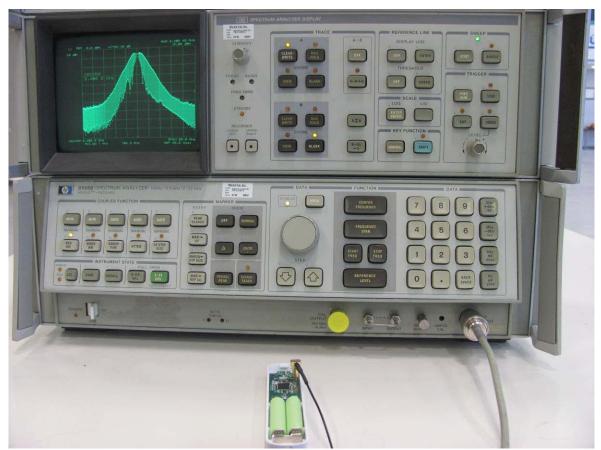


Illustration 9: Antenna conducted emission setup