

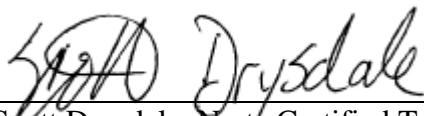
Global EMC Inc. Labs

EMC & RF Test Report

As per

RSS 210 Issue 7:2007

&


FCC Part 15 Subpart C:2010

Unlicensed Intentional Radiators

on the

VTR7355A5500W

Terminal Equipment Controller

Scott Drysdale, Narte Certified Technician
EMC Lab Manager
Global EMC Inc.
180 Brodie Dr, Unit 2
Richmond Hill, ON L4B 3K8
Canada
Ph: (905) 883-3919

Testing produced for

See Appendix A for full customer & EUT details.

Industry
Canada

LAB REGISTRATION #6844A-1

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Table of Contents

Table of Contents.....	2
Report Scope.....	3
Summary	4
Test Results Summary	5
Justifications, Descriptions, or Deviations.....	6
Applicable Standards, Specifications and Methods.....	7
Sample calculation(s).....	8
Document Revision Status.....	8
Definitions and Acronyms	9
Testing Facility	10
Calibrations and Accreditations.....	10
Testing Environmental Conditions and Dates	11
Detailed Test Results Section	12
Power Line Conducted Emissions	13
Spurious Radiated Emissions / 20 dBc Requirement	20
Maximum Peak Envelope Conducted Power	37
Maximum Permissible Exposure	41
6dB Bandwidth of Digitally Modulated Systems	43
Power Spectral Density	49
Appendix A – EUT Summary.....	55
Appendix B – EUT and Test Setup Photographs.....	56

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Report Scope

This report addresses the EMC verification testing and test results of the VTR7355A5500W Terminal Equipment Controller, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of Global EMC Inc accreditation. Any opinions expressed do not necessarily reflect the opinions of Global EMC Inc, unless otherwise stated.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	V95-VTR
EUT Industry Canada Certification #, IC:	7591A-VTR
EUT Passed all tests performed.	Yes (see test results summary)
Tests conducted by	Scott Drysdale

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS 210 (Table 1)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207	Power line conducted emissions	QuasiPeak Average	Pass
FCC 15.209 RSS-210 (Table 2)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)2 RSS-210 A8.2(a)	6 dB Bandwidth	> 500 kHz	Pass
FCC 15.247(b)2 RSS-210 A8.4(4)	Max output power	< 1 Watt	Pass
FCC 15.247(b)(4) RSS-210 A8.4(5)	Antenna Gain	< 6 dBi	Pass See Justifications
FCC 15.247(d) RSS-210 A8.5	Antenna conducted spurious	< 20 dBc	Pass See Justifications
FCC 15.247(e) RSS-210 A8.2(b)	Spectral Density	< 8 dBm (3 kHz BW)	Pass See Justifications
FCC 15.247(i) IC Safety code 6	Maximum Permissible Exposure	> 20 cm separation.	Pass See justification and calculations
Overall Result			PASS

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

All tests were performed by Scott Drysdale.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203 (RSS 210 section 5.5), this device uses a PCB trace antenna with no provision for replacement.

For the Restricted Bands of operation, the EUT is designed to only operate between 2.4 GHz and 2.4835 GHz

For the Antenna gain, this device has a PCB trace antenna with less than 6 dBi gain.

For the Power Spectral Density requirement, this device was measured as having a peak power output significantly less than the 8 dBm requirement (-4 dBm) when measured using a resolution bandwidth much wider than 3 kHz and as was deemed to meet this requirement.

For maximum permissible exposure, this device operates at less than 1 Watt at 2.4 GHz and 2.4835 MHz and is designed to operate greater than 20 cm from personnel during normal operation. No testing is required, however worst case calculated exposure compliance follows later in this report.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Applicable Standards, Specifications and Methods

ANSI C63.4:2003 - Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

CFR 47 FCC 15 - Code of Federal Regulations – Radio Frequency Devices

CISPR 22:1997 - Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement

ICES-003:2004 - Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard

ISO 17025:2005 - General Requirements for the competence of testing and calibration laboratories

RSS 210:2007 - Issue 7: Spectrum Management and Telecommunications Policy. Radio Standards Specification Low Power Licence-Exempt Radiocommunication Devices

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Sample calculation(s)

Margin = limit – (received signal + antenna factor + cable loss – pre-amp gain)

Margin = 50.5dBuV/m – (50dBuV + 10dB + 2.5dB – 20dB)

Margin = 8.5 dB

Document Revision Status

Revision 1 - First Revision

Revision 2 - Data/references added as per TCB request.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Definitions and Acronyms

The following definitions and acronyms are applicable in this report.
See also ANSI C63.14.

AE – Auxillary Equipment.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility

EMI – Electro-Magnetic Immunity

EUT – Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR – No Calibration Required

RF – Radio Frequency

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog, and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The measurement site used is registered with Federal Communications Commission (FCC) and Industry Canada (IC). This site is calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 “Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz”. The semi-anechoic chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing –

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
May 5-28	All	SD	20-25°C	30-65%	100 -103kPa

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Detailed Test Results Section

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

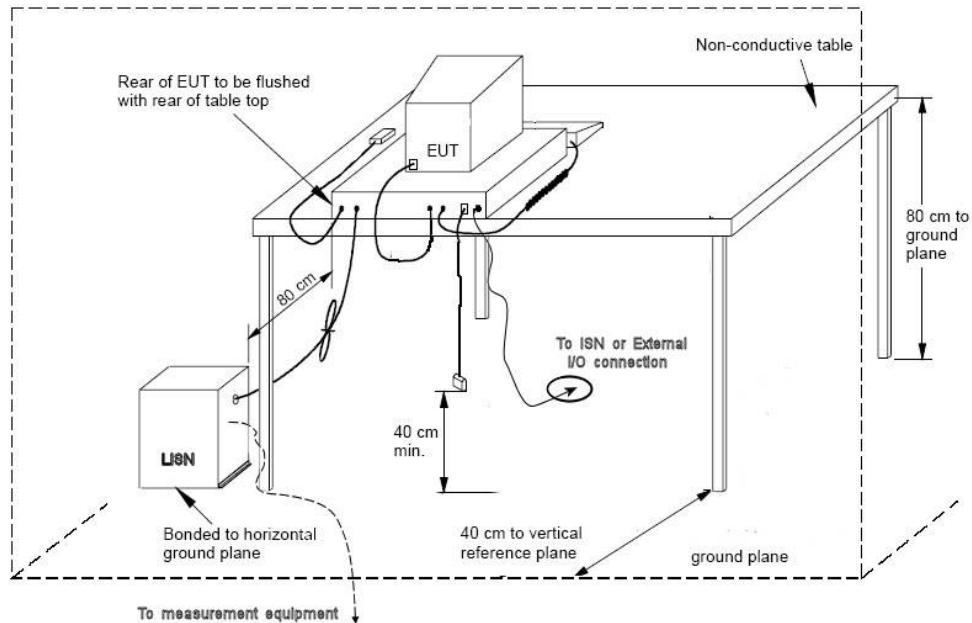
Limits & Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.207

Method is as defined in ANSI C64:2003

Average Limits		QuasiPeak Limits	
150 kHz – 500 kHz	56 to 46 dBuV	150 kHz – 500 kHz	66 to 56 dBuV
500 kHz – 5 MHz	46 dBuV	500 kHz – 5 MHz	56 dBuV
5 MHz – 30 MHz	50 dBuV	500 kHz – 30 MHz	60 dBuV

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.


Note: If the Peak or Quasi Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

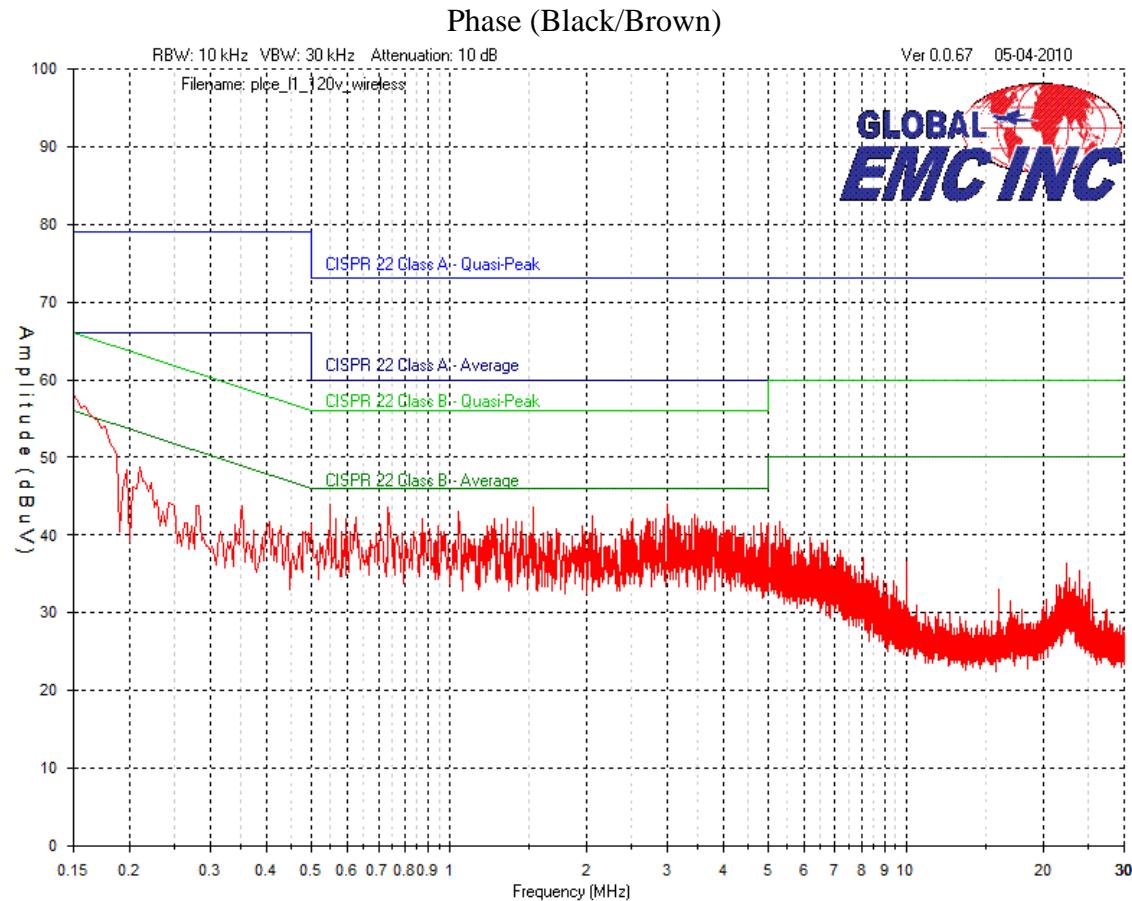
Both limits are applicable, and each is specified as being measured with a 9 kHz measurement bandwidth .

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

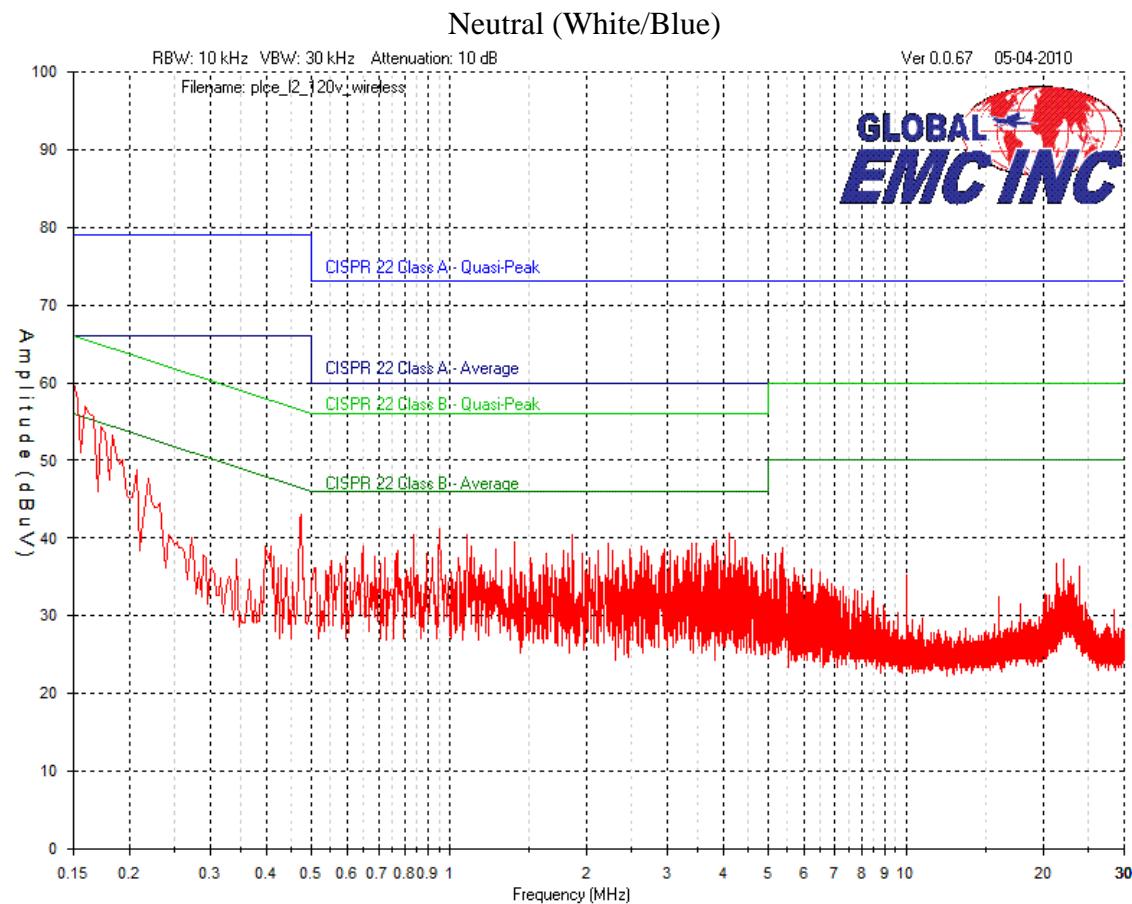
Typical Setup Diagram

Note: The vertical reference plane is optional as per ANSI C63.4 section 5.2.2

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-3.6 dB with a 'k=2' coverage factor and a 95% confidence level.


Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector where applicable, please refer to the table. The graph shown below is a peak measurement graph, measured with a resolution bandwidth greater than or equal to the final required detector. These graphs are performed as a worst case measurement to enable the detection of frequencies of concern and for considerable time savings.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Final Measurements

Line 1 – Phase (Black/Brown)

Frequency (MHz)	Raw (dBuV)	Atten Factor (dB)	LISN Factor (dB)	Level (dBuV)	Limit (dB)	Margin (dB)	Pass/Fail
0.15018	21	10	1.5	32.5	56	23.5	Pass
2.99095	15.1	10	0.2	25.3	46	20.7	Pass
0.56859	15.8	10	0.2	26	46	20	Pass
1.55229	14.5	10	0.2	24.7	46	21.3	Pass
0.72059	15.9	10	0.2	26.1	46	19.9	Pass
3.0145	15	10	0.2	25.2	46	20.8	Pass

Line 2 – Neutral (White/Blue)

Frequency (MHz)	Raw (dBuV)	Atten Factor (dB)	LISN Factor (dB)	Level (dBuV)	Limit (dB)	Margin (dB)	Pass/Fail
0.15021	16.8	10	1.5	28.3	56	27.7	Pass
0.16311	16.6	10	1.3	27.9	55.3	27.4	Pass
0.48796	9.7	10	0.2	19.9	46.2	26.3	Pass
0.95338	9.1	10	0.2	19.3	46	26.7	Pass
0.20893	17.7	10	0.9	28.6	53.2	24.6	Pass
4.08146	1	10	0.2	11.2	46	34.8	Pass

No peak emissions exceeded the quasi-peak limits, therefore the unit was deemed to meet the quasi-peak requirements based on the peak emissions. The tables above represent the peak emissions readings with respect to the average limit.

Note: See ‘Appendix B – EUT & Test Setup Photographs’ for photos showing the test set-up for the highest line conducted emission

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	12/29/2009	12/29/2011	GEMC 6350
LISN	FCC-LISN-50/250-16-2-01	FCC	2009-02-11	2011-02-11	GEMC 65
RF Cable 7m	LMR-400-7M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
Attenuator 10 dB	FP-50-10	Trilithic	NCR	NCR	GEMC 42

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Spurious Radiated Emissions / 20 dBc Requirement

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s) and Method

The method is as defined in ANSI C63.4:2003.

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions (including band edge) must also meet the requirements of -20 dBc or greater

30 MHZ – 88 MHz, 100 uV/m (40.0 dBuV/m¹) at 3 m

88 MHz – 216 MHz, 150 uV/m (43.5 dBuV/m¹) at 3 m

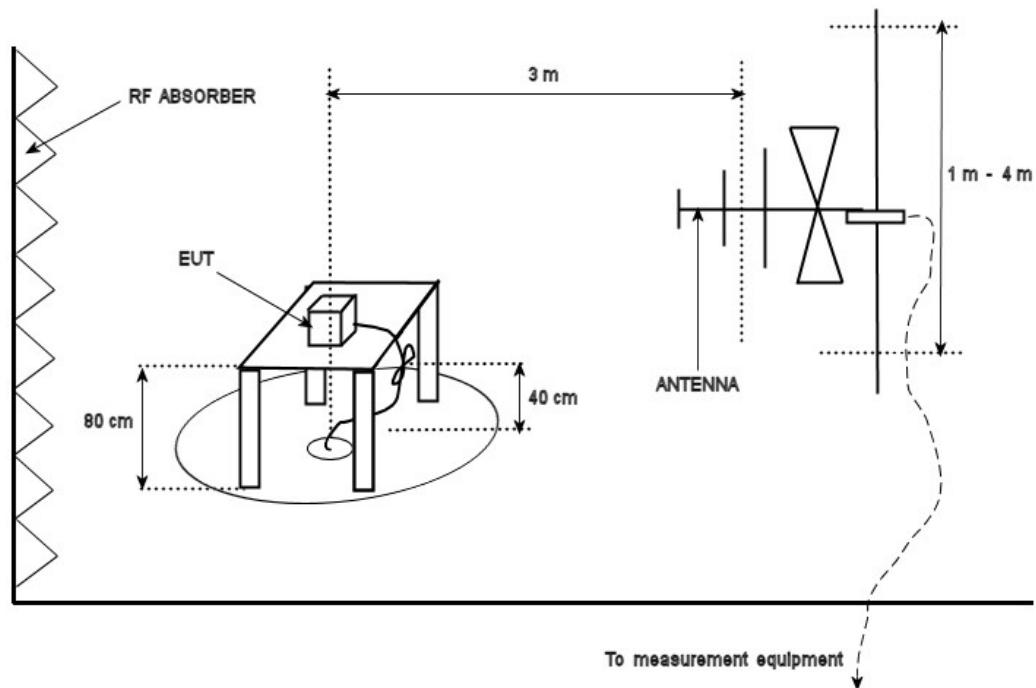
216 MHz – 960 MHz, 200 uV/m (46.4 dBuV/m¹) at 3 m

Above 960 MHz, 500 uV/m (54.0 dBuV/m¹) at 3 m

Above 1000 MHz, 500 uV/m (54.0 dBuV/m²) at 3m

¹Limit is with 120 kHz measurement bandwidth and a using a Quasi Peak detector.

²Limit is with 1 MHz measurement bandwidth and using an Average detector, scanned in accordance with 15.33 to above the 10th harmonic (25 GHz).


Results

The EUT passed the limits. Low, middle and high band was measured. The worst case for each mode is presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band. The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

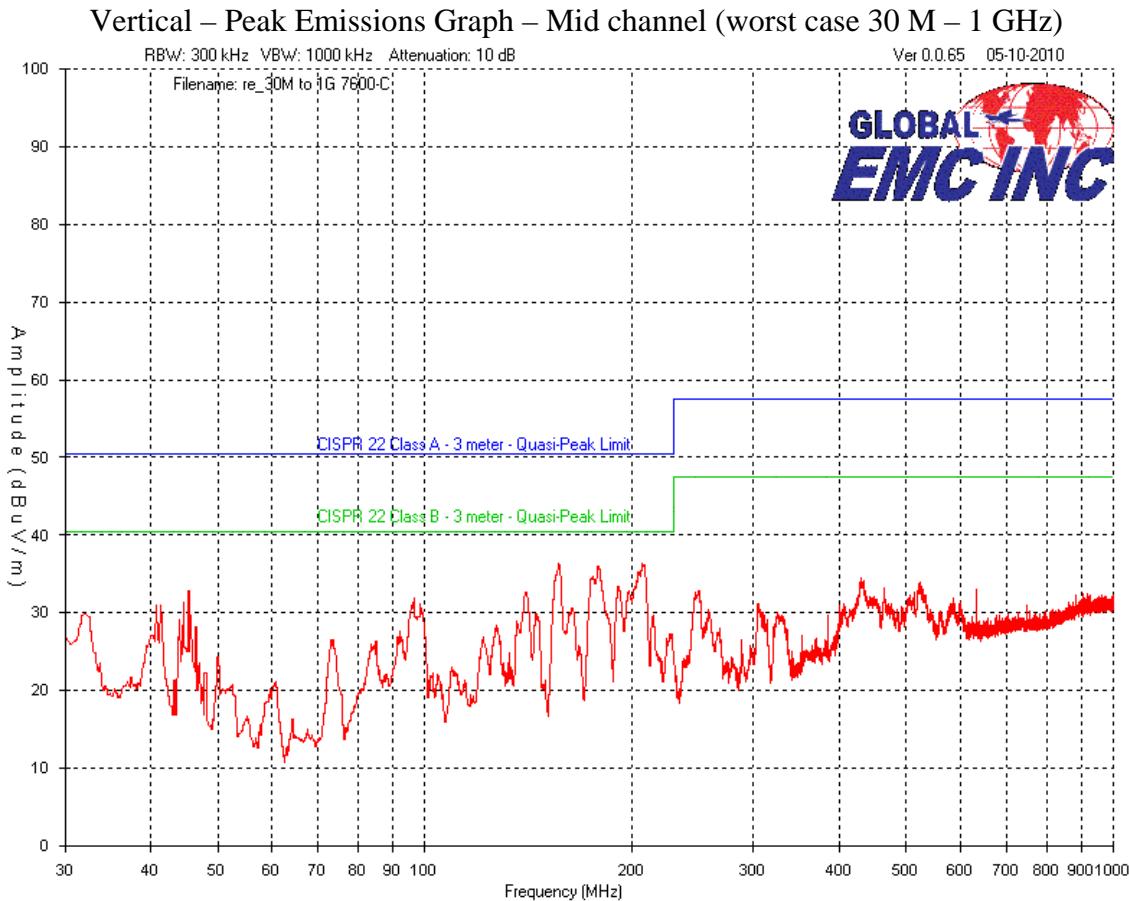
Typical Radiated Emissions Setup

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-4.4 dB with a 'k=2' coverage factor and a 95% confidence level.

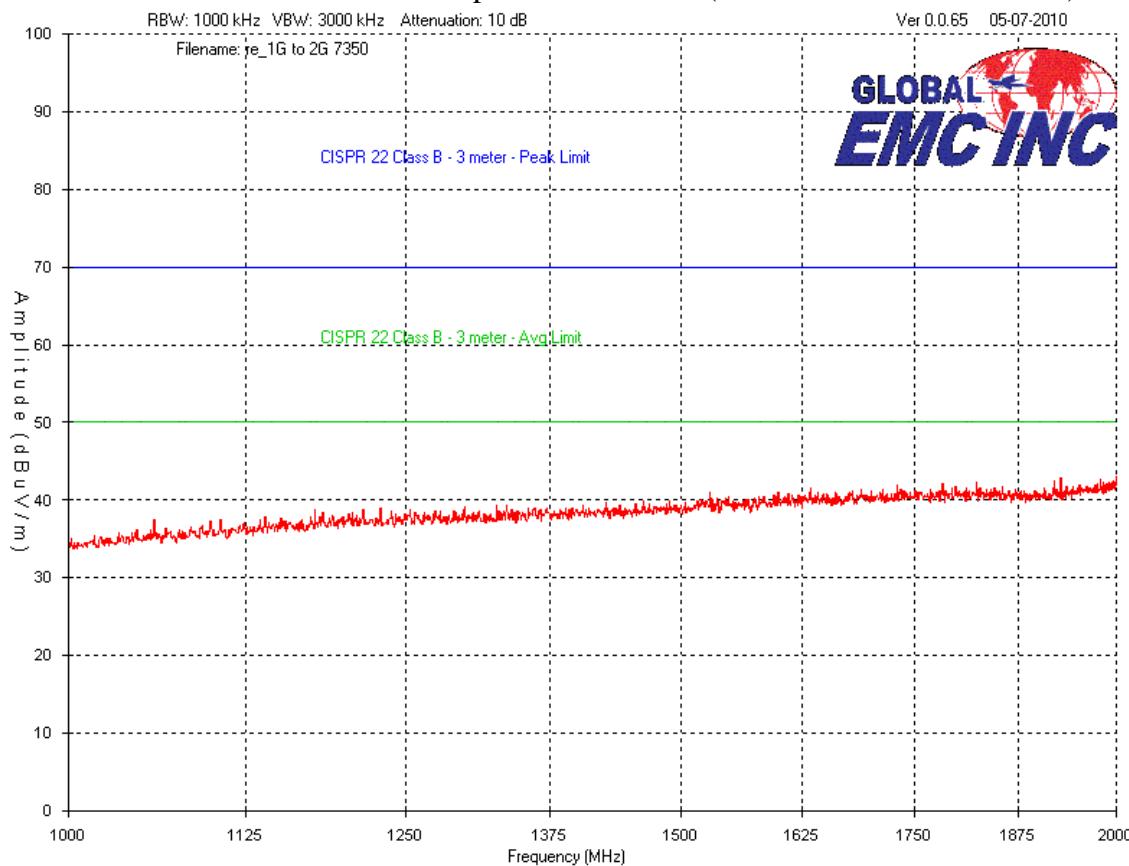
Preliminary Graphs


Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater than the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

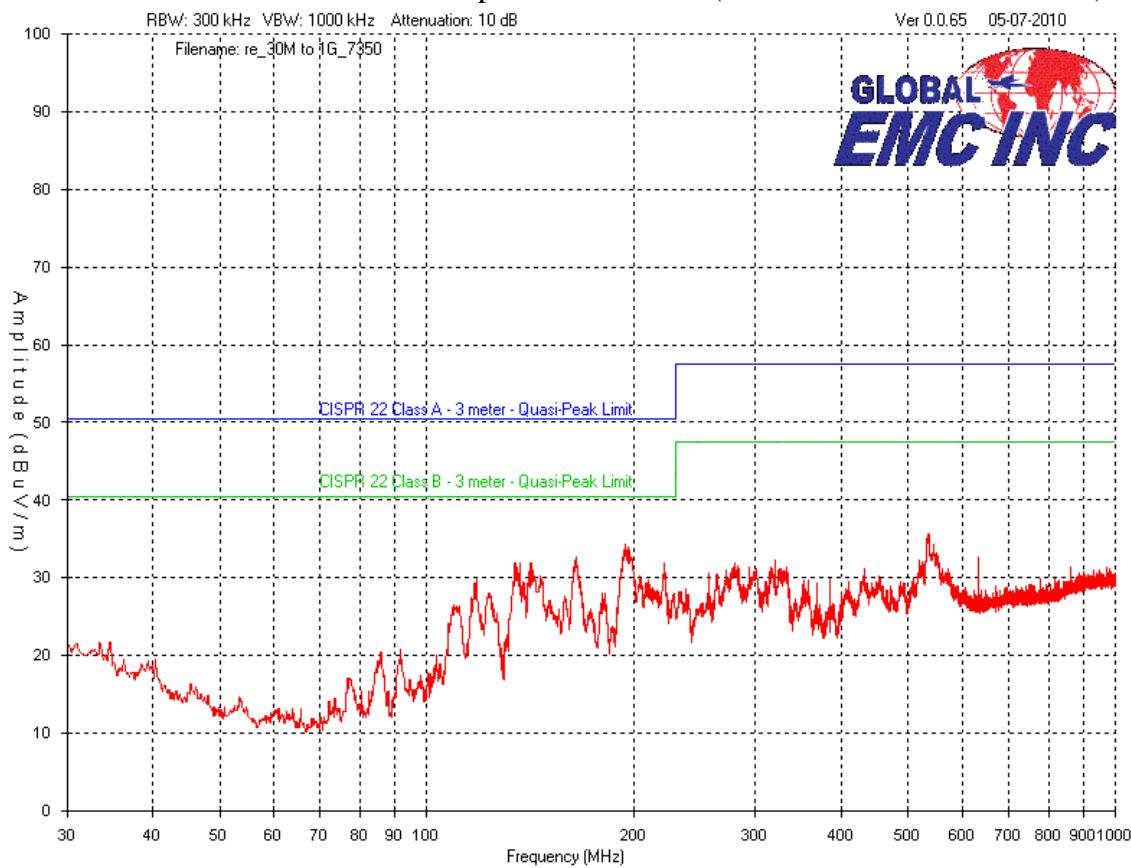
The worst case or representative mode graphs are shown for 30 MHz to 2 GHz, however the device was scanned at low, middle, and high channel.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to a minimum of a 25 GHz.

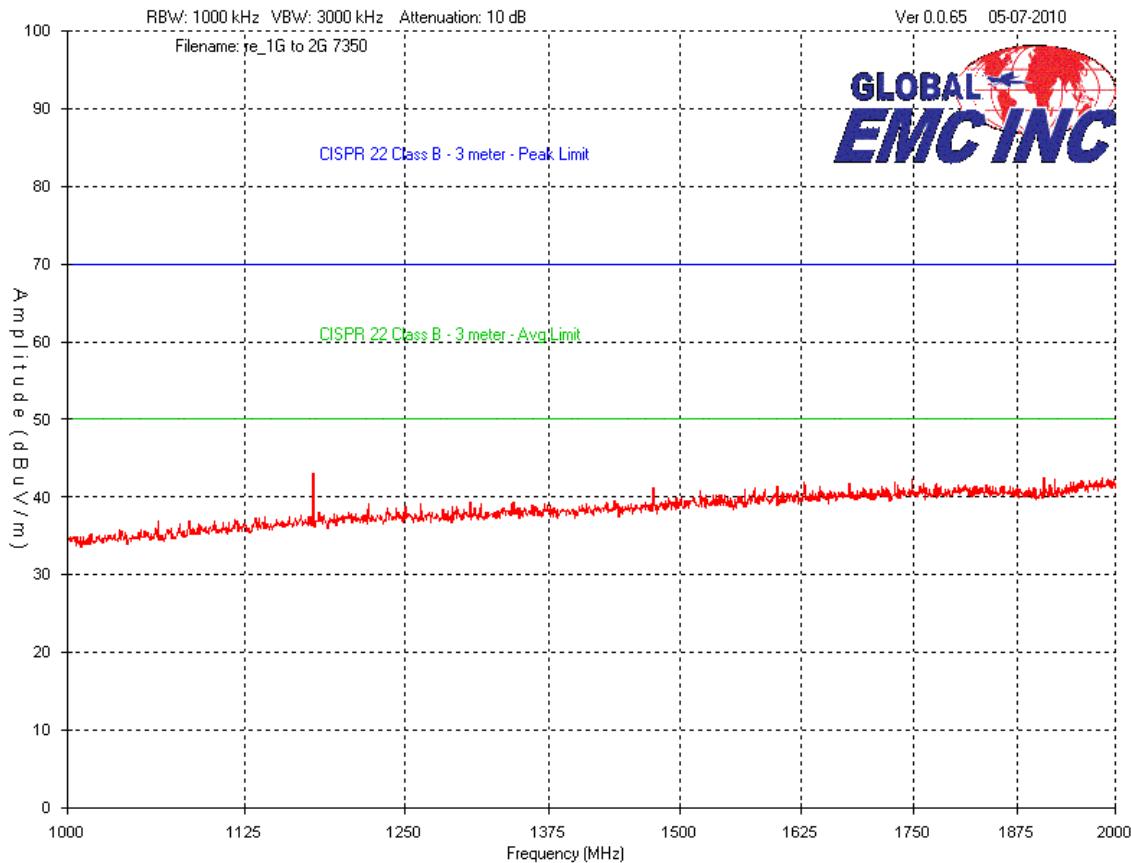
The graphs shown below shows the peak power output of the device during the radiated measurement at 300 kHz bandwidth during transmit operation of the EUT from 30 MHz – 1 GHz, since the RBW used is greater than the value required by the standard (100 kHz) this is a worst case reading and still complied with the limits. None of the spurious exceeded the 70.9 dbuV/m limit (-20dbc from max reading of 90.9 dbuV/m).


Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

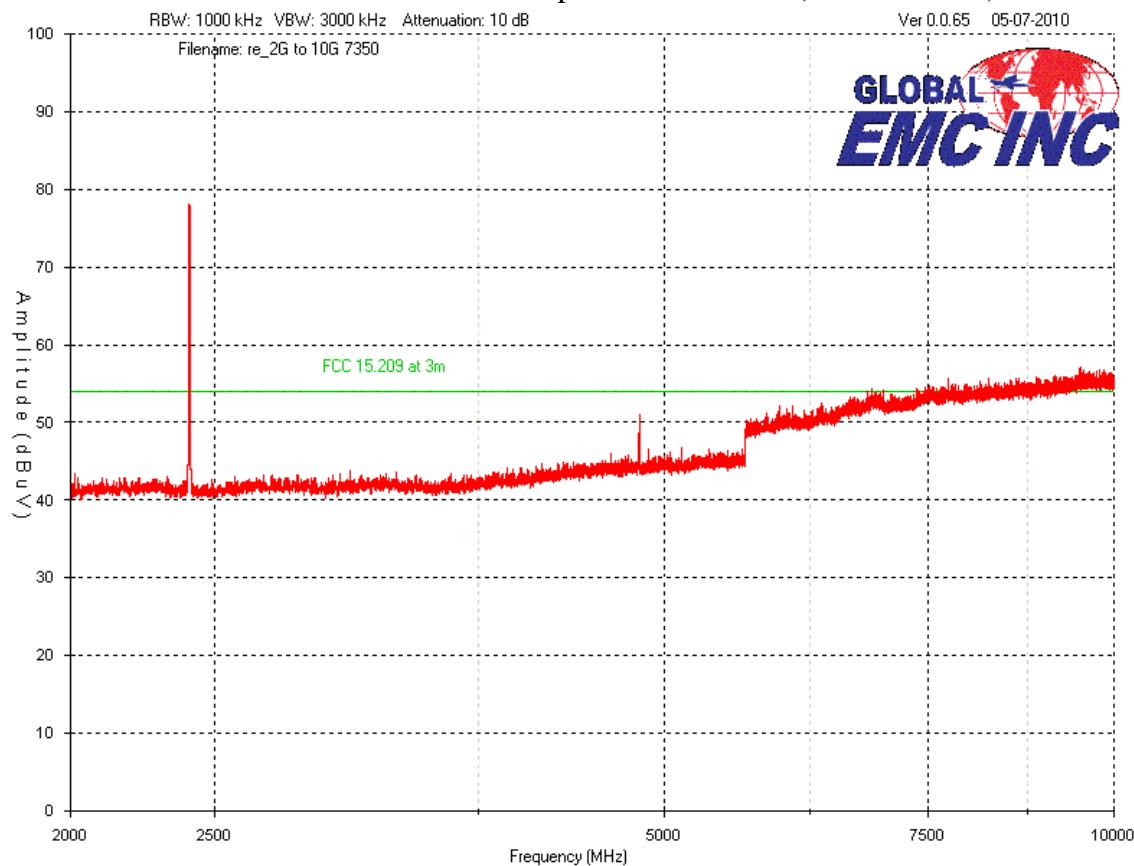
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Vertical – Peak Emissions Graph – Mid channel (worst case 1 GHz – 2 GHz)

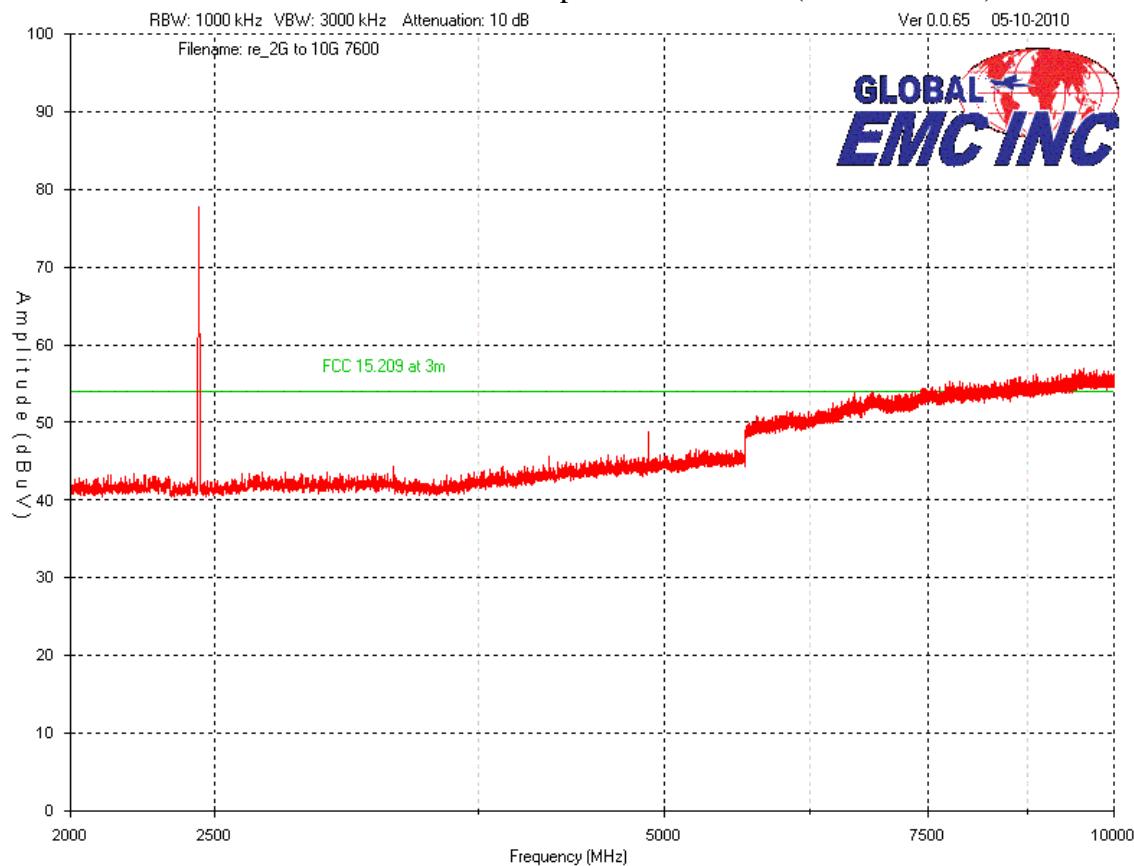
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Horizontal – Peak Emissions Graph – Mid channel (worst case 30 MHz to 1 GHz)

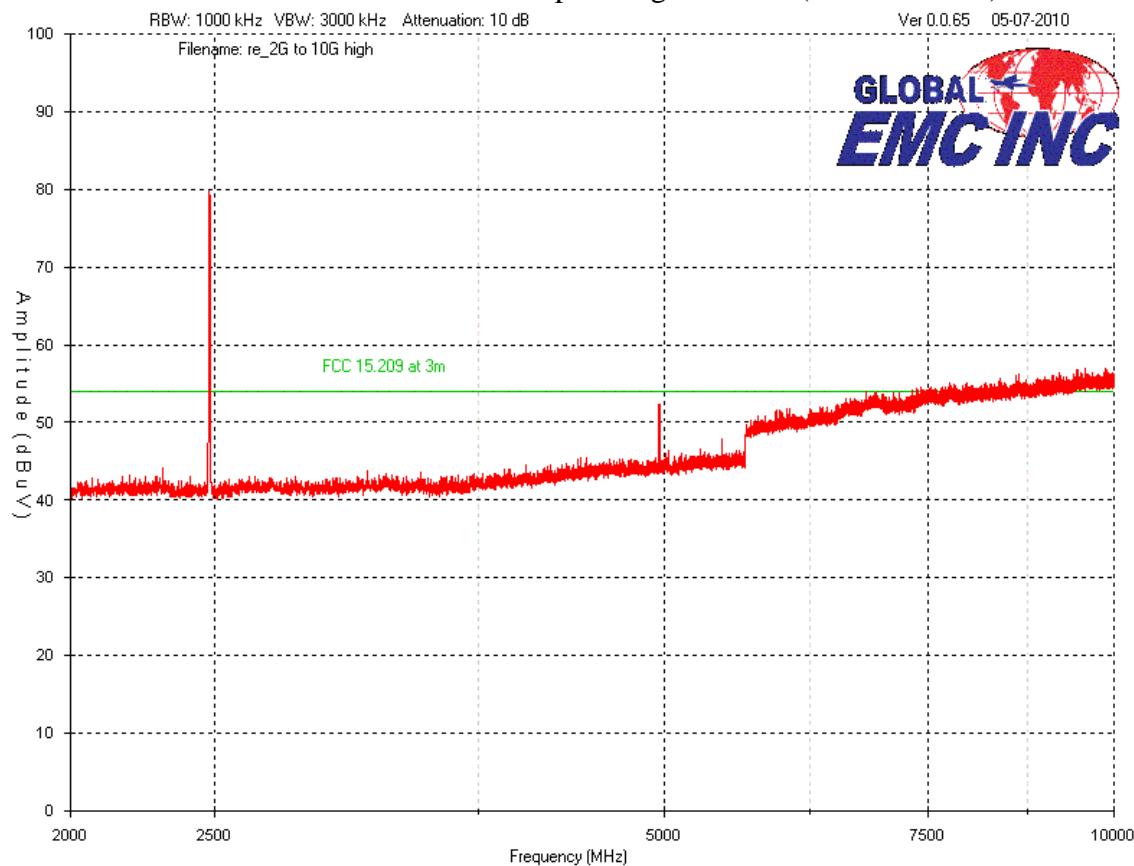
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Horizontal – Peak Emissions Graph – Mid channel (worst case 1 GHz to 2 GHz)

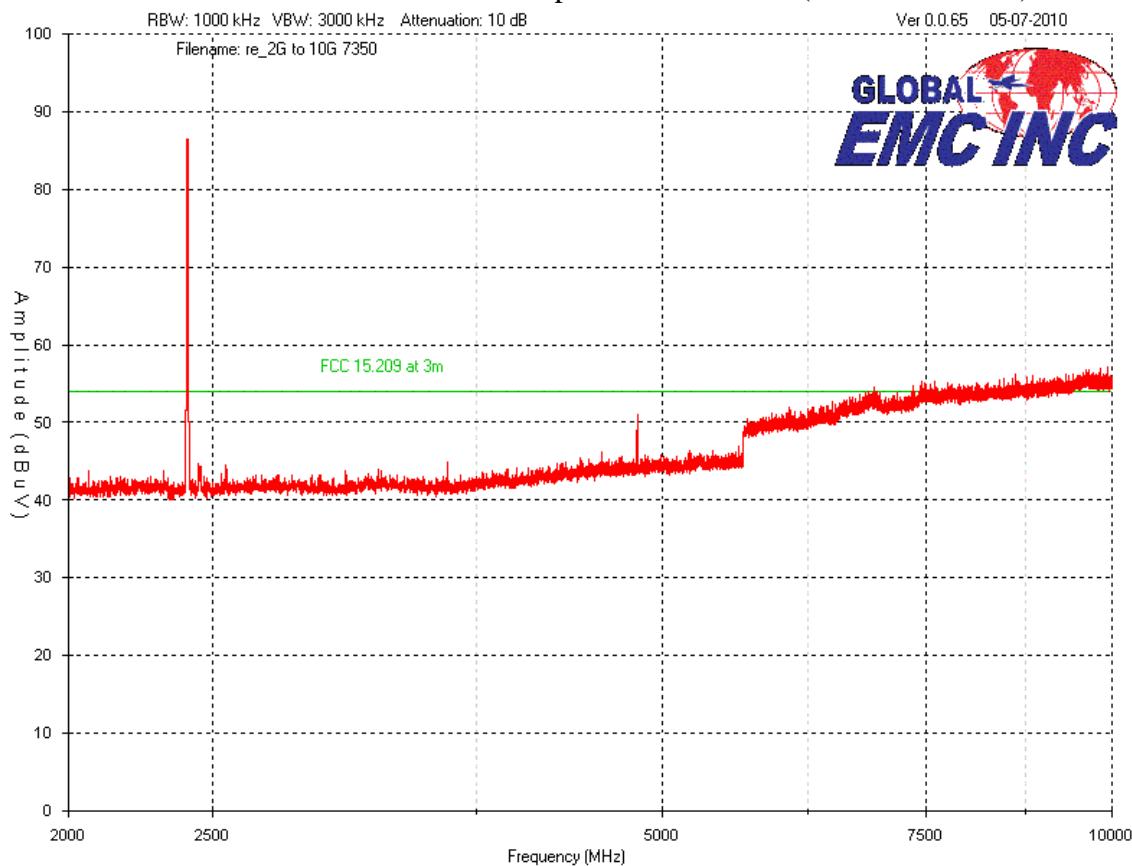
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Vertical – Peak Emissions Graph – Low channel (2G to 10 GHz)

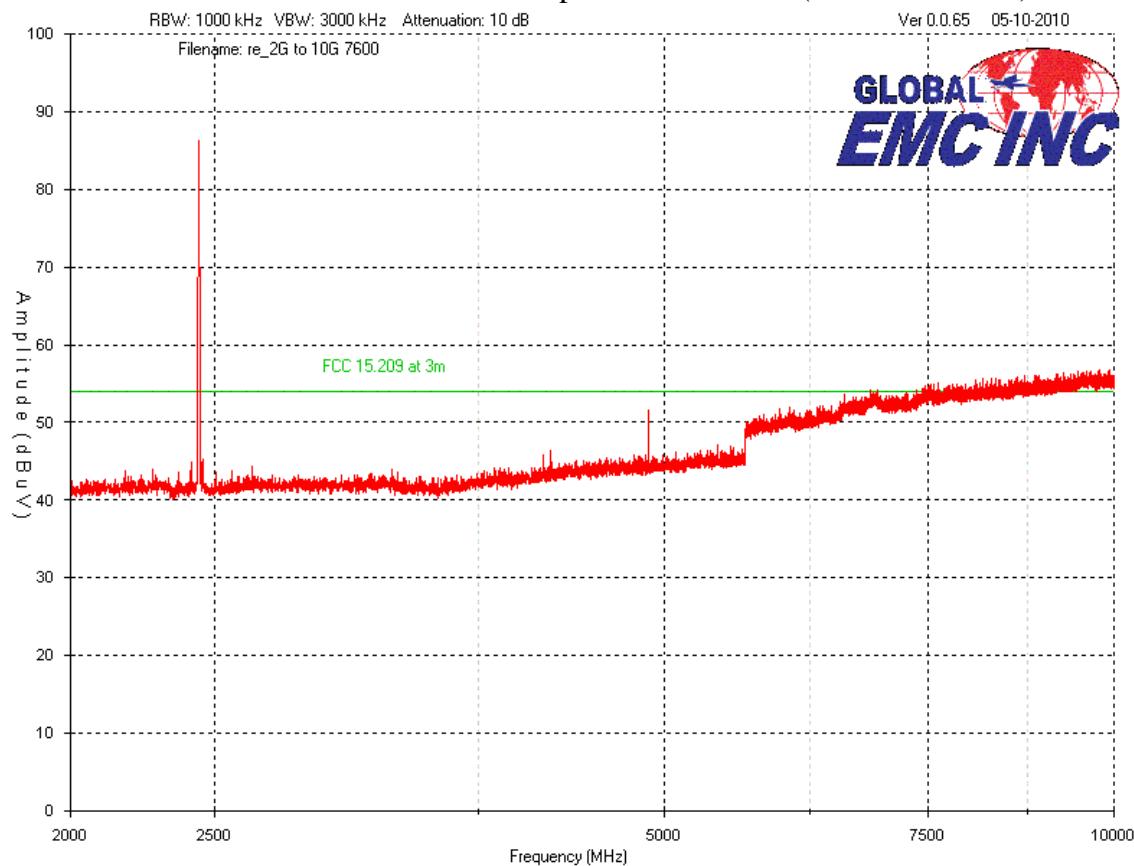
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Vertical – Peak Emissions Graph – Mid channel (2G to 10 GHz)

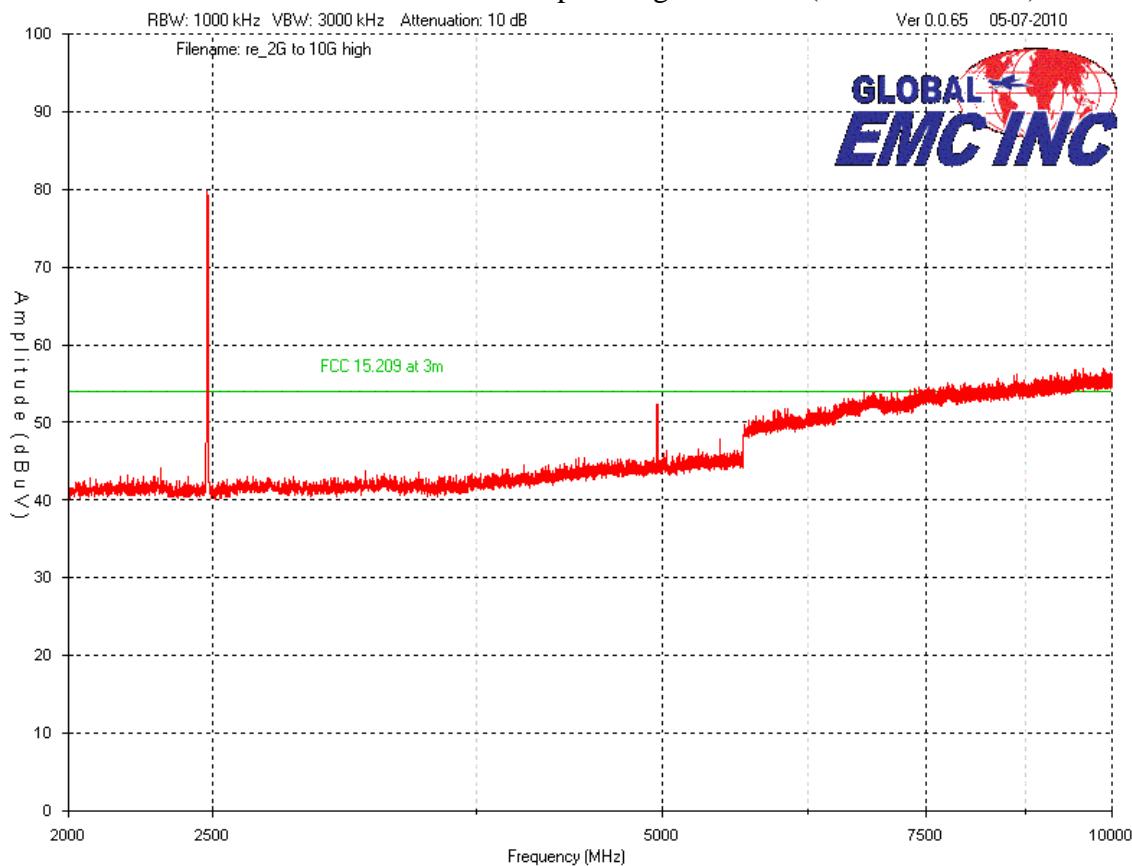
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Vertical – Peak Emissions Graph – High channel (2G to 10 GHz)

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Horizontal – Peak Emissions Graph – Low Channel (2GHz to 10GHz)

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Horizontal – Peak Emissions Graph – Mid Channel (2GHz to 10GHz)

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

'Horizontal – Peak Emissions Graph – High Channel (2GHz to 10GHz)

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Final Measurements

Note: In accordance with 15.247(d), only radiated emissions exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a quasi-peak detector or an average detector.

The frequency shown on the peak graph between does not fall within a restricted band as listed in FCC 15.205 and does not need to be verified.

For information purposes, the fundamental was measured to be 90.9 dBuV/m at 3 meters, and none of the unintentional radiated emissions that fall outside of the restricted bands exceeded the -20dBc (or 70.9 dBuV/m) requirement.

The following measurements were made at the harmonics shown in the above graphs.

Client	Viconics							
Product	VTR7355A5500W Terminal Equipment Controller							
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010							

Radiated Emissions Measurements

Test Freq. (MHz)	Detector.	Polh	Raw signal dB(µV)	Antenna factor dB	Cable loss dB + Preselecor	Attenuator dB	Pre-Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dB(µV)	Result
Low Channel											
2405	Peak	Horz	93.3	30.6	2.2	0.0	36.2	89.9			PASS
2405	Avg	Horz	90.6	30.6	2.2	0.0	36.2	87.2			PASS
2405	Peak	Vert	83.7	30.6	2.2	0.0	36.2	80.3			PASS
2405	Avg	Vert	81.4	30.6	2.2	0.0	36.2	78.0			PASS
2390	Peak	Horz	46.5	30.6	2.2	0.0	36.2	43.1	74.0	30.9	PASS
2390	Avg	Horz	34.1	30.6	2.2	0.0	36.2	30.7	54.0	23.3	PASS
2390	Peak	Vert	45.6	30.6	2.2	0.0	36.2	42.2	74.0	31.8	PASS
2390	Avg	Vert	33.4	30.6	2.2	0.0	36.2	30.0	54.0	24.0	PASS
4810	Peak	Horz	52.4	33.7	2.9	0.0	35.7	53.3	74.0	20.7	PASS
4810	Avg	Horz	42.2	33.7	2.9	0.0	35.7	43.1	54.0	10.9	PASS
4810	Peak	Vert	51.0	33.7	2.9	0.0	35.7	51.9	74.0	22.1	PASS
4810	Avg	Vert	40.4	33.7	2.9	0.0	35.7	41.3	54.0	12.7	PASS
7215	Peak	Vert	48.6	37.9	4.3	0.0	35.9	54.9	74.0	19.1	PASS
7215	Avg	Vert	35.2	37.9	4.3	0.0	35.9	41.5	54.0	12.5	PASS
7215	Peak	Horz	48.3	37.9	4.3	0.0	35.9	54.6	74.0	19.4	PASS
7215	Avg	Horz	34.1	37.9	4.3	0.0	35.9	40.4	54.0	13.6	PASS
2400	Peak	Horz	54.6	30.6	2.2	0.0	36.2	51.2	74.0	22.8	PASS
2400	Avg	Horz	42.0	30.6	2.2	0.0	36.2	38.6	54.0	15.4	PASS
2400	Peak	Vert	50.9	30.6	2.2	0.0	36.2	47.5	74.0	26.5	PASS
2400	Avg	Vert	37.4	30.6	2.2	0.0	36.2	34.0	54.0	20.0	PASS
9620	Peak	Horz	48.8	39.2	5.8	0.0	35.9	57.9	74.0	16.1	PASS
9620	Avg	Horz	34.9	39.2	5.8	0.0	35.9	44.0	74.0	30.0	PASS
9620	Peak	Vert	39.4	39.2	5.8	0.0	35.9	48.5	74.0	25.5	PASS
9620	Avg	Vert	34.5	39.2	5.8	0.0	35.9	43.6	54.0	10.4	PASS
Mid channel											
2445	Peak	Horz	92.4	30.6	2.2	0.0	36.2	89.0			PASS
2445	Avg	Horz	90.0	30.6	2.2	0.0	36.2	86.6			PASS
2445	Peak	Vert	83.3	30.6	2.2	0.0	36.2	79.9			PASS
2445	Avg	Vert	80.9	30.6	2.2	0.0	36.2	77.5			PASS
4890	Peak	Horz	50.6	33.7	2.9	0.0	35.7	51.5	74.0	22.5	PASS
4890	Avg	Horz	40.8	33.7	2.9	0.0	35.7	41.7	54.0	12.3	PASS
4890	Peak	Vert	53.2	33.7	2.9	0.0	35.7	54.1	74.0	19.9	PASS
4890	Avg	Vert	43.4	33.7	2.9	0.0	35.7	44.3	54.0	9.7	PASS
7335	Peak	Vert	48.4	37.9	4.3	0.0	35.9	54.7	74.0	19.3	PASS
7335	Avg	Vert	34.0	37.9	4.3	0.0	35.9	40.3	54.0	13.7	PASS

Client	Viconics									
Product	VTR7355A5500W Terminal Equipment Controller									
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010									

7335	Peak	Horz	48.7	37.9	4.3	0.0	35.9	55.0	74.0	19.0	PASS
7335	Avg	Horz	34.0	37.9	4.3	0.0	35.9	40.3	54.0	13.7	PASS
High channel 25											
2475	Peak	Horz	93.4	30.6	2.2	0.0	36.2	90.0			PASS
2475	Avg	Horz	88.7	30.6	2.2	0.0	36.2	85.3			PASS
2475	Peak	Vert	94.3	30.6	2.2	0.0	36.2	90.9			PASS
2475	Avg	Vert	90.0	30.6	2.2	0.0	36.2	86.6			PASS
2483.5	Peak	Horz	49.0	30.6	2.2	0.0	36.2	45.6	74.0	28.4	PASS
2483.5	Avg	Horz	33.6	30.6	2.2	0.0	36.2	30.2	54.0	23.8	PASS
2483.5	Peak	Vert	47.3	30.6	2.2	0.0	36.2	43.9	74.0	30.1	PASS
2483.5	Avg	Vert	33.0	30.6	2.2	0.0	36.2	29.6	54.0	24.4	PASS
4950	Peak	Horz	50.6	33.7	2.9	0.0	35.7	51.5	74.0	22.5	PASS
4950	Avg	Horz	40.3	33.7	2.9	0.0	35.7	41.2	54.0	12.8	PASS
4950	Peak	Vert	50.5	33.7	2.9	0.0	35.7	51.4	74.0	22.6	PASS
4950	Avg	Vert	39.8	33.7	2.9	0.0	35.7	40.7	54.0	13.3	PASS
7425	Peak	Vert	50.4	37.9	4.3	0.0	35.9	56.7	74.0	17.3	PASS
7425	Avg	Vert	39.0	37.9	4.3	0.0	35.9	45.3	54.0	8.7	PASS
7425	Peak	Horz	52.6	37.9	4.3	0.0	35.9	58.9	74.0	15.1	PASS
7425	Avg	Horz	44.1	37.9	4.3	0.0	35.9	50.4	54.0	3.6	PASS
High channel 226											
2480	Peak	Horz	90.8	30.6	2.2	0.0	36.2	87.4			PASS
2480	Avg	Horz	88.1	30.6	2.2	0.0	36.2	84.7			PASS
2480	Peak	Vert	77.8	30.6	2.2	0.0	36.2	74.4			PASS
2480	Avg	Vert	75.2	30.6	2.2	0.0	36.2	71.8			PASS
2483.5	Peak	Horz	67.1	30.6	2.2	0.0	36.2	63.7	74.0	10.3	PASS
2483.5	Avg	Horz	56.0	30.6	2.2	0.0	36.2	52.6	54.0	1.4	PASS
2483.5	Peak	Vert	55.1	30.6	2.2	0.0	36.2	51.7	74.0	22.3	PASS
2483.5	Avg	Vert	45.7	30.6	2.2	0.0	36.2	42.3	54.0	11.7	PASS
4960	Peak	Horz	50.1	33.7	2.9	0.0	35.7	51.0	74.0	23.0	PASS
4960	Avg	Horz	40.3	33.7	2.9	0.0	35.7	41.2	54.0	12.8	PASS
4960	Peak	Vert	51.0	33.7	2.9	0.0	35.7	51.9	74.0	22.1	PASS
4960	Avg	Vert	39.2	33.7	2.9	0.0	35.7	40.1	54.0	13.9	PASS
7440	Peak	Vert	48.7	37.9	4.3	0.0	35.9	55.0	74.0	19.0	PASS
7440	Avg	Vert	34.4	37.9	4.3	0.0	35.9	40.7	54.0	13.3	PASS
7440	Peak	Horz	48.9	37.9	4.3	0.0	35.9	55.2	74.0	18.8	PASS
7440	Avg	Horz	34.4	37.9	4.3	0.0	35.9	40.7	54.0	13.3	PASS

Note: No emissions above the 3rd harmonic were detected at 1 meter. The system noise floor at the 10th harmonic was approximately 12 dB at 1m. Note that the peak emissions without average measurement or duty cycle correction complied with the average limit requirements, therefore average measurements and duty cycle correction were not applied.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
BiLog Antenna	3142-C	ETS	2009-02-12	2011-02-12	GEMC 8
IFR Spectrum Analyzer	AN940	IFR	12/29/2009	12/29/2011	GEMC 6350
Horn Antenna	6878/24	Q-Par	8/25/2008	8/25/2010	GEMC 6365
1-26G pre-amp	HP 8449B	HP	8/25/2008	8/25/2010	GEMC 6351
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Schaffner Preamp 9kHz - 2 GHz	CPA9231A	Schaffner	8/26/2008	8/26/2010	116
Horn Antenna	SAS-572	AH	NCR	NCR	GEMC 6371
RF Cable 7m	LMR-400-7M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400-0.5M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev2.doc"

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Maximum Peak Envelope Conducted Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an excessive power level.

Limits

The limits are defined in FCC Part 15.247(b) and RSS 210.

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

Results

The EUT passed. The peak power measured was 400 uW. Since the EUT has a patch antenna and there was no provision to perform this measurement using the conducted power method, a radiated peak dbuV/m reading was captured and recorded. Vertical orientations of the antenna at 3m yielded the worst case readings

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Table(s)

The tables shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Band	Channel	Frequency (GHz)	Reading (dBuV/m)	Factor (dBuV/m to dBm for 3 m)	Output Power (dBm)
Low	1	2405	91.1	95.2	-4.1
Medium	11	2445	90.2	95.2	-5.0
High	25	2475	91.2	95.2	-4.0
High 2	26	2480	88.6	95.2	-6.6

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Factor Calculations

Where P is power in Watts, D is distance in meters and E is received field strength in uV/m

Represent the power density as

$$P_{Density} = \frac{P_{Trans}}{4 \cdot \pi \cdot D^2}$$

Then the electric field, in microvolts per meter, can be represented as

$$E = 1 \cdot 10^6 \sqrt{\frac{377 \cdot P_{Trans}}{4 \cdot \pi \cdot D^2}}$$

Now solve the equation to isolate transmitted power

$$P_{Trans} = \frac{4 \cdot \pi \cdot D^2}{377} \cdot \left(\frac{E}{1 \cdot 10^6}\right)^2$$

$$P_{Trans}(dBm) = 10 \cdot \log \left[\frac{4 \cdot \pi \cdot D^2}{377} \cdot \left(\frac{E}{1 \cdot 10^6}\right)^2 \right] + 30$$

Finally, this equation can be simplified to

$$P_{Trans}(dBm) = 20 \cdot \log(D \cdot E) - 104.7713$$

If the distance is three meters as is the case with many 47 CFR 15 specifications, the equation becomes

$$P_{Trans}(dBm) = 20 \cdot \log(E) - 95.2289$$

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	12/29/2009	12/29/2011	GEMC 6350
Horn Antenna	6878/24	Q-Par	8/25/2008	8/25/2010	GEMC 6365
1-26G pre-amp	HP 8449B	HP	8/25/2008	8/25/2010	GEMC 6351
RF Cable 1m	LMR-400-1M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Maximum Permissible Exposure

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined in FCC 15.247(i), and FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limit for the frequency range of 1.5 GHz to 100 GHz was applied. This is a limit of 1.0 mW/cm^2 The distance used for calculations was 1 cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Results

The EUT passed the requirements. The worst case calculated power density was 0.063 mW/cm², this is significantly under the 1.0 mW/cm² requirement.

Calculations

Method 1 (conducted power)

$$P_d = (P_t * G) / (4 * \pi * R^2)$$

Where Pt = -4 dBm or 0.4 mW as per Peak power conducted output calculated from radiated emissions

Where G = 2 dBi, or numerically 1.6

Where R = 1 cm

$$P_d = (0.4 \text{ mW} * 2) / (4 * \pi * 1 \text{ cm}^2)$$

$$P_d = 0.8 \text{ mW} / 12.6 \text{ cm}^2$$

$$P_d = 0.063 \text{ mW/cm}^2$$

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

6dB Bandwidth of Digitally Modulated Systems

Purpose

The purpose of this test is to ensure that the bandwidth occupied exceeds a stated minimum. This helps ensure the utilization of the frequency allocation is sufficiently wide. This also helps prevent corruption of data by ensuring adequate data separation to distinguish the reception of the intended information.

Limits

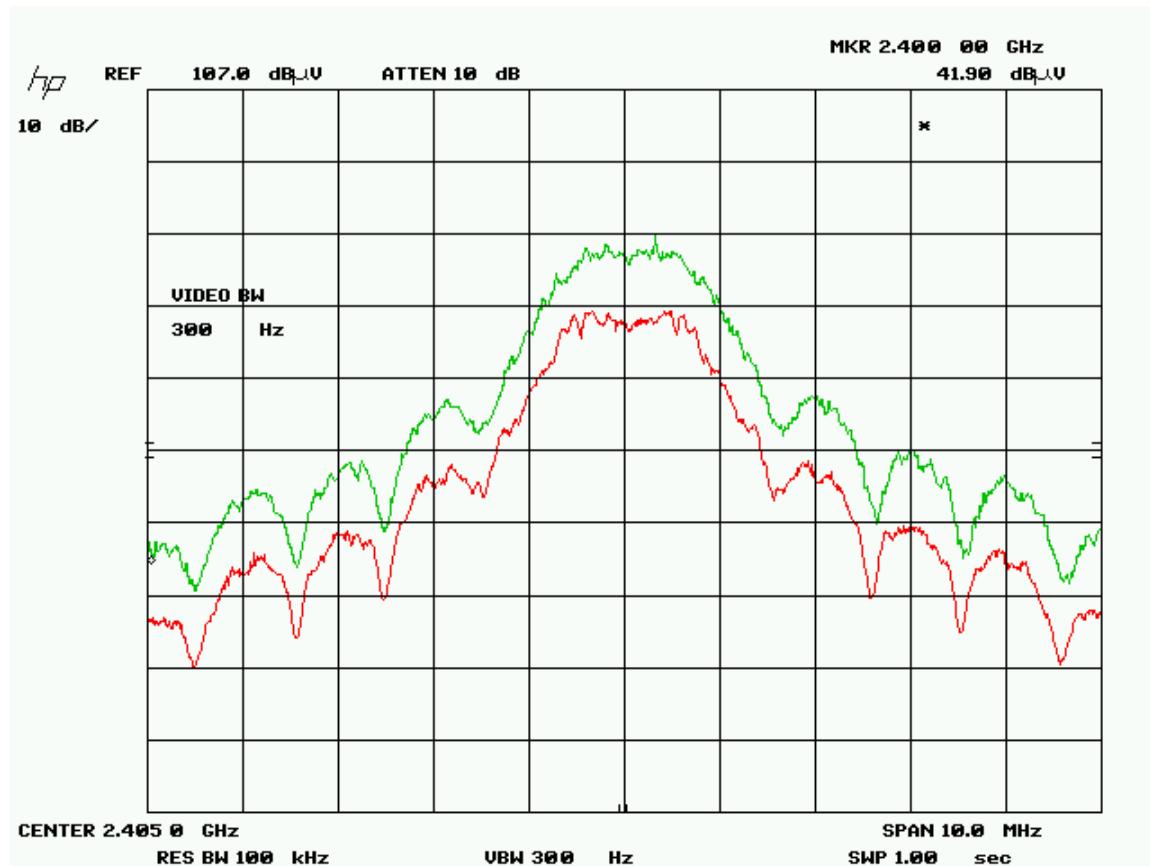
The Limit is as specified in FCC Part 15 and RSS 210.

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. This should be measured with a 100 kHz RBW and a 300 kHz VBW.

Results

The EUT passed. The 6 dB BW measured was 1.63 MHz

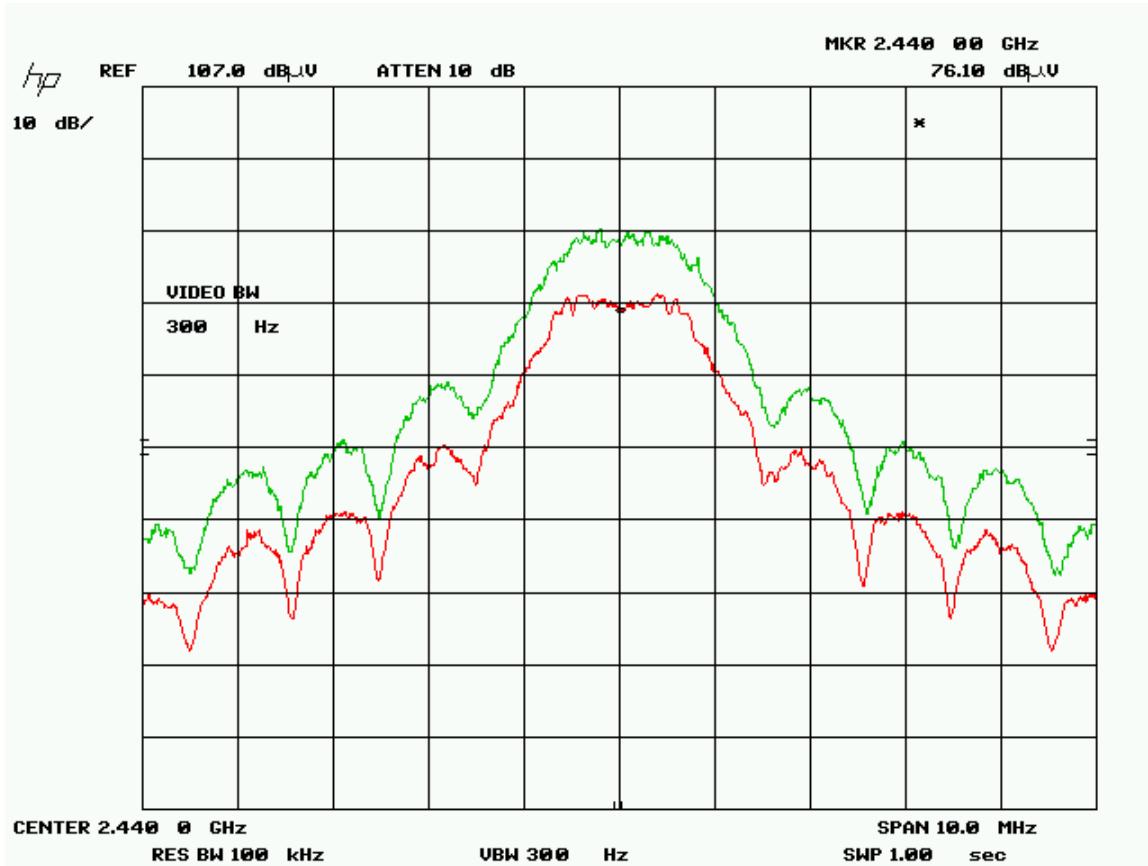
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Graph(s)

The graphs shown below shows the channel spacing during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the 6 dB bandwidth of a channel during operation of the EUT. This measurement is a peak measurement. Max hold is performed for a duration of not less then 1 minute.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

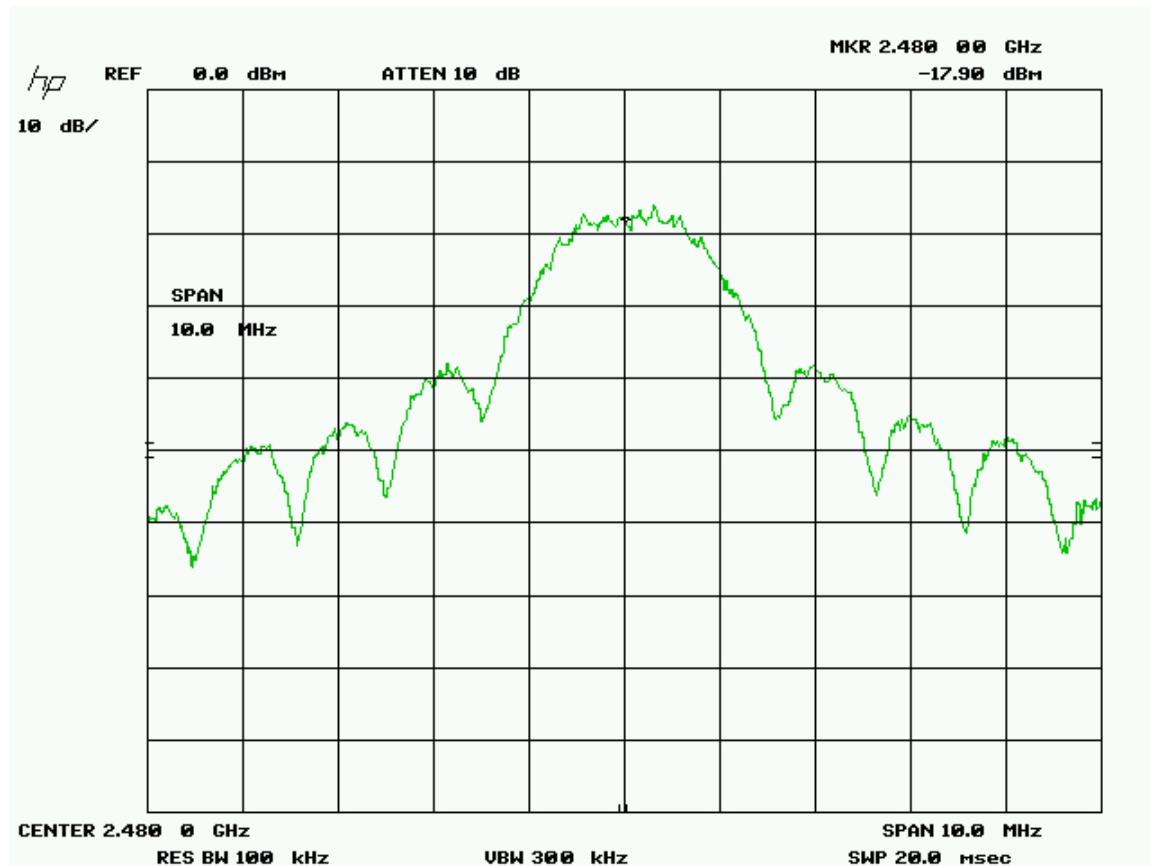
Low Channel


6 dB BW = 1.62 MHz

20 dB BW = 2.4 MHz

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Mid channel


6 dB BW = 1.62 MHz

20 dB BW = 2.4 MHz

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

High Channel

$$6 \text{ dB BW} = 1.63 \text{ MHz}$$

$$20 \text{ dB BW} = 2.4 \text{ MHz}$$

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Attenuator 20 dB	FP-50-20	Trilithic	NCR	NCR	GEMC 43
IFR Spectrum Analyzer	AN940	IFR	12/29/2009	12/29/2011	GEMC 6350
RF Cable 1m	LMR-400-1M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Power Spectral Density

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits

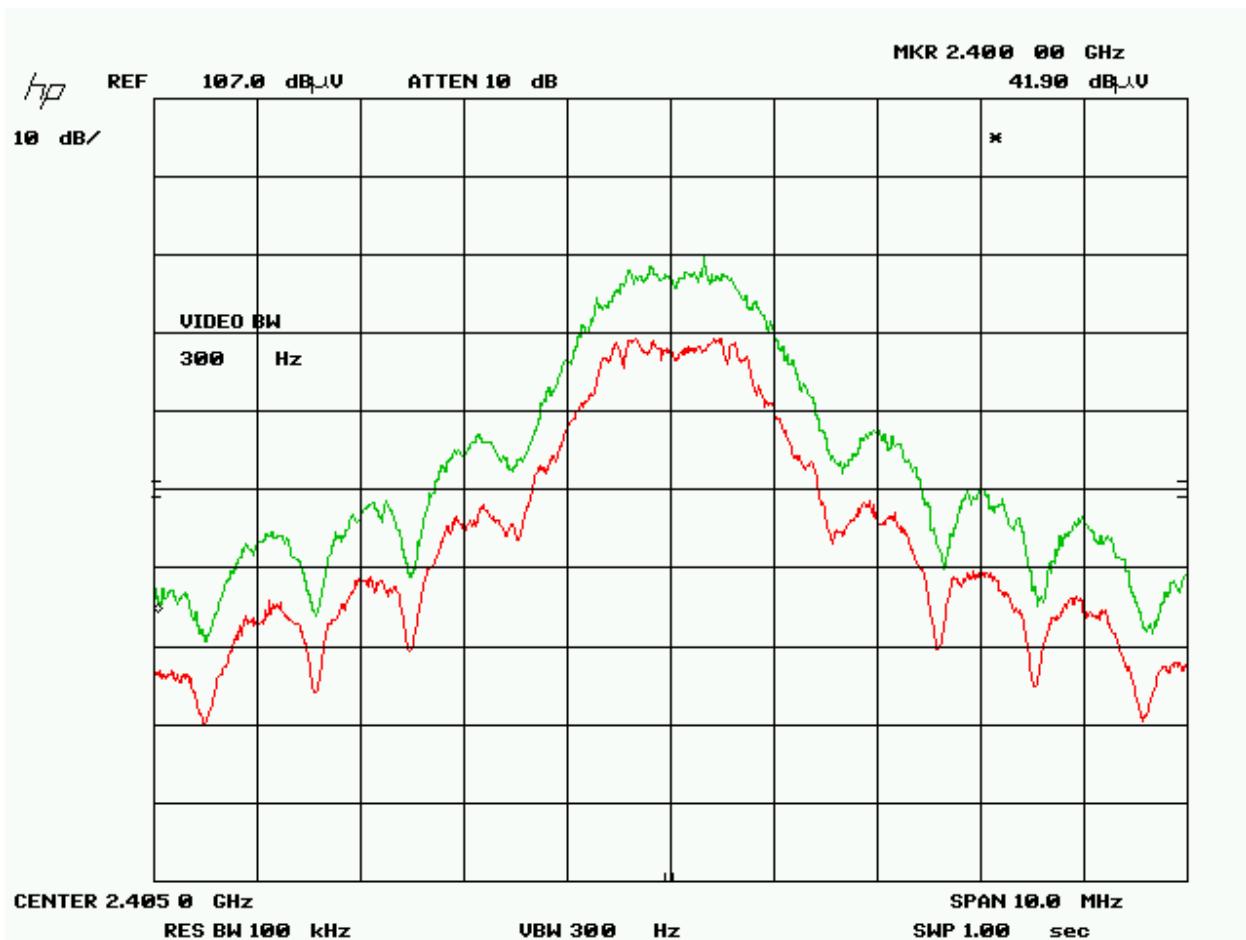
The limits are defined in 15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Results

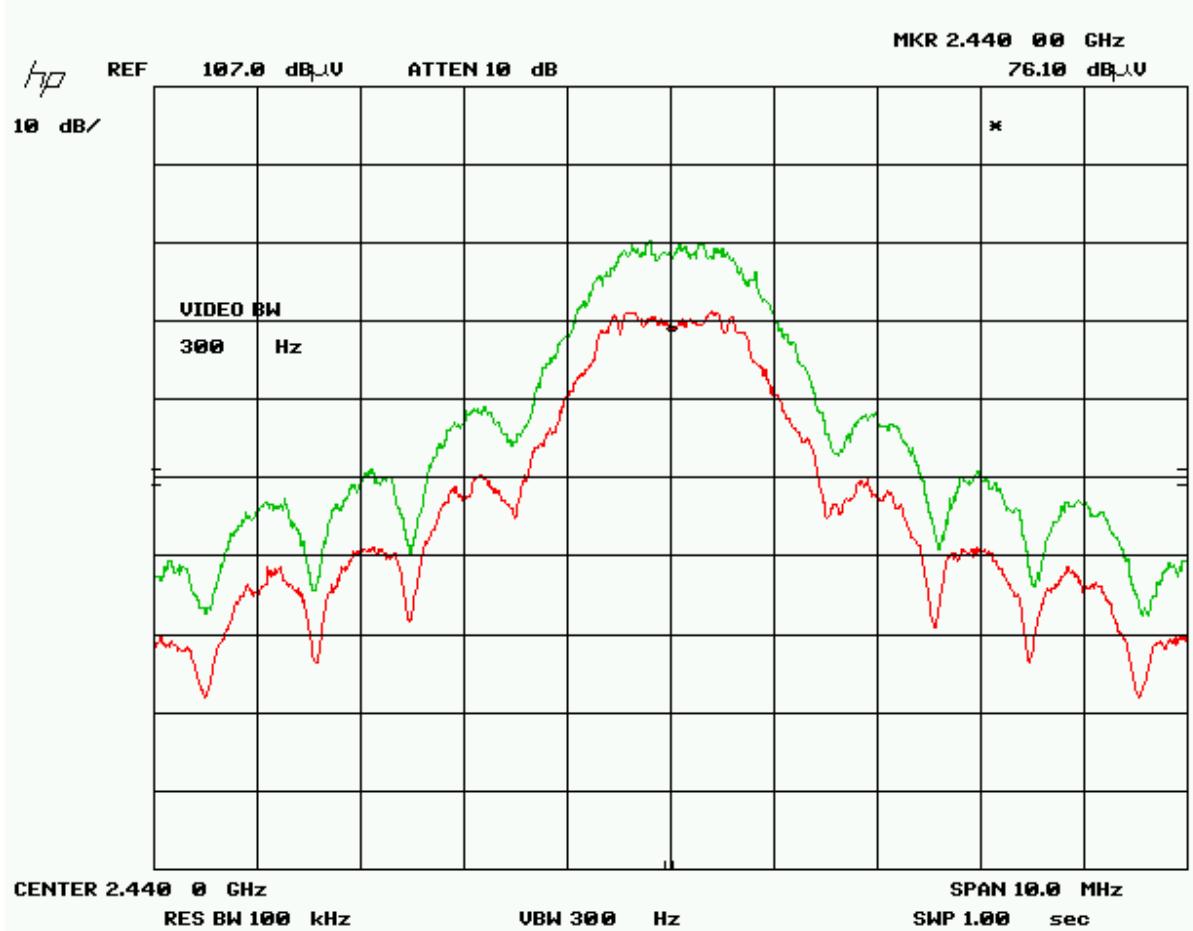
The EUT passed. Each mode was tested at low, medium, and high band. The worst case value is -5.2 dBm as measured with a worst case 100 kHz resolution bandwidth (peak power).

Test Frequency (MHz)	Detection mode (Q-Peak)	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB + Preselector	Attenuator dB	Pre-amp Gain dB	Received signal dB(µV/m)	Factor dB V to dBm	EiRP (dBm)	
2405	Peak	Horz	93.3	30.6	2.2	0.0	36.2	89.9	-95.2	-5.3	PASS
2445	Peak	Horz	92.4	30.6	2.2	0	36.2	89	-95.2	-6.2	PASS
2475	Peak	Horz	93.4	30.6	2.2	0	36.2	90	-95.2	-5.2	PASS

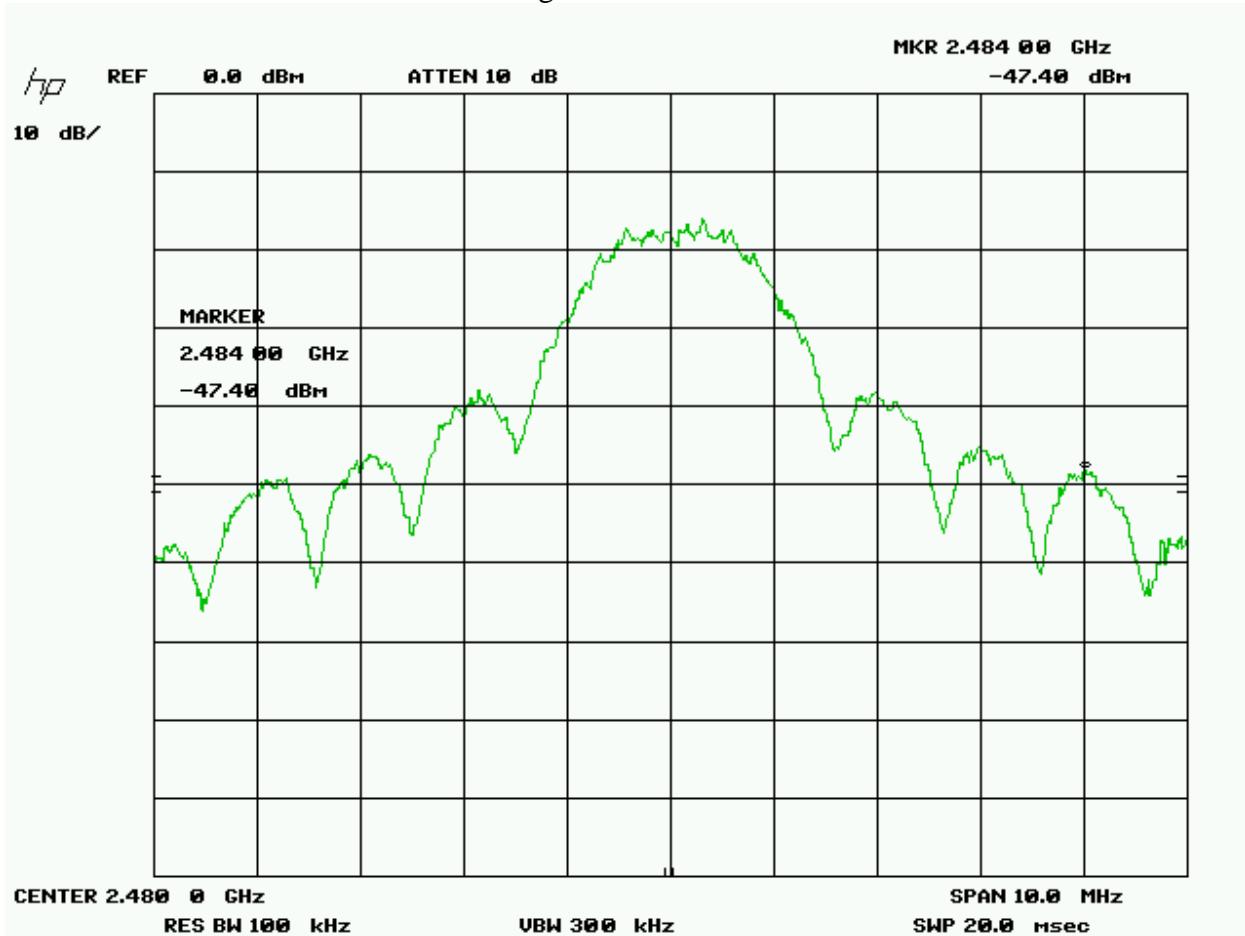

Graph(s)

The graphs shown below show the power spectral density of the device during the conducted measurement operation of the EUT. Low, middle, and high channel was investigated in each mode. Peak readings shown were taken with a 100 kHz Resolution using the radiated method and are raw readings. This is deemed to be worse than 3 kHz readings, which were deemed not technically necessary for the purpose of demonstrating compliance.

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Low channel

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Mid channel

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

High channel

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	Viconics	
Product	VTR7355A5500W Terminal Equipment Controller	
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010	

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	12/29/2009	12/29/2011	GEMC 6350
RF Cable 1m	LMR-400-1M-50OHM-MN-MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Appendix A – EUT Summary

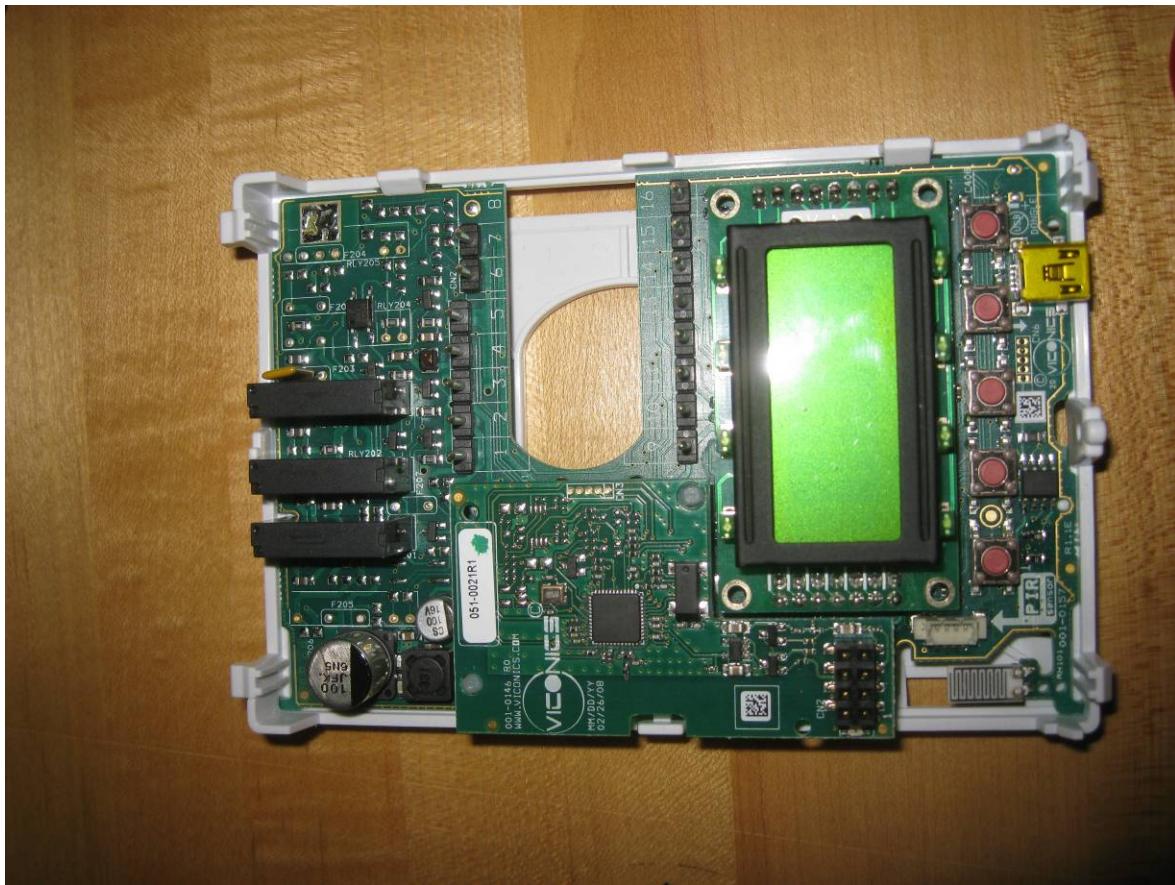
For further details for filing purposes, refer to filing package.

General EUT Description

Client Details	
Organization / Address	Viconics Electronics Inc. 9245 Langelier Blvd. Montreal, Quebec, Canada, H1P 3K9
Phone	514-321-5660
EUT (Equipment Under Test) Details	
EUT Name (for report title)	Terminal Equipment Controller
EUT Model / SN (if known)	VTR7355A5500W (with Zigbee module)
FCC ID	V95
Industry Canada #	7591A
Equipment category	HVAC Controller
EUT is powered using	DC
Input voltage range(s) (V)	6.5Vdc – 9Vdc
Frequency range(s) (Hz)	DC
Rated input current (A)	0.08A
Nominal power consumption (W)	0.3W
Number of power supplies in EUT	1
Transmits RF energy? (describe)	Yes
Basic EUT functionality description	Data terminal device which commands I/Os on relay pack device. Measures temperature and humidity.

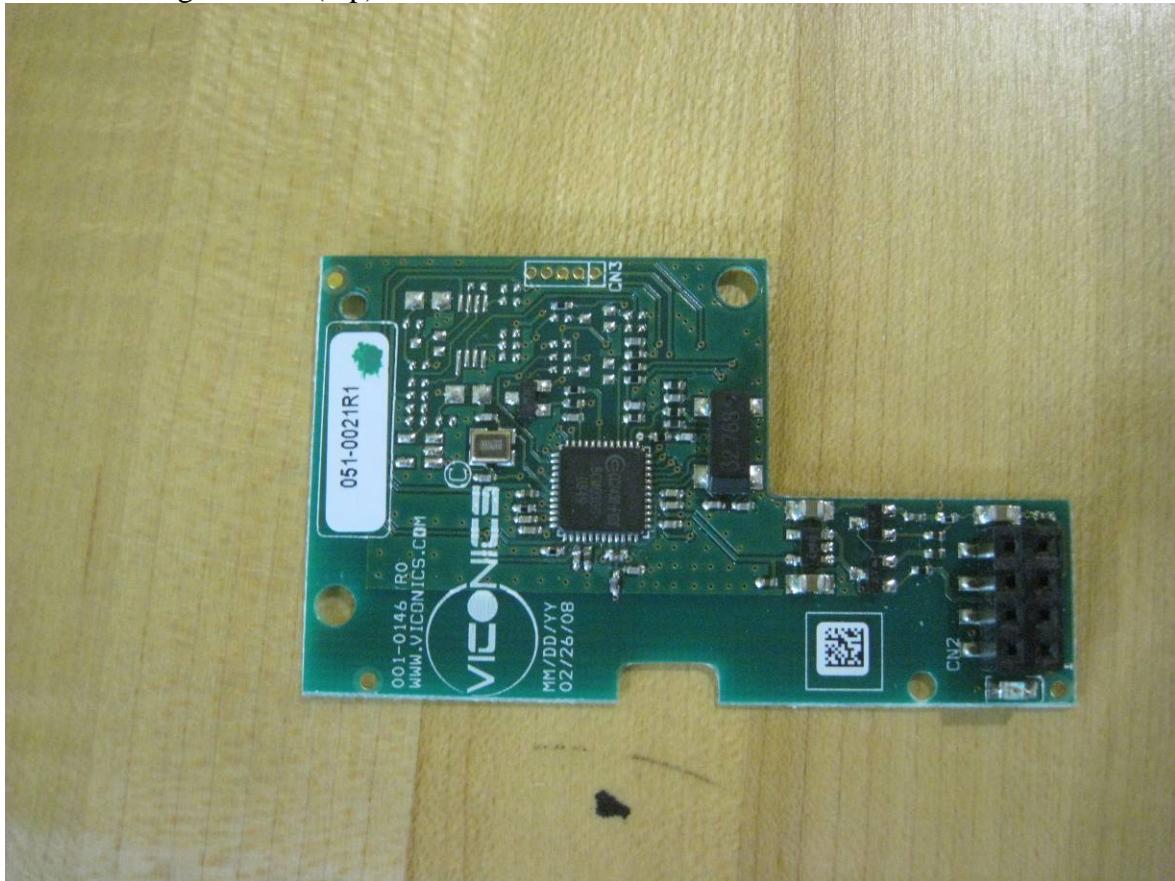
Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see ‘Appendix B – EUT & Test Setup Photographs’

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Appendix B – EUT and Test Setup Photographs

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Note: These photos are for information purposes only. Also refer to PDF files that are separate from this test report.


EUT

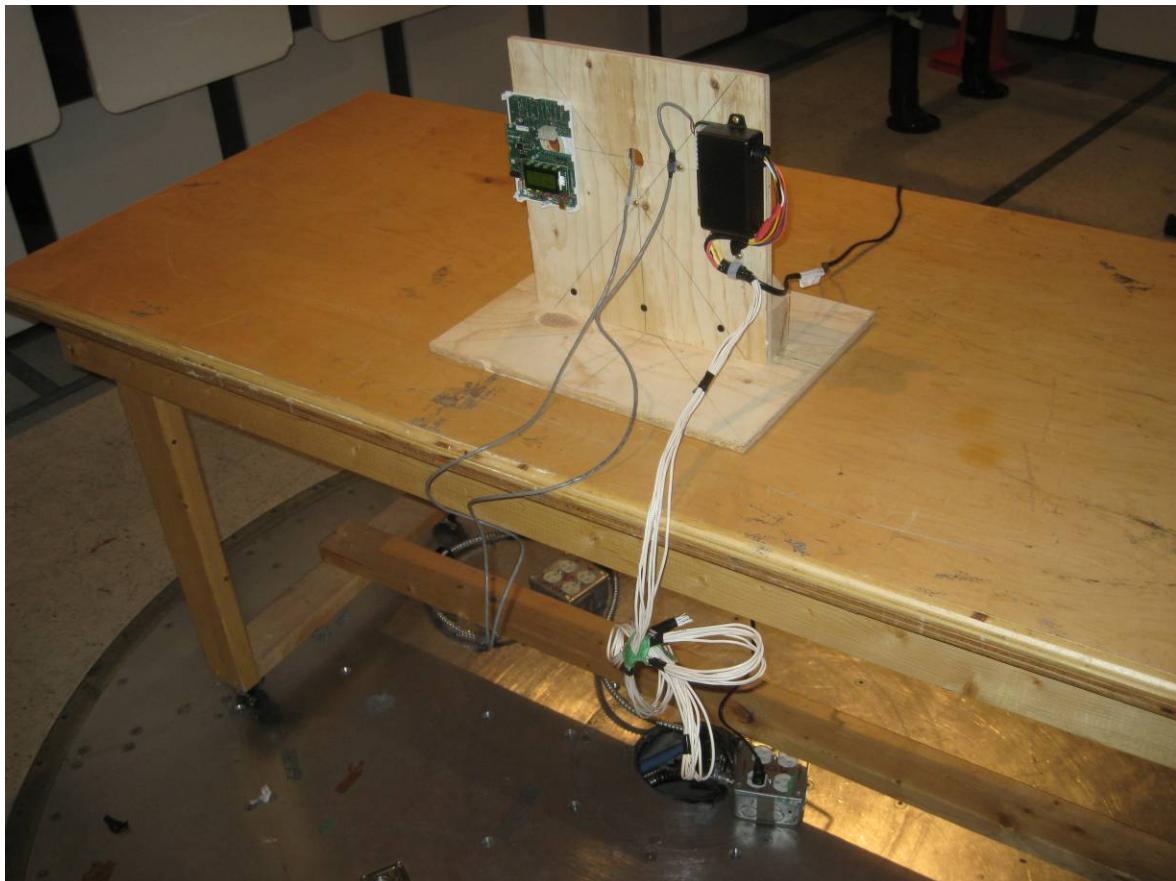
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Wireless DaughterCard (top)

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

GLOBAL
EMC INC

The logo for Global EMC Inc. features the words "GLOBAL" and "EMC INC" in blue, with a red globe icon containing a star and a lightning bolt in the background.


Wireless Daughtercard (bottom)

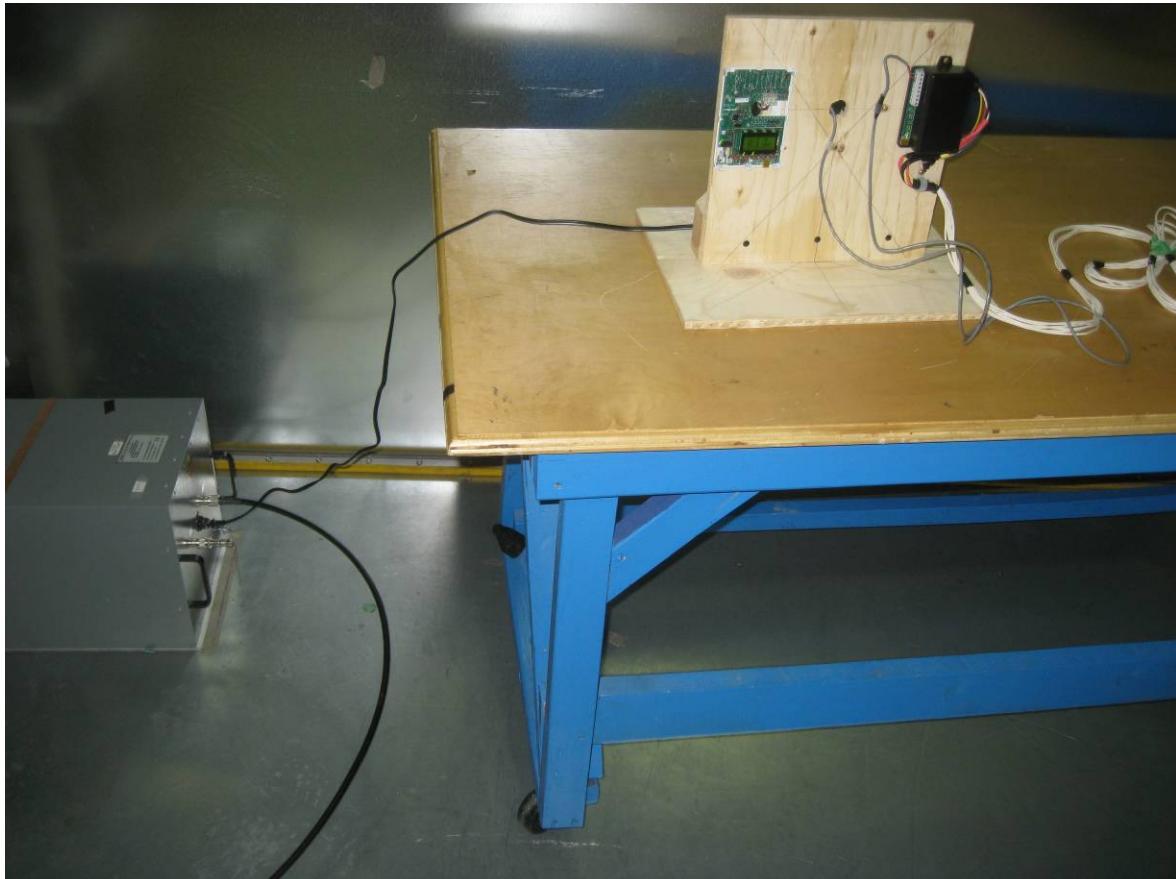
Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Radiated Emissions Photo 1

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Radiated Emissions Photo 2

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010


Radiated Emissions Photo 3

Client	Viconics
Product	VTR7355A5500W Terminal Equipment Controller
Standard(s)	RSS 210 Issue 7:2007 / FCC Part 15 Subpart C 15:2010

Power Line Conducted Emissions

