

FCC TEST REPORT (PART 27)

REPORT NO.: RF970425H03 MODEL NO.: PC200 RECEIVED: April 24, 2008 TESTED: April 24 to May 26, 2008 ISSUED: July 08, 2008

APPLICANT: Accton Wireless Broadband Corp.

ADDRESS: 3F, No. 1 Creation Rd. III, Science-based Industrial Park Hsinchu 30077, Taiwan, R.O.C.

ISSUED BY : Advance Data Technology Corporation

LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan.

This test report consists of 67 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	
3	GENERAL INFORMATION	
3.1	GENERAL DESCRIPTION OF EUT	
3.2	DESCRIPTION OF TEST MODES	8
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	11
3.4	DESCRIPTION OF SUPPORT UNITS	12
3.4.1	CONFIGURATION OF SYSTEM UNDER TEST	
4	TEST TYPES AND RESULTS	
4.1	OUTPUT POWER MEASUREMENT	13
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURES	
4.1.4	TEST SETUP	
4.1.5	EUT OPERATING CONDITIONS	
4.1.6	TEST RESULTS	
4.2	FREQUENCY STABILITY MEASUREMENT	23
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	23
4.2.2	TEST INSTRUMENTS	23
4.2.3	TEST PROCEDURE	24
4.2.4	TEST SETUP	24
4.2.5	TEST RESULTS	25
4.3	EMISSION BANDWIDTH MEASUREMENT	27
4.3.1	LIMITS OF EMISSION BANDWIDTH MEASUREMENT	27
4.3.2	TEST INSTRUMENTS	27
4.3.3	TEST SETUP	27
4.3.4	TEST PROCEDURES	27
4.3.5	TEST RESULTS	28
4.4	CHANNEL EDGE MEASUREMENT	32
4.4.1	LIMITS OF CHANNEL EDGE MEASUREMENT	32
4.4.2	TEST INSTRUMENTS	32
4.4.3	TEST SETUP	32
4.4.4	TEST PROCEDURES	33
4.4.5	EUT OPERATING CONDITION	33
4.4.6	TEST RESULTS	34
4.5	CONDUCTED SPURIOUS EMISSIONS	38
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	38

4.5.2	TEST INSTRUMENTS	
4.5.3	TEST PROCEDURE	
4.5.4	TEST SETUP	
4.5.5	EUT OPERATING CONDITIONS	
4.5.6	TEST RESULTS	40
4.6	RADIATED EMISSION MEASUREMENT (BELOW 1GHz)	52
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	52
4.6.2	TEST INSTRUMENTS	52
4.6.3	TEST PROCEDURES	53
4.6.4	DEVIATION FROM TEST STANDARD	53
4.6.5	TEST SETUP	54
4.6.6	EUT OPERATING CONDITIONS	
4.6.7	TEST RESULTS	55
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)	57
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	57
4.7.2	TEST INSTRUMENTS	
4.7.3	TEST PROCEDURES	58
4.7.4	DEVIATION FROM TEST STANDARD	58
4.7.5	TEST SETUP	59
4.7.6	EUT OPERATING CONDITIONS	
4.7.7	TEST RESULTS	60
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	67

CERTIFICATION 1

PRODUCT: WIMAX 802.16e Wave 2 PC Card BRAND NAME: AWB MODEL NO.: PC200 **APPLICANT:** Accton Wireless Broadband Corp. **TESTED:** April 24 to May 26, 2008 **TEST SAMPLE: R&D SAMPLE** TEST STANDARDS: FCC 47 CFR Part 2 FCC 47 CFR Part 27, Subpart C & M ANSI/TIA/EIA-603-C-2004

The above equipment (Model no.: PC200) has been tested by Advance Data Technology Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY :

unny Ven , DATE: July 08, 2008

TECHNICAL ACCEPTANCE Responsible for RF

, **DATE:** July 08. 2008

(Hank Chung, Deputy Manager)

APPROVED BY :

(May Cher, Deputy Manager)

. DATE: July 08, 2008

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 27 & Part 2							
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK					
2.1046 27.50(h)(2)	Maximum Peak Output Power Limit: max. 2 watts EIRP	PASS	Meet the requirement of limit.					
2.1055 27.54	Frequency Stability Stay with the authorized bands of operation	PASS	Meet the requirement of limit.					
2.1049 27.53(m)(6)	Emission Bandwidth	PASS	Meet the requirement of limit.					
2.1051 27.53(m)(4)(6)	Band Edge Measurements	PASS	Meet the requirement of limit.					
2.1051 27.53(m)(4)(6)	Conducted Spurious Emissions	PASS	Meet the requirement of limit.					
2.1053 27.53(m)(4)(6)	Radiated Spurious Emissions	PASS	Meet the requirement of limit.					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Radiated emissions (30MHz-1GHz)	3.94 dB
Radiated emissions (1GHz -18GHz)	2.33 dB
Radiated emissions (18GHz -40GHz)	2.55 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	WiMAX 802.16e Wave 2 PC Card
MODEL NO.	PC200
FCC ID	V8YFW638PC25000W
POWER SUPPLY	DC 3.3V from host equipment
MODULATION TECHNOLOGY	OFDMA
MODULATION	QPSK-1/2&-3/4, 16QAM-1/2&3/4, 64QAM-1/2&-2/3&-3/4&-5/6 (64QAM for Rx only)
FREQUENCY RANGE	2500MHz ~ 2690MHz
CHANNEL BANDWIDTH	5MHz&10MHz
MAX. EIRP POWER	24.28dBm
CONDUCTED POWER	22.28dBm
DATA CABLE	NA
I/O PORTS	NA
ASSOCIATED DEVICES	NA

NOTE:

1. The above EUT information was declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Three channels have been tested and presented.

CHANNEL BANDWIDTH: 5MHz&10MHz

Low channel (L): 2505MHz. Middle channel (M): 2600MHz. High channel (H): 2685MHz.

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT	APPLICABLE TO							DESCRIPTION
CONFIGURE MODE	OP	FS	EB	CE	CSE	RE<1G	RE≥1G	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
here OP: C	utput powe	er			FS: Frequ	uency stab	ility	
EB: E	mission ba	ndwidth			CE: Char	Ũ		
	Conducted G: Radiated	•		<u> </u>	RE<1G:	Radiated e	mission be	low 1GHz
RE21			above ite					
	WER MI	EASURE	MENT:					
	available							om all possible combinat T with antenna diversity
Following	g channe	(s) was	(were) s	elected f	or the fir	al test a	s listed b	pelow.
				MODULA	TION TECI	HNOLOGY	,	MODULATION TYPE
т	ESTED CH							
REQUENC Pre-Scar between	L, M, Y STABI has bee available	H LITY ME	cted to o	determin				QPSK om all possible combinat T with antenna diversity
REQUENC Pre-Scar between architect	L, M, Y STABI has bee available ure).	H LITY ME n conduc modula	cted to d tions, da	determino ata rates,	e the wor and ante	enna por	ts (if EU	om all possible combinat T with antenna diversity
REQUENC Pre-Scar between architecti	L, M, Y STABI has bee available ure).	H In conduct modula	cted to d tions, da	determine ata rates, elected f	e the wor and ante	enna por nal test a	ts (if EU s listed b	om all possible combinat T with antenna diversity
REQUENC Pre-Scar between architecti	L, M, Y STABI has bee available ure). g channe	H In conduct modula	cted to d tions, da	determine ata rates, elected f	e the wor and ante for the fir	enna por nal test a	ts (if EU s listed b	om all possible combinat T with antenna diversity pelow.
REQUENC Pre-Scar between architectu Following Following MISSION E MISSION E	L, M, Y STABI has bee available ure). channe ESTED CH M SANDWII has bee available ure).	H In conduct modula I(s) was a IANNEL	cted to o tions, da (were) s ASURE cted to o tions, da	determine ata rates, welected f MODULA MENT: determine ata rates,	e the wor and ante for the fir TION TECH OFDMA	enna por nal test a: HNOLOGY	ts (if EU s listed b , mode fro ts (if EU	om all possible combinat T with antenna diversity pelow. MODULATION TYPE QPSK om all possible combinat T with antenna diversity
REQUENC Pre-Scar between architectu Following Following MISSION E Pre-Scar between architectu	L, M, Y STABI has bee available ure). channe ESTED CH M SANDWII has bee available ure).	H In conduct modula I(s) was a IANNEL	cted to o tions, da (were) s ASURE cted to o tions, da	determine ata rates, welected f MODULA MENT: determine ata rates,	e the wor and ante for the fir TION TECH OFDMA	enna por nal test a: HNOLOGY	ts (if EU s listed b , mode fro ts (if EU	om all possible combinat T with antenna diversity pelow. MODULATION TYPE QPSK om all possible combinat T with antenna diversity
REQUENC Pre-Scar between architectr Following MISSION E Pre-Scar between architectr Following	L, M, Y STABI has bee available ure). channe ESTED CH M SANDWII has bee available ure).	H In conduct modula I(s) was IANNEL	cted to o tions, da (were) s ASURE cted to o tions, da	determine ata rates, elected f MODULA MENT: determine ata rates, elected f	e the wor and ante for the fir TION TECH OFDMA	enna por nal test a: HNOLOGY	ts (if EU s listed b , mode fro ts (if EU s listed b	om all possible combinat T with antenna diversity pelow. MODULATION TYPE QPSK om all possible combinat T with antenna diversity

CHANNEL EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
L, M, H	OFDMA	QPSK

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
L	OFDMA	QPSK

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
L	OFDMA	QPSK

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
L, M, H	OFDMA	QPSK

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

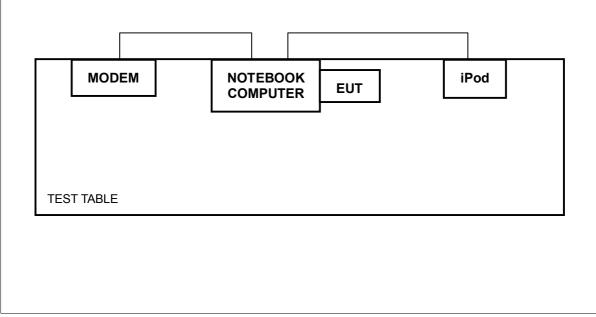
FCC 47 CFR Part 2 FCC 47 CFR Part 27, Subpart C & M ANSI/TIA/EIA-603-C-2004

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP18L	6976685584	DoC
2	MODEM	ACEEX	1414	0206026779	IFAXDM1414
3	iPod	Apple	A1137	5K7170JBUPR	DoC

NO. SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS 1 NA 1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame, 2 w/o core. 3

1.0 m shielded cable, terminated with USB connector, w/o core.

NOTE: All power cords of the above support units are non shielded (1.8m).

3.4.1 CONFIGURATION OF SYSTEM UNDER TEST

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 27.50(h)(2) that "Mobile stations are limited to 2.0 watts EIRP and 27.50(i) specific that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage."

4.1.2 TEST INSTRUMENTS

EIRP POWER MEASUREMENT:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ROHDE & SCHWARZ Spectrum	FSP40	100060	April 24, 2009
Analyzer			• •
HP Pre_Amplifier	8449B	3008A01922	Sep. 18, 2008
ROHDE & SCHWARZ	ESCS30	100375	Sep. 20, 2008
Test Receiver	E30330	100375	Sep. 20, 2008
SCHWARZBECK TRILOG	VULB 9168	138	July 17, 2009
Broadband Antenna	VULB 9100	130	July 17, 2008
Schwarzbeck Horn_Antenna	BBHA9120	D124	Jan. 01, 2009
RF Switches (ARNITSU)	MP59B	6200283544	NA
RF CABLE (Chaintek) 1GHz-20GHz	SF102	22054-2	Nov. 14, 2008
RF Cable(RICHTEC)	9913-30M	STCCAB-30M-1 GHz-021	Aug. 13, 2008
Software	ADT_Radiated_V	NA	NA
	7.6.15.8		
	AT-100	0203	NA
Antenna Tower			
CHANCE MOST Turn Table	TT-100	0203	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if tested.

- 3. The test was performed in ADT Open Site No. C.
- 4. The FCC Site Registration No. is 656396.
- 5. The VCCI Site Registration No. is R-1626.
- 6. The CANADA Site Registration No. is IC 3789C-3.

CONDUCTED POWER MEASUREMENT:

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
Agilent Spectrum Analyzer	E4440A	MY46185282	Jun.14, 2008
HUBER+SUHNER	SUCOFLEX104	22076614	Nov. 13, 2008
JFW 10dB attenuation	50HF-010-SMA	N/A	N/A

NOTE:

The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1.3 TEST PROCEDURES

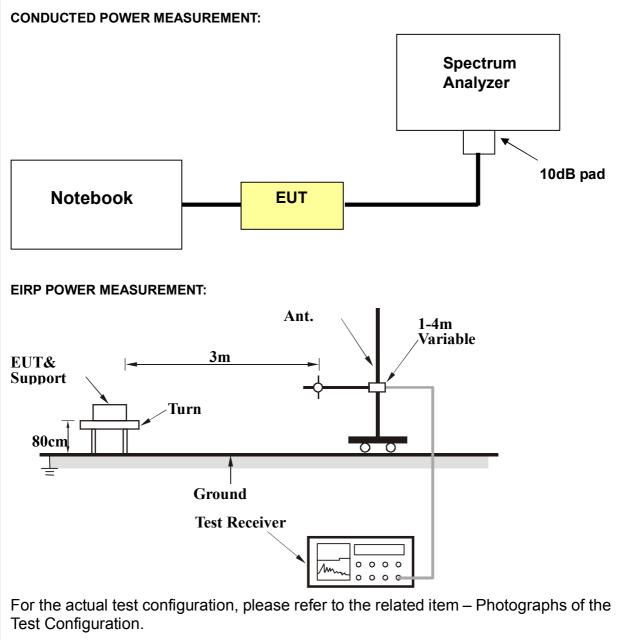
For Conducted Power:

- a. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b. For Channel bandwidth: 5 MHz:

Set RBW=51kHz, VBW=150kHz, Detector mode=RMS.

c. For Channel bandwidth: 10 MHz:

Set RBW=100kHz, VBW=300kHz, Detector mode=RMS.


- d. Computer power by integrating the spectrum across the 26dB EBW of the signal.
- e. Record the power level.
- f. The "Read Value" is the spectrum reading the maximum power value.

For EIRP Power:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. The EUT is replaced by a horn antenna connected to a signal generator tuned to the frequency of emission.
- e. Adjust the level of the signal generator output with CW signal the previously recorded maximum reading for this set of conditions is obtained.
- f. The radiated power can be calculated via the factor and antenna gain.
- g. Repeat step a \sim f for horizontal polarization.

4.1.4 TEST SETUP

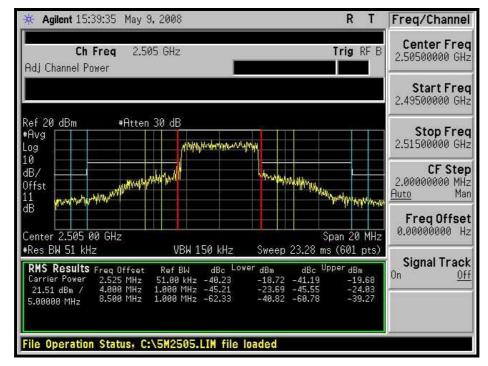
4.1.5 EUT OPERATING CONDITIONS

- a. Connect the EUT with the support unit 1 (Notebook computer) which placed on a testing table.
- b. The communication partner run test program "BCS200 Control Panel 0.8.1" to enable EUT under transmission/receiving condition continuously.

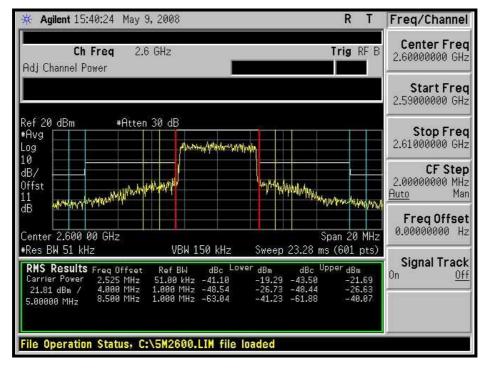
4.1.6 TEST RESULTS

CHANNEL BANDWIDTH: 5MHz

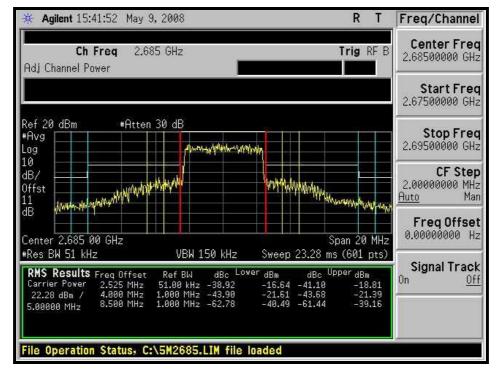
INPUT POWER (SYSTEM)	120\/ac_60Hz	DETECTOR FUNCTION	RMS
ENVIRONMENTAL CONDITIONS	20deg°C, 60%RH 960hPa	TESTED BY	Wen Yu


	EIRP POWER					
	ANT	ENNA POLARI	TY & TEST DIS	STANCE: HORI	ZONTAL AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)
1	2505.00	118.75	33.00	16.86	6.65	23.51
2	2600.00	119.17	33.00	17.16	6.65	23.81
3	2685.00	119.61	33.00	17.63	6.65	24.28
	AN	NTENNA POLAF	RITY & TEST D	ISTANCE: VER	TICAL AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)
1	2505.00	109.5	33.00	8.51	6.65	15.16
2	2600.00	112.08	33.00	10.09	6.65	16.74
3	2685.00	112.1	33.00	10.12	6.65	16.77
REMA	RKS 1 P	ower Value(dBm)=S G Power \	/alue (dBm) + C	orrection Eactor	(dB)

REMARKS: 1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)


CONDUCTED POWER					
CHANNEL	FREQUENCY (MHz)	PEAK POWER OUTPUT(mW)	PEAK POWER OUTPUT(dBm)		
Low	2505	141.579	21.51		
Middle	2600	151.705	21.81		
High	2685	169.044	22.28		

LOW CHANNEL

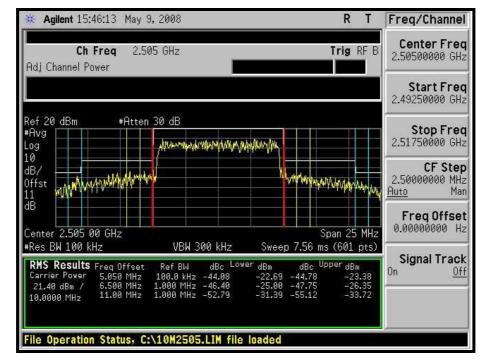


MIDDLE CHANNEL

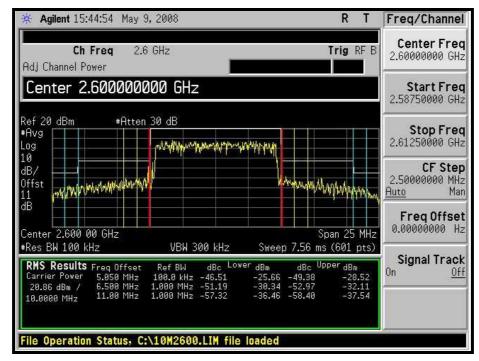
HIGH CHANNEL

CHANNEL BANDWIDTH: 10MHz

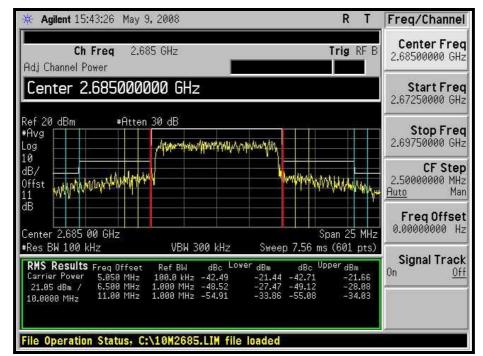
INPUT POWER (SYSTEM)	120\/ac_60Hz	DETECTOR FUNCTION	RMS
ENVIRONMENTAL CONDITIONS	20deg⁰C, 60%RH 960hPa	TESTED BY	Wen Yu


	EIRP POWER					
	ANT	ENNA POLARI	TY & TEST DIS	STANCE: HORI	ZONTAL AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)
1	2505.00	118.64	33.00	16.75	6.65	23.4
2	2600.00	118.22	33.00	16.21	6.65	22.86
3	2685.00	118.38	33.00	16.4	6.65	23.05
	AN	NTENNA POLAF	RITY & TEST D	ISTANCE: VER	TICAL AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)
1	2505.00	110.76	33.00	8.87	6.65	15.52
2	2600.00	111.58	33.00	9.59	6.65	16.24
3	2685.00	110.84	33.00	8.86	6.65	15.51
		ower Value(dBm)=S G Power \	/alua (dBm) + C	orrection Eactor	(dB)

REMARKS: 1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)


	CONDUCTED POWER					
CHANNEL	FREQUENCY (MHz)	PEAK POWER OUTPUT(mW)	PEAK POWER OUTPUT(dBm)			
Low	2505	138.038	21.40			
Middle	2600	121.899	20.86			
High	2685	127.350	21.05			

LOW CHANNEL



MIDDLE CHANNEL

HIGH CHANNEL

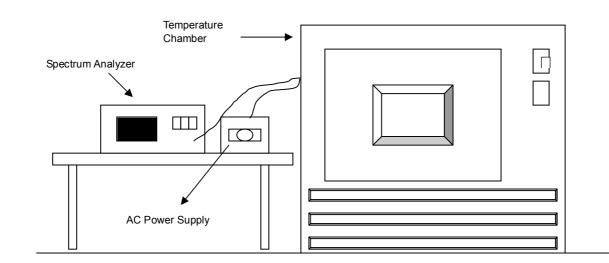
4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 2.1055 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with specification of EUT -30° C $\sim 50^{\circ}$ C.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 12, 2008
OVEN	MHU-225AU	911033	Dec. 04, 2008
HUBER+SUHNER	SUCOFLEX104	22076614	Nov. 13, 2008
AC POWER SOURCE	6205	1140503	N/A


NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

- a. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 102 Volts to 138 Volts. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- d. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

MODE	Middle channel (2600MHz)	INPUT POWER (SYSTEM)	120Vac, 60Hz
ENVIRONMENTAL CONDITIONS	20deg⁰C, 60%RH 960hPa	TESTED BY	Wen Yu

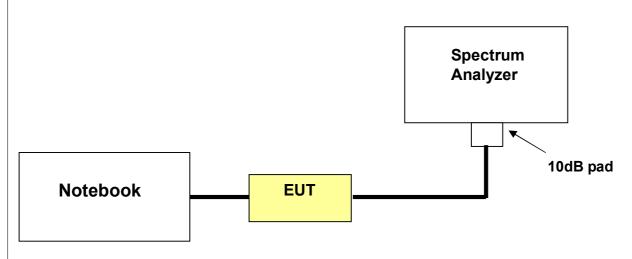
AFC FREQUENCY ERROR VS. VOLTAGE				
VOLTAGE (Volts)	FREQUENCY (MHz)	FREQUENCY DRIFT (ppm)		
138	2600.0458	0.001762		
120	2600.0446	0.001715		
102	2600.0448	0.001723		

MODE	Middle channel (2600MHz)	INPUT POWER (SYSTEM)	120Vac, 60Hz
ENVIRONMENTAL CONDITIONS	20deg°C, 60%RH 960hPa	TESTED BY	Wen Yu

AF	AFC FREQUENCY ERROR VS. TEMP.				
ТЕМР. (°С)	FREQUENCY (MHz)	FREQUENCY DRIFT (ppm)			
50	2600.0418	0.001608			
40	2600.0426	0.001638			
30	2600.0434	0.001669			
20	2600.0446	0.001715			
10	2600.0456	0.001754			
0	2600.0485	0.001865			
-10	2600.0496	0.001908			
-20	2600.0518	0.001992			
-30	2600.0506	0.001946			

4.3 EMISSION BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF EMISSION BANDWIDTH MEASUREMENT


According to FCC 27.53(m)(6) specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

4.3.2 TEST INSTRUMENTS

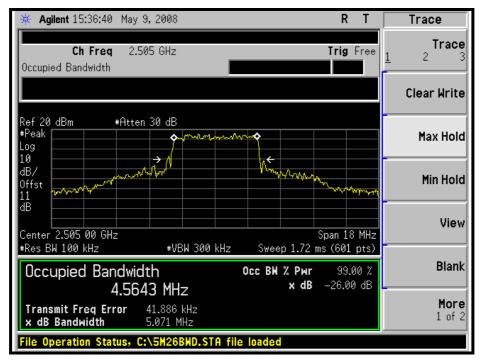
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4440A	MY46185282	Jun.14, 2008
HUBER+SUHNER	SUCOFLEX104	22076614	Nov. 13, 2008
JFW 10dB attenuation	50HF-010-SMA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST SETUP

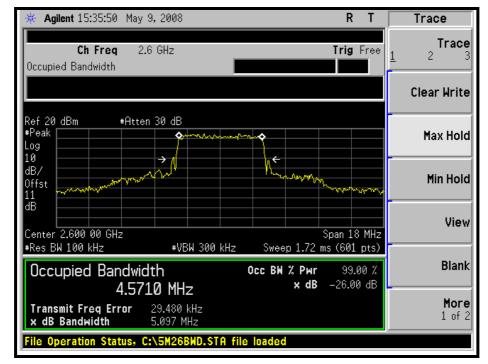
4.3.4 TEST PROCEDURES

a. The Notebook controlled EUT to export rated output power under transmission mode and specific channel frequency. FCC 27.53(m)(6) required a measurement bandwidth is the fundamental emission below 26dB bandwidth.

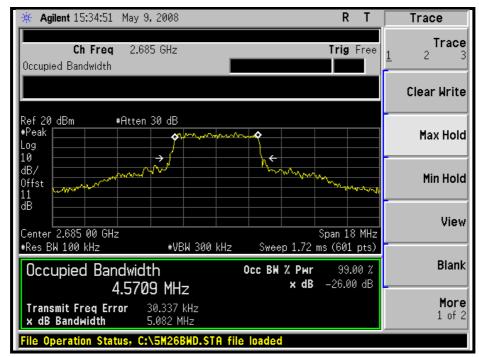


4.3.5 TEST RESULTS

CHANNEL BANDWIDTH: 5MHz


FREQUENCY (MHz)	-26 dBc BANDWIDTH (MHz)		
2505	5.071		
2600	5.097		
2685	5.082		

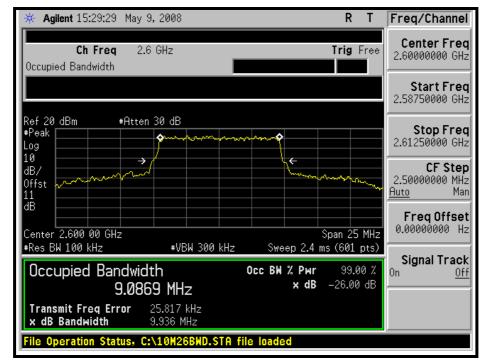
LOW CHANNEL



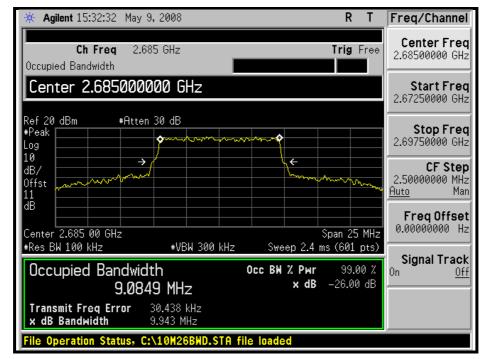
MIDDLE CHANNEL

HIGH CHANNEL

CHANNEL BANDWIDTH: 10MHz


FREQUENCY (MHz)	-26 dBc BANDWIDTH (MHz)		
2505	9.955		
2600	9.936		
2685	9.943		

LOW CHANNEL


★ Agilent 15:30:54 May 9, 2008	R T Freq/Channel			
Ch Freq 2.505 GHz Occupied Bandwidth	Trig Free Center Freq 2.50500000 GHz			
Center 2.505000000 GHz	Start Freq 2.49250000 GHz			
Ref 20 dBm #Atten 30 dB #Peak	••••••••••••••••••••••••••••••••••••••			
10 dB/ 0ffst 11	CF Step 2.50000000 MHz <u>Auto</u> Man			
dB	Span 25 MHz 0.00000000 Hz			
*Res BW 100 kHz *VBW 300 kHz Occupied Bandwidth 9.0900 MHz	Signal Track			
Transmit Freq Error 30.220 kHz x dB Bandwidth 9.955 MHz				
File Operation Status, C:\10M26BWD.STA file loaded				

MIDDLE CHANNEL

HIGH CHANNEL

4.4 CHANNEL EDGE MEASUREMENT

4.4.1 LIMITS OF CHANNEL EDGE MEASUREMENT

According to FCC 27.53(m)(4) specified that power of any emission outside of the channel edge must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)dB$ and $55 + 10 \log(P) dB$ at 5.5 MHz from the channel edges. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4440A	MY46185282	Jun.14, 2008
HUBER+SUHNER	SUCOFLEX104	22076614	Nov. 13, 2008
JFW 10dB attenuation	50HF-010-SMA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3 TEST SETUP

Same as Item 4.3.3

4.4.4 TEST PROCEDURES

- a. The EUT was set up for the rated peak power . The power was measured with Spectrum Analyzer. All measurements were done at 3 channels: low, middle and high operational frequency range.
- b. For Channel bandwidth: 5 MHz:

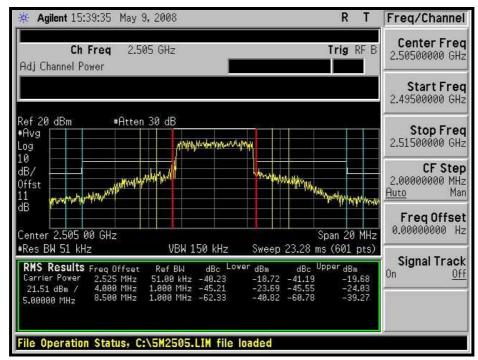
The center frequency of spectrum is the band edge frequency and span is 20MHz. RB of the spectrum is 51kHz and VB of the spectrum is 150kHz.

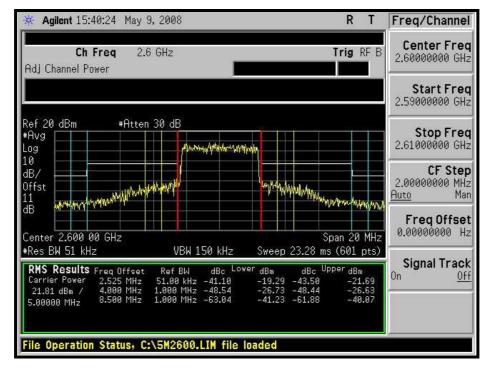
c. For Channel bandwidth: 10 MHz:

The center frequency of spectrum is the band edge frequency and span is 35MHz. RB of the spectrum is 100kHz and VB of the spectrum is 300kHz.

d. Record the max trace plot into the test report.

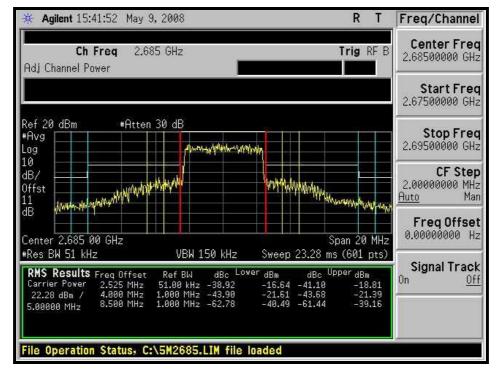
4.4.5 EUT OPERATING CONDITION


- a. Connect the EUT with the support unit 1 (Notebook computer) which placed on a testing table.
- b. The communication partner run test program "BCS200 Control Panel 0.8.1" to enable EUT under transmission/receiving condition continuously.

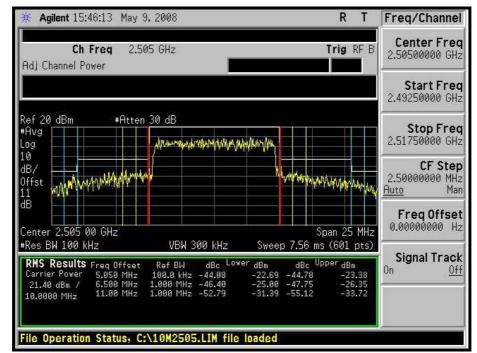

4.4.6 TEST RESULTS

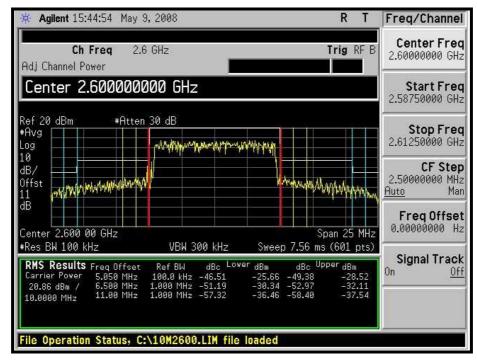
CHANNEL BANDWIDTH: 5MHz

LOW CHANNEL



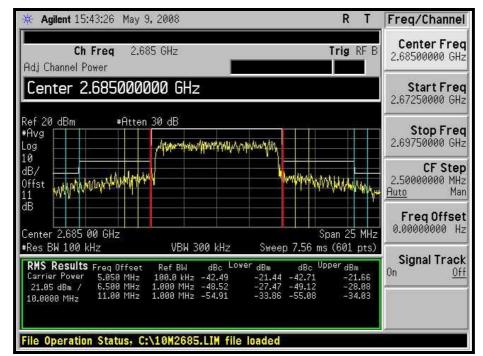
MIDDLE CHANNEL


HIGH CHANNEL



CHANNEL BANDWIDTH: 10MHz

LOW CHANNEL



MIDDLE CHANNEL

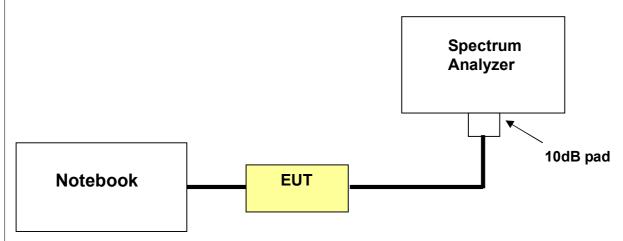
HIGH CHANNEL

4.5 CONDUCTED SPURIOUS EMISSIONS

4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

In the FCC 27.53(m)(4), On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 +10 \log (P)dB$ and $55 + 10 \log (P) dB$ at 5.5 MHz from the channel edges.

4.5.2 TEST INSTRUMENTS


DESCRIPTION & MANUFACTURER	MODELNO		CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4440A	MY46185282	Jun.14, 2008
HUBER+SUHNER	SUCOFLEX104	22076614	Nov. 13, 2008
JFW 10dB attenuation	50HF-010-SMA	NA	NA
Wainwright Instruments High Pass Filter	WHK3.1/18G-10SS	ZZ-010091	NA

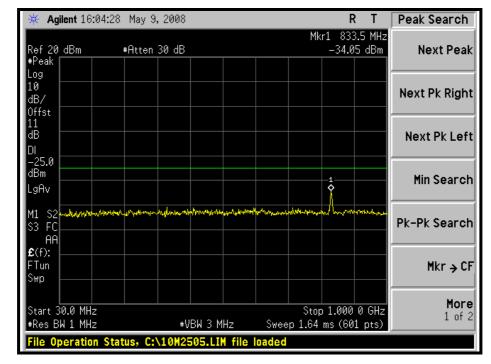
NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

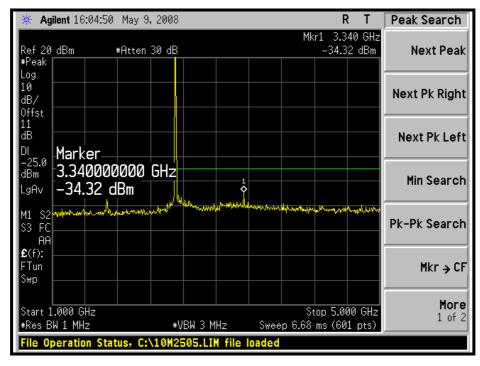
4.5.3 TEST PROCEDURE

- a. The EUT was set up for the rated peak power. The power was measured with Spectrum Analyzer. All measurements were done at 3 channels: low, middle and high operational frequency range.
- b. When the spectrum scanned from 30MHz to 3GHz, it shall be connected to the 10dB pad attenuated the carried frequency. The spectrum set RB = 1MHz, VB = 3MHz.
- c. When the spectrum scanned from 3GHz to 26.5GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB = 1MHz, VB = 3MHz.

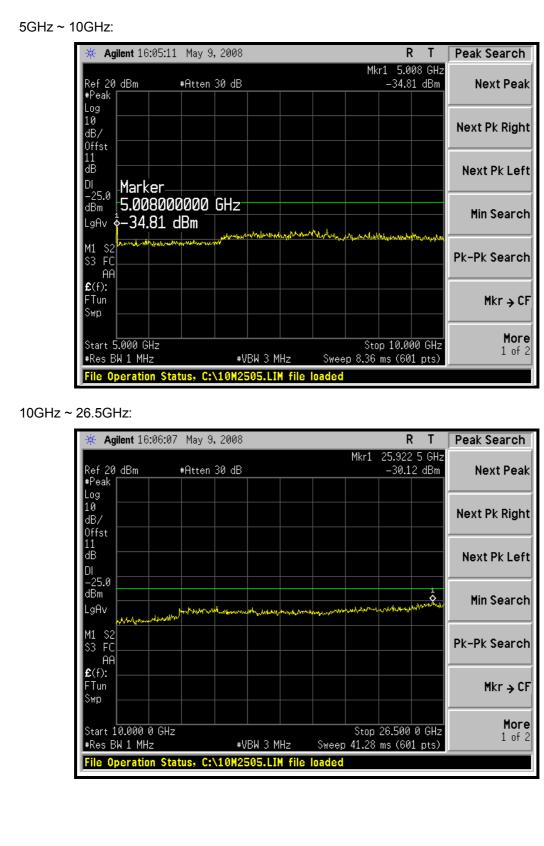
4.5.4 TEST SETUP

4.5.5 EUT OPERATING CONDITIONS

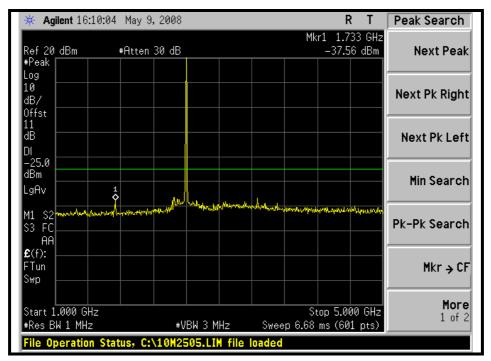

- a. Connect the EUT with the support unit 1 (Notebook computer) which placed on a testing table.
- b. The communication partner run test program "BCS200 Control Panel 0.8.1" to enable EUT under transmission/receiving condition continuously.

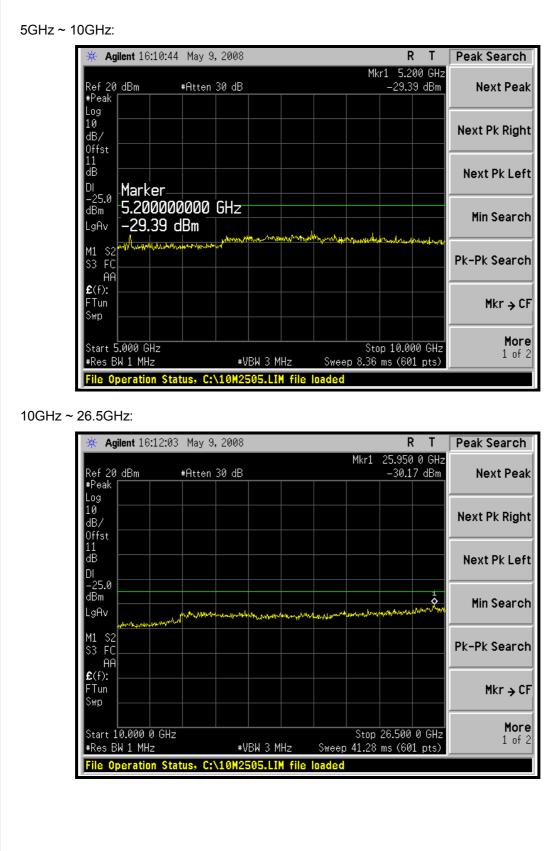


4.5.6 TEST RESULTS


CHANNEL BANDWIDTH: 5MHz

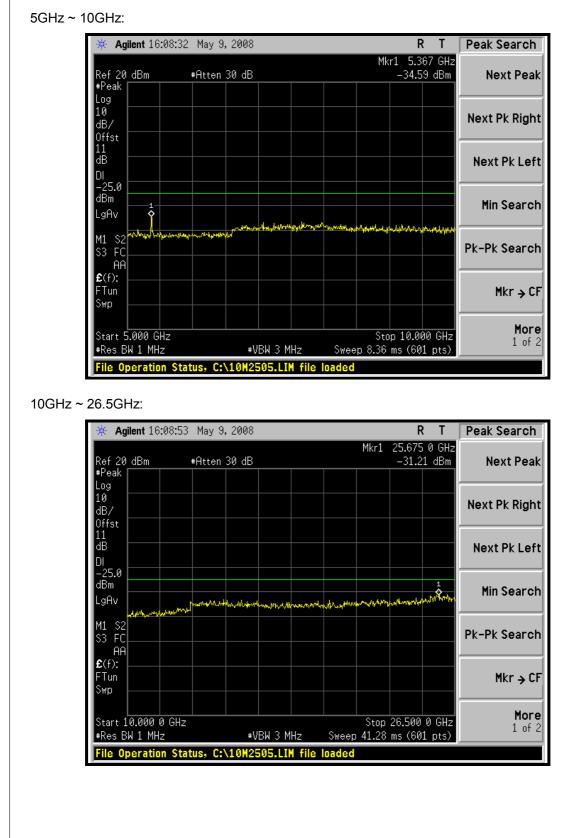
LOW CHANNEL: 30MHz ~ 1GHz:





MIDDLE CHANNEL: 30MHz ~ 1GHz:

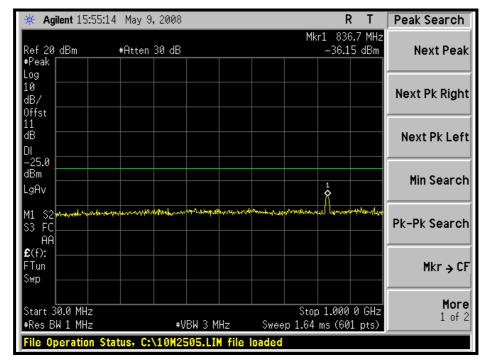
🔆 Agilent 16:	09:34 May 9,2008		RT	Peak Search
Ref 20 dBm #Peak	#Atten 30 dB		Mkr1 865.8 MHz -35.50 dBm	Next Peak
Log 10 dB/ Offst				Next Pk Right
11 dB DI				Next Pk Left
-25.0 dBm LgAv			1	Min Search
S3 FC AA	Shipulitika yatiki Awadani Wawania	and many particular and a second second	en son an	Pk-Pk Search
£(f): FTun Swp				Mkr → CF
Start 30.0 MHz #Res BW 1 MHz		BW 3 MHz Swe	Stop 1.000 0 GHz ep 1.64 ms (601 pts)	More 1 of 2
File Operation	Status, C:\10M2	505.LIM file loade	•	

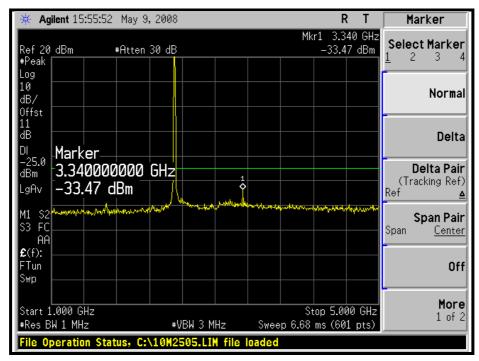


HIGH CHANNEL: 30MHz ~ 1GHz:

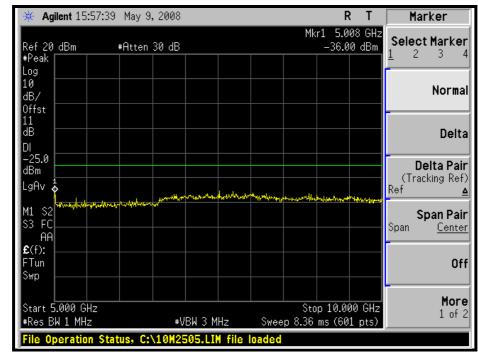
🔆 Agilent 16:07:13 May 9, 2008	}	RT	Peak Search
Ref 20 dBm #Atten 30 dE #Peak		893.3 MHz 36.10 dBm	Next Peak
Log 10 dB/ Offst			Next Pk Right
11 dB DI			Next Pk Left
-25.0			Min Search
MI SZ	warminka warmen warmine and here here here	nen brunne	Pk-Pk Search
£(f): FTun Swp			Mkr → CF
Start 30.0 MHz #Res BW 1 MHz #	Stop 1. VBW 3 MHz Sweep 1.64 ms	.000 0 GHz (601 pts)	More 1 of 2
File Operation Status, C:\10M2	2505.LIM file loaded		

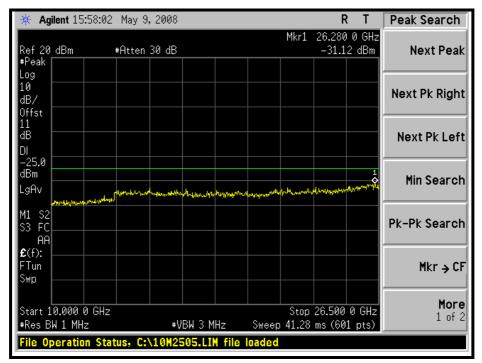
🗰 Agilent 16:07:32 May 9,	, 2008		R	Т	Peak Search
Ref 20 dBm #Atten #Peak	30 dB			93 GHz ∂dBm	Next Peak
Log 10 dB/ Offst					Next Pk Right
11 dB DI Marker					Next Pk Left
^{-25.0} dBm 1.793000000 LgAv -34.20 dBm	444	Manada I			Min Search
M1 S2 <mark>dut.urg/hylphands</mark> haftworked S3 FC AA	where the standard	And a second	nethlers and a source of the	erdfelgenal met	Pk-Pk Search
£(f): FTun Swp					Mkr → CF
Start 1.000 GHz #Res BW 1 MHz	#VBW 3 M	IHz Sweel	Stop 5.00 3 6.68 ms (601		More 1 of 2
File Operation Status, C:	10M2505.LI	M file loaded			



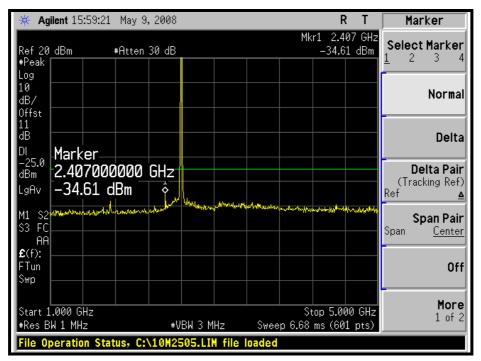


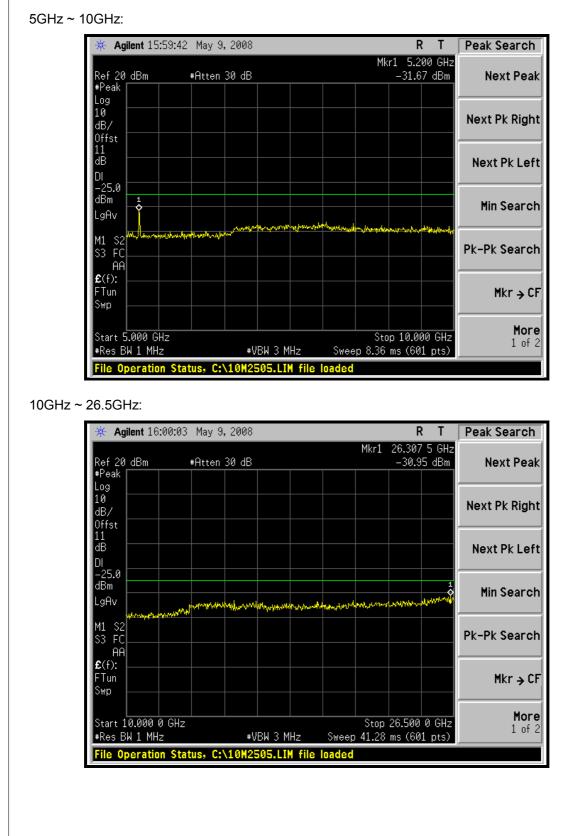
CHANNEL BANDWIDTH: 10MHz


LOW CHANNEL: 30MHz ~ 1GHz:



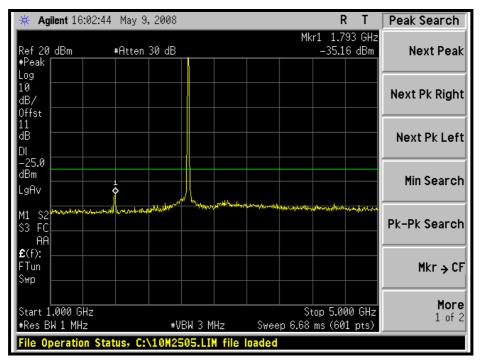
10GHz ~ 26.5GHz:

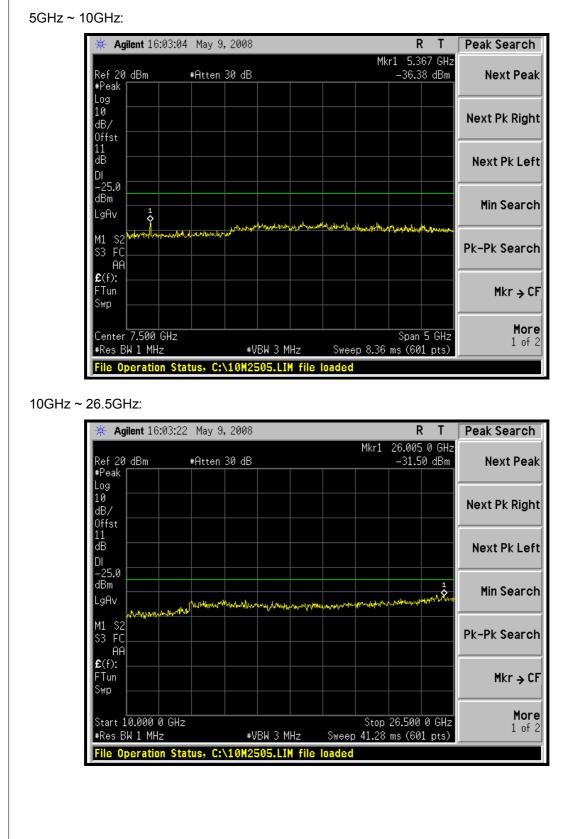



MIDDLE CHANNEL: 30MHz ~ 1GHz:

🔆 Agile	ent 15:58:44	May 9,2008			R	T	Peak Search
Ref 20 c #Peak	dBm	#Atten 30 dB		Mk	r1 865.8 -37.56 d		Next Peak
Log 10 dB/ Offst							Next Pk Right
11 dB -	Marker						Next Pk Left
dBm 🏼 🎗	865.8000 -37.56 d	Bm					Min Search
M1 S2 M S3 FC AA	manananahahah	n.a.m.shenshetak Mahahmi	haf-dag-hawarayyahayyahay	White-en-regeneration of the production	enound becomen		Pk-Pk Search
£(f): _ FTun Swp _							Mkr → CF
Start 30 #Res BW	1 MHz		BW 3 MHz	Sweep 1.64) 1.000 0 (ms (601 p		More 1 of 2
File Ope	eration Stat	us, C:\10M29	505.LIM file	loaded			

1GHz ~ 5GHz:





HIGH CHANNEL: 30MHz ~ 1GHz:

🔆 Agilent 16:01:59 May 9), 2008		RT	Peak Search
Ref 20 dBm #Atten #Peak	30 dB	Mki	r1 894.9 MHz -36.25 dBm	Next Peak
Log 10 dB/ 0ffst				Next Pk Right
11 dB DI -25.0 Accesses				Next Pk Left
dBm 894.900000 № LgAv -36.25 dBm	1Hz			Min Search
M1 S2	vique produktion for the second s	esphalantinities	kantha' Mriadhaa	Pk-Pk Search
£ (f): FTun Swp				Mkr → CF
Start 30.0 MHz #Res BW 1 MHz	#VBW 3 MH		1.000 0 GHz ms (601 pts)	More 1 of 2
File Operation Status, C:	\10M2505.LIM	file loaded		

4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

LIMITS OF RADIATED EMISSION MEASUREMENT 461

In the FCC 27.53(m) (4), On any frequency outside a licensee's frequency block the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P)dB and 55 + 10 log (P) dB at 5.5 MHz from the channel edges.

TEST INSTRUMENTS 4.6.2

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 15, 2008
HP Pre_Amplifier	8449B	3008A01922	Oct. 04, 2008
ROHDE & SCHWARZ Test Receiver	ESCS30	100375	Mar. 26, 2009
SCHWARZBECK TRILOG Broadband Antenna	VULB 9168	138	July 26, 2008
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 16, 2008
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 27, 2009
R&S Loop Antenna	HFH2-Z2	881058/15	Nov. 29, 2008
RF Switches (ARNITSU)	CS-201	1565157	Aug. 13, 2008
RF CABLE (Chaintek)	SF102	22054-2	Dec. 06. 2008
RF Cable(RICHTEC)	9913-30M N-N Cable	STCCAB-30M-1 GHz	Aug. 13, 2008
Software	ADT_Radiated_V 7.6.15.8	NA	NA
CHANCE MOST Antenna Tower	AT-100	0203	NA
CHANCE MOST Turn Table	TT-100	0203	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

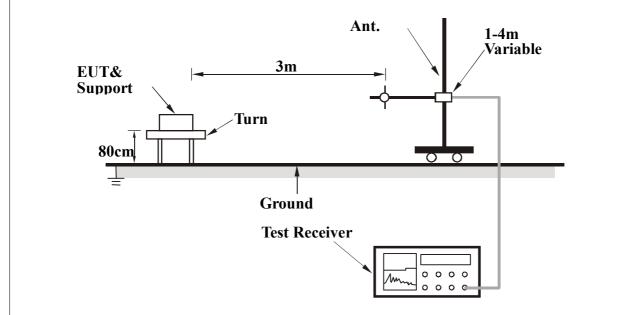
2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if tested.

- The test was performed in ADT Open Site No. C.
 The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.

- 6. The CANADA Site Registration No. is IC 3789C-3

4.6.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. The EUT is replaced by a horn antenna connected to a signal generator tuned to the frequency of emission.
- e. The signal generator level has to be adjusted to have the same emission nature.
- f. The radiated power can be calculated via the factor and antenna gain.
- g. Repeat step a \sim f for horizontal polarization.


NOTE: The resolution bandwidth of spectrum analyzer is 1MHz and the video bandwidth is 3MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.6.6 EUT OPERATING CONDITIONS

- a. Connect the EUT with the support unit 1 (Notebook computer) which placed on a testing table.
- b. The communication partner run test program "BCS200 Control Panel 0.8.1" to enable EUT under transmission/receiving condition continuously.

4.6.7 TEST RESULTS **CHANNEL BANDWIDTH: 5MHz**

MODE	Low channel	FREQUENCY RANGE	Below 1000MHz
INPUT POWER (SYSTEM)	120V/ac_60Hz	ENVIRONMENTAL CONDITIONS	20deg°C, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	166.60	35.51	-25	-54.54	0.25	-54.28	
2	266.67	43.45	-25	-51.33	3.93	-47.40	
3	299.95	44.79	-25	-50.99	3.71	-47.28	
4	333.33	43.7	-25	-53.47	3.63	-49.84	
5	366.62	42.09	-25	-55.77	3.51	-52.26	
6	566.6	39.36	-25	-55.47	2.28	-53.19	
7	666.68	37.28	-25	-58.16	1.70	-56.46	
8	719.99	33.52	-25	-62.83	1.30	-61.54	
9	766.36	39.52	-25	-57.62	1.06	-56.57	
10	800.01	40.75	-25	-57.97	1.55	-56.42	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)		
1	66.64	36	-25	-50.10	-5.65	-55.76		
2	196.6	33.95	-25	-61.25	3.98	-57.28		
3	299.94	36.89	-25	-58.89	3.71	-55.18		
4	333.26	36.8	-25	-60.37	3.63	-56.73		
5	366.62	36.39	-25	-61.47	3.51	-57.96		
6	499.99	34.85	-25	-60.67	2.89	-57.78		
7	566.6	35.76	-25	-59.07	2.28	-56.79		
8	666.68	32.48	-25	-62.96	1.70	-61.26		
9	719.98	31.71	-25	-64.64	1.30	-63.35		
10	800.02	34.37	-25	-64.35	1.55	-62.80		

REMARKS: 1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)

CHANNEL BANDWIDTH: 10MHz

MODE	Low channel	FREQUENCY RANGE	Below 1000MHz
INPUT POWER (SYSTEM)	120\/ac_60Hz		20deg [°] C, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	166.62	35.48	-25	-54.57	0.26	-54.32	
2	266.97	42.85	-25	-51.93	3.93	-48.01	
3	299.91	42.58	-25	-53.20	3.71	-49.49	
4	366.61	42.04	-25	-55.82	3.51	-52.31	
5	666.66	37.5	-25	-57.94	1.70	-56.24	
6	766.41	40.08	-25	-57.07	1.06	-56.01	
7	800	40.55	-25	-58.17	1.55	-56.62	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	66.61	36.71	-25	-49.37	-5.66	-55.04	
2	133.35	32.4	-25	-60.10	-1.27	-61.36	
3	266.67	34.25	-25	-60.53	3.93	-56.60	
4	299.96	37.37	-25	-58.41	3.71	-54.70	
5	366.61	36.29	-25	-61.57	3.51	-58.06	
6	566.62	35.97	-25	-58.86	2.28	-56.58	
7	666.67	32.7	-25	-62.74	1.70	-61.04	
8	80.01	42.65	-25	-56.07	1.55	-54.52	

REMARKS: 1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

In the FCC 27.53(m) (4), On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P)dB and 55 + 10 log (P) dB at 5.5 MHz from the channel edges.

4.7.2 **TEST INSTRUMENTS**

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 15, 2008
HP Pre_Amplifier	8449B	3008A01922	Oct. 04, 2008
ROHDE & SCHWARZ Test Receiver	ESCS30	100375	Mar. 26, 2009
SCHWARZBECK TRILOG Broadband Antenna	VULB 9168	138	July 26, 2008
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 16, 2008
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 27, 2009
R&S Loop Antenna	HFH2-Z2	881058/15	Nov. 29, 2008
RF Switches (ARNITSU)	CS-201	1565157	Aug. 13, 2008
RF CABLE (Chaintek)	SF102	22054-2	Dec. 06. 2008
RF Cable(RICHTEC)	9913-30M N-N Cable	STCCAB-30M-1 GHz	Aug. 13, 2008
Software	ADT_Radiated_V 7.6.15.8	NA	NA
CHANCE MOST Antenna Tower	AT-100	0203	NA
CHANCE MOST Turn Table	TT-100	0203	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

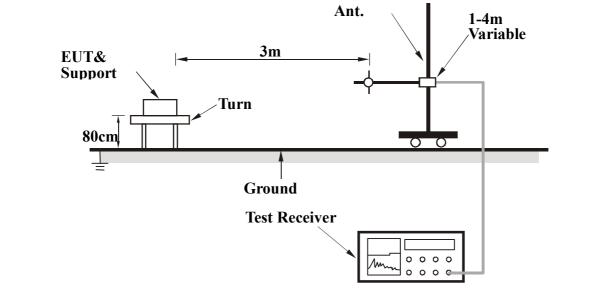
2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in ADT Open Site No. C.

The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.
 The CANADA Site Registration No. is IC 3789C-3.

4.7.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the receiving antenna, which was mounted on antenna tower and its position at 0.8 m above the ground.
- c. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading and recorded the value.
- d. The EUT is replaced by a horn antenna connected to a signal generator tuned to the frequency of emission.
- e. The signal generator level has to be adjusted to have the same emission nature.
- f. The radiated power can be calculated via the factor and antenna gain.
- g. Repeat step a \sim f for horizontal polarization.


NOTE: The resolution bandwidth of spectrum analyzer is 1MHz and the video bandwidth is 3MHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.7.6 EUT OPERATING CONDITIONS

- a. Connect the EUT with the support unit 1 (Notebook computer) which placed on a testing table.
- b. The communication partner run test program "BCS200 Control Panel 0.8.1" to enable EUT under transmission/receiving condition continuously.

4.7.7 TEST RESULTS CHANNEL BANDWIDTH: 5MHz

MODE	Low channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	20deg°C, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3340	47.94	-25	-55.06	7.62	-47.45	
2	5010	53.83	-25	-50.42	7.01	-43.40	
3	7515	66.82	-25	-35.80	4.53	-31.27	
4	10020	57.8	-25	-43.78	4.02	-39.76	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3340	55.35	-25	-47.65	7.62	-40.04	
2	5010	56.54	-25	-47.71	7.01	-40.69	
3	7515	71.22	-25	-31.40	4.53	-26.87	
4	10020	62.06	-25	-39.52	4.02	-35.50	

REMARKS: 1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)

MODE	Middle channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	20deg°C, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3466.66	46.65	-25	-56.51	7.80	-48.71	
2	5200	54.06	-25	-50.47	7.05	-43.42	
3	7800	67.22	-25	-35.40	4.29	-31.11	
4	10400	62.06	-25	-39.95	3.66	-36.28	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3466.66	50.91	-25	-52.25	7.80	-44.45	
2	5200	60.57	-25	-43.96	7.05	-36.91	
3	7800	69.26	-25	-33.36	4.29	-29.07	
4	10400	65.17	-25	-36.84	3.66	-33.17	

MODE	High channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	20degºC, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3580	47.46	-25	-56.03	7.80	-48.24	
2	5370	56.1	-25	-48.69	7.09	-41.59	
3	8055	67.86	-25	-34.76	4.13	-30.63	
4	10740	60.67	-25	-41.72	3.35	-38.37	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3580	52.14	-25	-51.35	7.80	-43.56	
2	5370	59.8	-25	-44.99	7.09	-37.89	
3	8055	69.47	-25	-33.15	4.13	-29.02	
4	10740	64.05	-25	-38.34	3.35	-34.99	

REMARKS:	1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)
----------	---

CHANNEL BANDWIDTH: 10MHz

MODE	Low channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	20deg [°] C, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3340	48.3	-25	-54.70	7.62	-47.09	
2	5010	51.82	-25	-52.43	7.01	-45.41	
3	7515	62.29	-25	-40.33	4.53	-35.80	
4	10020	57.3	-25	-44.28	4.02	-40.26	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3340	55.86	-25	-47.14	7.62	-39.53	
2	5010	56.99	-25	-47.26	7.01	-40.24	
3	7515	64.82	-25	-37.80	4.53	-33.27	
4	10020	60.06	-25	-41.52	4.02	-37.50	

MODE	Middle channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	20deg°C, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3466.66	46.4	-25	-56.76	7.80	-48.96	
2	5200	52.14	-25	-52.39	7.05	-45.34	
3	7800	65.11	-25	-37.51	4.29	-33.22	
4	10400	59.41	-25	-42.60	3.66	-38.93	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3466.66	50.16	-25	-53.00	7.80	-45.20	
2	5200	57.2	-25	-47.33	7.05	-40.28	
3	7800	65.36	-25	-37.26	4.29	-32.97	
4	10400	61.45	-25	-40.56	3.66	-36.89	

REMARKS: 1. Power Value(dBm)=S.G Power Value (dBm) + Correction Factor(dB)

MODE	High channel	FREQUENCY RANGE	Above 1000MHz
INPUT POWER (SYSTEM)	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	20degºC, 60%RH 960hPa
TESTED BY	Phoenix Huang		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3580	46.76	-25	-56.73	7.80	-48.94	
2	5370	53.6	-25	-51.19	7.09	-44.09	
3	8055	64.24	-25	-38.38	4.13	-34.25	
4	10740	59.5	-25	-42.89	3.35	-39.54	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBm)	S.G level (dBm)	C.F. (dB)	Power level (dBm)	
1	3580	52.27	-25	-51.22	7.80	-43.43	
2	5370	59.66	-25	-45.13	7.09	-38.03	
3	8055	63.19	-25	-39.43	4.13	-35.30	
4	10740	61.11	-25	-41.28	3.35	-37.93	

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
GERMANY	TUV Rheinland
JAPAN	VCCI
NORWAY	NEMKO
CANADA	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
NETHERLANDS	Telefication
SINGAPORE	GOST-ASIA (MOU)
RUSSIA	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Web Site: www.adt.com.tw Tel: 886-3-3183232 Fax: 886-3-3185050

The address and road map of all our labs can be found in our web site also.