

RF Test Report: Accton Wireless Broadband Corp RG211-3.8 CPE 47CFR Part 90Z (in part)

SC_TR09_B

Prepared for: Airspan Communications Ltd Cambridge House Oxford Road Uxbridge UB8 1UN

Circulation: Airspan Communications Ltd AWB Sulis Consultants Ltd

> Sulis Consultants Limited Mead House, Longwater Road, Eversley, Hampshire, RG27 ONW, UK Registered in England & Wales, number 05466247 <u>http://www.sulisconsultants.com</u>

Contents

1	Revision History	4
2	Purpose	4
3	Reference Documents	4
4	Product Description	5
5	Tests performed	6
6	Test Configuration	7
6.1	Test sample and Operating mode	7
6.2	Support equipment	7
6.3	Test equipment	7
6.4	Equipment set-up	8
7	Occupied Bandwidth: 47CFR2.1049 / 90.209	9
8	Transmit Peak Power density 90.1321	14
9	Transmit Carrier Output Power 90.1321 / 2.1046	19
10	Spectrum Mask – 47CFR90.201(n)	24
11	Test Plan SC_AIR_TP02_A	29

Tables

Table 1: Summary of tests performed	6
Table 2: Equipment under test	7
Table 3: Support Equipment	7
Table 4: Test Equipment	7
Table 5: Occupied Bandwidth test results	9
Table 6: Transmit Power Density test results	14
Table 7: Transmit Power Density test results	
Table 8: Spectrum Mask	24
Table 9: Summary of tests to be performed at RFI	

Figures

Figure 1: LI Probe test configuration: Emissions
Figure 2: Occupied Bandwidth, 5MHz, 3652.5 MHz, QPSK 3410
Figure 3: Occupied Bandwidth, 5MHz, 3652.5 MHz, 16 QAM ³ / ₄
Figure 4: Occupied Bandwidth, 5MHz, 3652.5 MHz, 64 QAM 3/4
Figure 5: Occupied Bandwidth, 5MHz, 3672.5 MHz,11
Figure 6: Occupied Bandwidth, 10MHz, 3655.0 MHz, QPSK 34
Figure 7: Occupied Bandwidth, 10MHz, 3655.0 MHz, 16 QAM 3/4
Figure 8: Occupied Bandwidth, 10MHz, 3655.0 MHz, 64 QAM 3/4
Figure 9: Occupied Bandwidth, 10MHz, 3670 MHz,13
Figure 10: TX power density, 5MHz, 3652.5 MHz, QPSK 3415
Figure 11: TX power density, 5MHz, 3652.5 MHz, 16 QAM 3/415
Figure 12: TX power density, 5MHz, 3652.5 MHz, 64 QAM ³ / ₄
Figure 13: TX power density, 5MHz, 3672.5 MHz,16
Figure 14: TX power density, 10MHz, 3655.0 MHz, QPSK 34 17
Figure 15: TX power density, 10MHz, 3655.0 MHz, 16 QAM ³ / ₄
Figure 16: TX power density, 10MHz, 3655.0 MHz, 64 QAM ³ / ₄
Figure 17: TX power density, 10MHz, 3670.0 MHz,
Figure 18: TX Burst Power, 5MHz, 3652.5 MHz, QPSK 3/4
Figure 19: TX Burst Power, 5MHz, 3652.5 MHz, 16 QAM ³ / ₄
Figure 20: TX Burst Power, 5MHz, 3652.5 MHz, 64 QAM ³ / ₄
Figure 21: TX Burst Power, 5MHz, 3672.5 MHz, QPSK 34
Figure 22: TX Burst Power, 10MHz, 3655.0 MHz, QPSK 3/4
Figure 23: TX Burst Power, 10MHz, 3655.0 MHz, 16 QAM 3/422
Figure 24: TX Burst Power, 10MHz, 3655.0 MHz, 64 QAM 3/423
Figure 25: TX Burst Power, 10MHz, 3670.0 MHz, 64 QAM 3/423
Figure 26: Spectrum Mask, 5MHz, 3652.5 MHz, QPSK 3/425
Figure 27: Spectrum Mask, 5MHz, 3652.5 MHz, 64 QAM ³ / ₄
Figure 28: Spectrum Mask, 5MHz, 3672.5 MHz, QPSK 3/4
Figure 29: Spectrum Mask, 5MHz, 3672.5 MHz, 64 QAM ³ / ₄
Figure 30: Spectrum Mask, 10MHz, 3655.0 MHz, QPSK 3427
Figure 31: Spectrum Mask, 10MHz, 3655.0 MHz, 64 QAM 3/427
Figure 32: Spectrum Mask, 10MHz, 3670.0 MHz, QPSK 34
Figure 33: Spectrum Mask, 10MHz, 3670.0 MHz, 64 QAM 3/4

1 Revision History

Revision	Originator	Date	Comment
А	Sulis Consultants	16 July 2010	Issued as 1 st release
В	Sulis Consultants	30 July 2010	CPE Antenna gain changed from 7dBi to correct value of 6dBi
			Test Plan SC_AIR_TP02_A modified - freq stability only on one channel

2 Purpose

This document details the preliminary RF tests performed on the AWB 3.5 GHz CPE. The tests were used to determine worst-case frequency/modulation combinations to be tested by RFI Global services under proposal 78529JD01. These were included in Test Plan SC_AIR_TP02_A, which is included at the end of this document.

3 Reference Documents

[Ref 1]	47CFR2	Electromagnetic compatibility and Radio spectrum Matters (ERM); Telecommunications network equipment, ElectroMagnetic Compatibility (EMC) requirements
[Ref 2]	47 CRF90Z	Private Land Mobile Radio Services subpart Z – Wireless Broadband Services in the 3650 – 3700 MHz bans.
[Ref 3]	TIA-603-C	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards

4 Product Description

The CPE supports operation with 5 MHz and 10 MHz bandwidths, comprising 512 and 1024 subcarriers respectively. Each of these subcarriers can be modulated in a number of modes:

- QPSK 1/2 and 3/4
- 16 QAM 1/2 and 3/4
- 64 QAM ¹/₂ and ³/₄

The following three modulation schemes will be used during testing:

- QPSK 3/4
- 16 QAM 3/4
- 64 QAM 3/4

The CPE has two antennas allowing 2x transmit and 2x receive MIMO operation, however the CPE will only be deployed with 1x transmit.

5 Tests performed

Testing was carried out on 13th July 2010 by C F J Blackham BEng(Hons) CEng MIET, director of Sulis Consultants Ltd.

Part	Bandwidth	Channels	Modulation
2.1049 / 90.209	5.0	Bottom	All three
Occ bandwidth		Тор	Worst case
	10.0	Bottom	All three
		Тор	Worst case
2.1046 / 90.1321	5.0	Bottom	All three
Peak Power density		Тор	Worst case
at antenna port	10.0	Bottom	All three
		Тор	Worst case
2.1046 / 90.1321	5.0	Bottom	All three
RF output power in		Тор	Worst case
burst	10.0	Bottom	All three
		Тор	Worst case
2.1051 / 90.201(n)	5.0	Bottom	QPSK & 64QAM
Spectrum mask		Тор	QPSK & 64QAM
	10.0	Bottom	QPSK & 64QAM
		Тор	QPSK & 64QAM

Table 1: Summary of tests performed

6 Test Configuration

6.1 Test sample and Operating mode

The equipment under test (EUT) was:

Configured Manufacturer		Name	Model	Serial
for			Number	Number
5 MHz channels	Accton Wireless Broadband Corp	WiMAX 802.16e indoor CPE	RG211-3.8	W023000022
10 MHz channels	Accton Wireless Broadband Corp	WiMAX 802.16e indoor CPE	RG211-3.8	W023000028

Table 2: Equipment under test

6.2 Support equipment

The support equipment was:

Description	Manufacturer	Name	Serial Number
Laptop	Dell	Vostro 1000	User 17
PSU	Asian Power Deivces Inc	WA1212FG	Y550209D17007281600

Table 3: Support Equipment

6.3 Test equipment

Description	Manufacturer	Name	Serial Number	Calibration certificate
Receiver	Rohde & Schwarz	FSQ 8	100206	R&S 25037
Network Analyser	Rohde & Schwarz	ZVB20		R&S 24684
Attenator	Huber+Suhner	6810.17A	Batch 751730	Calibrated in-situ using ZVB20
RF cable	Sucoflex	104	83289/4	

Table 4: Test Equipment

6.4 Equipment set-up

Equipment was configured as per figure 1:

- A telnet program running on the laptop allowed the CPE to be set into test mode using a serial lead connected to a header on the main board.
- The insertion loss of the Attenuator and Co-ax cable were measured using a Network Analyser and their path-loss was programmed into the FSQ as an offset of 11.0 dB.

Figure 1: LI Probe test configuration: Emissions

7 Occupied Bandwidth: 47CFR2.1049 / 90.209

The occupied bandwidth was measured using the inbuilt function on the FSQ. Measurements were made on the channel/bandwidth/modulation combinations detailed in table 5 below.

Measurements were performed on bottom channel for each bandwidth, with the four modulation schemes under test. The worst case modulation scheme(s) for each bandwidth was then used for measurement on middle and top channels.

Channel	Bandwidth (MHz)	Frequency (MHz)	Modulation	Bandwidth (kHz)
			QPSK 3/4	4743.6
Bottom	5	3652.5	16 QAM 3⁄4	4743.6
			64 QAM 3⁄4	4743.6
Тор	5	3672.5	64 QAM 3⁄4	4743.6
			QPSK 3/4	9294.9
Bottom	10	3655.0	16 QAM ¾	9294.9
			64 QAM 3⁄4	9294.9
Тор	10	3670.0	64 QAM 3⁄4	9294.9

Table 5: Occupied Bandwidth test results

CE marking and product approvals

Figure 2: Occupied Bandwidth, 5MHz, 3652.5 MHz, QPSK 3/4

Figure 3: Occupied Bandwidth, 5MHz, 3652.5 MHz, 16 QAM 3/4

Figure 4: Occupied Bandwidth, 5MHz, 3652.5 MHz, 64 QAM 3/4

Figure 5: Occupied Bandwidth, 5MHz, 3672.5 MHz,

Figure 6: Occupied Bandwidth, 10MHz, 3655.0 MHz, QPSK 3/4

Figure 7: Occupied Bandwidth, 10MHz, 3655.0 MHz, 16 QAM 3/4

Figure 8: Occupied Bandwidth, 10MHz, 3655.0 MHz, 64 QAM 3/4

Figure 9: Occupied Bandwidth, 10MHz, 3670 MHz,

8 Transmit Peak Power density 90.1321

The equipment was configured as per figure 1 and the measurements made using the RMS detector of the FSQ.

The duty cycle of the transmitter in 10 MHz mode is 33% so a duty cycle offset of +4.8 dB was added to the 11dB cable loss offset in the analyser.

The duty cycle of the transmitter in 5 MHz mode is 38% so a duty cycle offset of +4.1 dB was added to the 11dB cable loss offset in the analyser.

Channel	Bandwidth (MHz)	Frequency (MHz)	Modulation	TX power (dBm)	EI RP (dBm)
			QPSK 34	17.79	23.79
Bottom	5	3652.5	16 QAM 3⁄4	18.09	24.09
			64 QAM 3⁄4	17.99	23.99
Тор	5	3672.5	16 QAM 3⁄4	18.64	24.64
			QPSK 3/4	14.41	20.41
Bottom	10	3655.0	16 QAM 3⁄4	14.05	20.05
			64 QAM 3⁄4	13.81	19.81
Тор	10	3670.0	QPSK 3/4	13.47	19.47

TX power conducted is then converted to EIRP by adding 6.0 dBi.

Table 6: Transmit Power Density test results

Figure 10: TX power density, 5MHz, 3652.5 MHz, QPSK 3/4

Figure 11: TX power density, 5MHz, 3652.5 MHz, 16 QAM 3/4

Figure 12: TX power density, 5MHz, 3652.5 MHz, 64 QAM 3/4

Figure 13: TX power density, 5MHz, 3672.5 MHz,

CE marking and product approvals

Figure 14: TX power density, 10MHz, 3655.0 MHz, QPSK 3/4

Figure 15: TX power density, 10MHz, 3655.0 MHz, 16 QAM 3/4

Figure 16: TX power density, 10MHz, 3655.0 MHz, 64 QAM 3/4

Figure 17: TX power density, 10MHz, 3670.0 MHz,

9 Transmit Carrier Output Power 90.1321 / 2.1046

The equipment was configured as per figure 1 and the measurements made using the RMS detector of the FSQ.

The duty cycle of the transmitter in 10 MHz channel mode is 33% so a duty cycle offset of +4.8 dB was added to the 11dB cable loss offset in the analyser.

The duty cycle of the transmitter in 5 MHz channel mode is 38% so a duty cycle offset of +4.1 dB should be used. However 4.8dB was added in error so this is corrected by subtracting 0.7dB from measured value.

Measured antenna port was then converted to EIRP by adding 6.0 dBi.

Channel	Bandwidth (MHz)	Frequency (MHz)	Modulation	TX power (dBm)	Corrected TX power (dBm)	EI RP (dBm)
			QPSK 3/4	24.23	23.53	29.53
Bottom	5	3652.5	16 QAM ¾	24.18	23.48	29.48
			64 QAM 3⁄4	24.01	23.31	29.31
Тор	5	3672.5	QPSK 3/4	24.60	23.90	29.90
			QPSK 3/4	21.92	N/A	27.92
Bottom	10	3655.0	16 QAM ¾	21.88	N/A	27.88
			64 QAM 3⁄4	21.90	N/A	27.90
Тор	10	3670.0	64 QAM 3⁄4	22.17	N/A	28.17

Table 7: Transmit Power Density test results

Figure 18: TX Burst Power, 5MHz, 3652.5 MHz, QPSK 3/4

Figure 19: TX Burst Power, 5MHz, 3652.5 MHz, 16 QAM 3/4

CE marking and product approvals

Figure 20: TX Burst Power, 5MHz, 3652.5 MHz, 64 QAM 3/4

Figure 21: TX Burst Power, 5MHz, 3672.5 MHz, QPSK 3/4

Figure 22: TX Burst Power, 10MHz, 3655.0 MHz, QPSK 3/4

Figure 23: TX Burst Power, 10MHz, 3655.0 MHz, 16 QAM 3/4

Figure 24: TX Burst Power, 10MHz, 3655.0 MHz, 64 QAM 3/4

Figure 25: TX Burst Power, 10MHz, 3670.0 MHz, 64 QAM 3/4

10 Spectrum Mask – 47CFR90.201(n)

This test was used to determine worst case modulation schemes to be tested by RFI.

Ref level offset of 15.8 dBm included duty cycle offset for 10 MHz channels and 15.1 dBm included duty cycle offset for 5 MHz channels. An RMS detector was used.

The measurement was made using 100kHz bandwidth and the FCC mask was lowered onto the spectrum so that the "band edge" requirement was still 25dB down on maximum emission.

This test was performed with two test modulation schemes for both bandwidths at top and bottom of the band.

In a deviation to FCC test method, the emission mask was placed directly onto the maximum emission measured with a 100kHz bandwidth, rather than being placed at a point 10dB down on peak level measured with full 5 or 10 MHz bandwidth. This gives a worse case measurement suitable for pre-testing.

Channel	Bandwidth (MHz)	Frequency (MHz)	Modulation	Result
Bottom	5	3652.5	QPSK 3/4	Pass
			64 QAM 34	Pass
Тор	5		QPSK 3/4	Pass
		3672.5	64 QAM 34	Pass
Bottom	10		QPSK 3/4	Pass
		3055.0	64 QAM 3⁄4	Pass
Bottom	10		QPSK 3/4	Pass
		3670.0	64 QAM 34	Pass

Table 8: Spectrum Mask

Figure 26: Spectrum Mask, 5MHz, 3652.5 MHz, QPSK 3/4

Figure 27: Spectrum Mask, 5MHz, 3652.5 MHz, 64 QAM 3/4

∗RBW 100 kHz Marker 1 [T1] SELECT ×VBW 300 kHz 8.51 dBm Ref 29 dBm Att 40 dB 3.673429487 GHz TRACE •SWT 10 s Offset 15,1 dB LIMIT CHECK PASS CLEAR/ -20 Ĥ WRITE RM IEH -101 min. LUL noner Max Hold -Ø AVERAGE -10--20 UIEW one -30 addead BLANK -40 SWEEP -50 COUNT -60 DETECTOR -70 Span 20 MHz 3.6725 GHz 2 MHz/ Center TRACE MATH WIMAX SCREEN B SPEC TRUM FFT

Figure 29: Spectrum Mask, 5MHz, 3672.5 MHz, 64 QAM 3/4

Figure 30: Spectrum Mask, 10MHz, 3655.0 MHz, QPSK 3/4

Figure 31: Spectrum Mask, 10MHz, 3655.0 MHz, 64 QAM 3/4

∗RBW 100 kHz Marker 1 [T1] SELECT ∗VBW 300 kHz 3.94 dBm ∗SWT 10 s Ref 34 dBm Att 45 dB 3.671394231 GHz TRACE Offset 15.8 dB 30 LIMIT CHE PAS CLEAR/ Ĥ WRITE -20 . RM JTFU LUL MAX HOLD -10 1 m wy -0 AVERAGE -10 VIEW -20 3DE BLANK 40 SWEEP COUNT -50 DETECTOR -60 3.67 GHz 3 MHz/ Span 30 MHz Center TRACE MATH WIMAX SCREEN B SPEC TRUM FFT

Figure 32: Spectrum Mask, 10MHz, 3670.0 MHz, QPSK 3/4

Figure 33: Spectrum Mask, 10MHz, 3670.0 MHz, 64 QAM 3/4

11 Test Plan SC_AIR_TP02_A

Rule	Description	Limit	Test Frequencies (MHz)	Bandwidth	Modulation
2.1046 90.1321	RF power output	25W/25 MHz EIRP	36525	5	QPSK ³ ⁄ ₄
			3672.5	5	QPSK ³ / ₄
			3655.0	10	64 QAM 3⁄4
			3570.0	10	64 QAM ¾
2.1046 90.1321	RF power output density	1W/MHz EIRP	36525	5	16 QAM 3⁄4
			3672.5	5	16 QAM 3⁄4
			3655.0	10	QPSK ³ / ₄
			3570.0	10	QPSK ³ ⁄ ₄
2.1049 90.209	Occupied Bandwidth	10 MHz / 5MHz as appropriate	36525	5	64 QAM 3⁄4
			3672.5	5	64 QAM 3⁄4
			3655.0	10	64 QAM 3⁄4
			3570.0	10	64 QAM ¾
2.1051 90.210(n)	Spectrum mask	Comply with mask B	36525	5	QPSK ³ / ₄
			3672.5	5	64 QAM 3⁄4
			3655.0	10	QPSK ³ / ₄
			3570.0	10	64 QAM ¾
2.1051	Spurious	Out of band	36525	5	QPSK ³ / ₄
90.1323	Emissions at antenna terminals	power at least 43 + 10*log(P) db below wanted signal	3570.0	10	64 QAM ¾
2.1053	Spurious		36525	5	QPSK ³ / ₄
90.1323	Emissions field strength		3570.0	10	64 QAM ¾
2.1055 90.213	Frequency Stability – temp and voltage	No limit specified – results shall be provided for information	36525	5	QPSK ³ / ₄

Following pre-testing, the following tests shall be performed at RFI

Table 9: Summary of tests to be performed at RFI