

FCC RF EXPOSURE EVALUATION REPORT FCC ID: V7TU9V

Project No.	: 1804C310
Equipment	: AC650 Auto-Install Mini Wireless Dual Band Adapter
Model	: U9
Applicant	: SHENZHEN TENDA TECHNOLOGY CO.,LTD
Address	: 6-8 Floor, Tower E3, No. 1001, Zhongshanyuan
	Road, Nanshan District, Shenzhen, China. 518052
Exposure category	: General population/uncontrolled environment
EUT Type:	: Production Unit (Engineer Sample)
Device Type	: Portable Device

1. Evaluation Method

According to KDB447498 D01 General RF Exposure Guidance v06Section 4.3.1 Standalone SAR test exclusion considerations: "Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition, listed below, is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The minimum test separation distance is determined by the smallest distance from the antenna and radiating structures or outer surface of the device, according to the host form factor, exposure conditions and platform requirements, to any part of the body or extremity of a user or bystander of section 4.1). To qualify for SAR test exclusion, the test separation distances applied must be fully explained and justified by the operating configurations and exposure conditions of the transmitter and applicable host platform requirements, typically in the SAR measurement or SAR analysis report, according to the required published RF exposure KDB procedures. When no other RF exposure testing or reporting is required, a statement of justification and compliance must be included in the equipment approval, in lieu of the SAR report, to qualify for the SAR test exclusion. When required, the device specific conditions described in the other published RF exposure KDB procedures must be satisfied before applying these SAR test exclusion provisions; for example, handheld PTT twoway radios, handsets, laptops & tablets etc. "

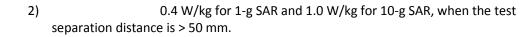
[(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] \cdot [Vf (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- f (GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to f) in section 4.1 is applied to determine SAR test exclusion.

For frequencies below 100 MHz, the following may be considered for SAR test exclusion (also illustrated in Appendix C):

 For test separation distances > 50 mm and < 200 mm, the power threshold at the corresponding test separation distance at 100 MHz in step b) is multiplied by [1 + log(100/f(MHz))]


2) For test separation distances \leq 50 mm, the power threshold determined by the equation in c) 1) for 50 mm and 100 MHz is multiplied by $\frac{1}{2}$

3) SAR measurement procedures are not established below 100 MHz.

When SAR test exclusion cannot be applied, a KDB inquiry is required to determine SAR evaluation requirements for any SAR test results below 100 MHz to be acceptable.

When an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:

1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [f](GHz)/x] W/kg, for test separation distances \leq 50 mm; Where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When one of the following test exclusion conditions is satisfied for all combinations of simultaneous transmission configurations, further equipment approval is not required to incorporate transmitter modules in host devices that operate in the mixed mobile and portable host platform exposure conditions. The grantee is responsible for documenting this according to Class I permissive change requirements. Antennas that qualify for standalone SAR test exclusion must apply the estimated standalone SAR to determine simultaneous transmission test exclusion.

- a) The [∑ of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [∑ of MPE ratios] is ≤ 1.0.
- b) The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all \leq 0.04, and the [Σ of MPE ratios] is \leq 1.0.

2. Refer Evaluation Method

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

<u>FCC KDB publication 447498 D01 General RF Exposure Guidance v06:</u> Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1093: Radiofrequency radiation exposure evaluation: portable devices

2	
Э	•

Conducted Power Results

3.1

Test Setup

EUT	Power Meter

3.2

Test Equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Power Meter	ANRITSU	ML2495A	1128009	Mar. 11, 2019
2	Pulse Power Sensor	ANRITSU	MA2411B	1027500	Mar. 11, 2019

Remark: all calibration period of equipment list is one year.

3.3 Test Procedure

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram Test Setup.
- b. Setup EUT work at duty cycle more than 98%;
- c. Read power sensor values in Peak (burst average) detector;

3.4 Measure Results

Mode	Channel	Frequency	Peak Conducted Output Power (dBm)			
WIDUE	Channel	(MHz)	Antenna 1			
	1	2412	9.36			
IEEE 802.11b	6	2437	9.47			
-	11	2462	9.32			
	1	2412	9.35			
IEEE 802.11g	6	2437	9.45			
	11	2462	9.62			
	1	2412	9.34			
IEEE 802.11n HT20	6	2437	9.29			
	11	2462	9.58			
	3	2422	9.23			
IEEE 802.11n HT40	6	2437	9.14			
	9	2452	9.56			
		_	Burst Average Conducted Output Power			
Mode	Channel	Frequency	(dBm)			
		(MHz)	Antenna 2			
	36	5180	7.42			
	40	5200	7.67			
	48	5240	7.62			
IEEE 802.11a	149	5745	7.53			
	157	5785	7.48			
	165	5825	7.41			
	36	5180	7.45			
	40	5200	7.48			
	48	5240	7.53			
IEEE 802.11n HT20	149	5745	7.49			
	157	5785	7.58			
- F	165	5825	7.64			
	38	5190	7.55			
	46	5230	7.48			
IEEE 802.11n HT40	151	5755	7.44			
-	159	5795	7.36			
IEEE 802.11ac	36	5180	7.32			
VHT20	40	5200	7.48			

	-		
	48	5240	7.56
	149	5745	7.35
	157	5785	7.33
	165	5825	7.39
	38	5190	7.31
IEEE 802.11ac	46	5230	7.44
VHT40	151	5755	7.33
	159	5795	7.29
IEEE 802.11ac	42	5210	7.31
VHT80	155	5775	7.34

4.

Manufacturing Tolerance

Mode	Frequency Band	Peak Conducted Output Power (dBm)				
WIDUE	Trequency band	Antenna 1				
IEEE 802.11b	2.4G	≤9.70				
IEEE 802.11g	2.4G	≤9.70				
IEEE 802.11n HT20	2.4G	≤9.70				
IEEE 802.11n HT40	2.4G	≤9.70				
Mada	Fraguanay Dand	Burst Average Conducted Output Power (dBm)				
Mode	Frequency Band	Antenna2				
	5G Brand 1	≤8.00				
IEEE 802.11a	5G Brand 3	≤8.00				
IEEE 802.11n HT20	5G Brand 1	≤8.00				
IEEE 802.110 H120	5G Brand 3	≤8.00				
	5G Brand 1	≤8.00				
IEEE 802.11n HT40	5G Brand 3	≤8.00				
	5G Brand 1	≤8.00				
IEEE 802.11ac VHT20	5G Brand 3	≤8.00				
	5G Brand 1	≤8.00				
IEEE 802.11ac VHT40	5G Brand 3	≤8.00				
	5G Brand 1	≤8.00				
IEEE 802.11ac VHT80	5G Brand 3	≤8.00				

5.

Antenna Information

Antenna	Manufacturer	Model Name	Antenna Type	Connector	Maximum Peak Gain (dBi)
Antenna 1	N/A	N/A	Internal	N/A	1.00
Antenna 2	N/A	N/A	Internal	N/A	0.50

6.

Evaluation Results

6.1

Standalone

Antenna 1

		Antenna		t power	SAR Test	SAR Test
Band/Mode	f (GHz)	Distance (mm)	dBm	mW	Exclusion Threshold	Exclusion
IEEE 802.11b	2.462	5	9.70	9.3325	2.9< 3.0	Yes
IEEE 802.11g	2.462	5	9.70	9.3325	2.9< 3.0	Yes
IEEE 802.11n HT20	2.462	5	9.70	9.3325	2.9< 3.0	Yes
IEEE 802.11n HT40	2.452	5	9.70	9.3325	2.9< 3.0	Yes

Antenna 2

		Antenna	RF outpu	t power	SAR Test	SAR Test
Band/Mode	f (GHz)	Distance (mm)	dBm	mW	Exclusion Threshold	Exclusion
IEEE 802.11a	5.240	5	8.00	6.3096	2.9 < 3.0	Yes
IEEE 002.11a	5.825	5	8.00	6.3096	3.0 ≤ 3.0	Yes
IEEE 802.11n HT20	5.240	5	8.00	6.3096	2.9 < 3.0	Yes
IEEE 802.110 H120	5.825	5	8.00	6.3096	3.0 ≤ 3.0	Yes
IEEE 802.11n HT40	5.230	5	8.00	6.3096	2.9 < 3.0	Yes
IEEE 802.110 H140	5.795	5	8.00	6.3096	3.0 ≤ 3.0	Yes
	5.240	5	8.00	6.3096	2.9 < 3.0	Yes
IEEE 802.11ac VHT20	5.825	5	8.00	6.3096	3.0 ≤ 3.0	Yes
	5.230	5	8.00	6.3096	2.9 < 3.0	Yes
IEEE 802.11ac VHT40	5.795	5	8.00	6.3096	3.0 ≤ 3.0	Yes
	5.210	5	8.00	6.3096	2.9 < 3.0	Yes
IEEE 802.11ac VHT80	5.775	5	8.00	6.3096	3.0 ≤ 3.0	Yes

Remark:

1. Output power including tune up tolerance;

2. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to f) in section 4.1 is applied to determine SAR test exclusion.

6.2 Simultaneous Transmission for SAR Exclusion

The sample support one WLAN modular and 2T2R MIMO antennas, need consider simultaneous transmission;

6.2.1 Estimation Standalone SAR

Antenna 1

3H

Dand /Mada	f (CU-)	Antenna Distance	RF outpu	t power	Estimation SAR
Band/Mode	f (GHz)	(mm)	dBm	mW	Values (W/kg)
IEEE 802.11b	2.462	5	9.70	9.3325	0.3905
IEEE 802.11g	2.462	5	9.70	9.3325	0.3905
IEEE 802.11n HT20	2.462	5	9.70	9.3325	0.3905
IEEE 802.11n HT40	2.452	5	9.70	9.3325	0.3897

Antenna 2

Band/Mode	f (GHz)	Antenna Distance	RF outpu	t power	Estimation SAR
Balluy Mode	1 (0112)	(mm)	dBm	mW	Values (W/kg)
IEEE 802.11a	5.240	5	8.00	6.3096	0.3852
IEEE 002.11d	5.825	5	8.00	6.3096	0.4061
IEEE 802.11n HT20	5.240	5	8.00	6.3096	0.3852
IEEE 802.110 H120	5.825	5	8.00	6.3096	0.4061
IEEE 802.11n HT40	5.230	5	8.00	6.3096	0.3848
IEEE 802.1111 H140	5.795	5	8.00	6.3096	0.4050
IEEE 802.11ac VHT20	5.240	5	8.00	6.3096	0.3852
IEEE 802.11aC VH120	5.825	5	8.00	6.3096	0.4061
	5.230	5	8.00	6.3096	0.3848
IEEE 802.11ac VHT40	5.795	5	8.00	6.3096	0.4050
	5.210	5	8.00	6.3096	0.3840
IEEE 802.11ac VHT80	5.775	5	8.00	6.3096	0.4043

6.2.2 Estimation Simultaneous Transmission SAR

 Σ of (the highest measured or estimated SAR_{WLAN antenna 1}+SAR_{WLAN} antenna 2)/1.6 = (0.3905+0.4061)/1.6 = 0.5 < 1.0;

7. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB 447498 v06.