FCC Radio Test Report FCC ID: V7TU12

This report concerns (check one): \boxtimes Original Grant \square Class I Change \square Class II Change

Project No.	$:$	1611C207
Equipment	$:$	AC1300 Wireless Dual Band USB
Model Name	$:$	U12
Applicant	$:$	SHENZHEN TENDA TECHNOL
Address	$:$	$6-8$ Floor, Tower E3, No. 1001,
		Road, Nanshan District, Shenzh
Date of Receipt	$:$	Nov. 28, 2016
Date of Test	$:$	Nov. 28, 2016 ~ Dec. 12, 2016
Issued Date	$:$	Dec. 13, 2016
Tested by	$:$	BTL Inc.

Testing Engineer

Technical Manager

Authorized Signatory

BTII I IN

No.3,Jinshagang 1st Road, Shixia,Dalang Town, Dongguan, Guangdong, China.
TEL: +86-769-8318-3000FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).
BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL shall have no liability for any declarations, inferences or generalizations drawn by the client or others from BTL issued reports.
BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and BTL-self, extracts from the test report shall not be reproduced except in full with BTL's authorized written approval.
BTL's laboratory quality assurance procedures are in compliance with the ISO Guide17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents Page
1.CERTIFICATION 6
2. SUMMARY OF TEST RESULTS 7
2.1 TEST FACILITY 8
2.2 MEASUREMENT UNCERTAINTY 8
3. GENERAL INFORMATION 9
3.1 GENERAL DESCRIPTION OF EUT 9
3.2 DESCRIPTION OF TEST MODES 11
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 13
3.4BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED 14
3.5DESCRIPTION OF SUPPORT UNITS 14

4 .EMC EMISSION TEST 15
4.1 CONDUCTED EMISSION MEASUREMENT 15
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS 15
4.1.2 TEST PROCEDURE 15
4.1.3 DEVIATIONFROMTESTSTANDARD 15
4.1.4 TESTSETUP 16
4.1.5 EUT OPERATING CONDITIONS 16
4.1.6 EUT TEST CONDITIONS 16
4.1.7 TEST RESULTS 16
4.2 RADIATED EMISSION MEASUREMENT 17
4.2.1 RADIATED EMISSION LIMITS 17
4.2.2 TEST PROCEDURE 18
4.2.3 DEVIATIONFROMTESTSTANDARD 18
4.2.4 TESTSETUP 19
4.2.5 EUT OPERATING CONDITIONS 20
4.2.6 EUT TEST CONDITIONS 20
4.2.7 TEST RESULTS (9 KHZ TO 30MHZ) 20
4.2.8 TEST RESULTS(30MHZTO 1000 MHZ) 20
4.2.9 TEST RESULTS(ABOVE 1000 MHZ$) 20$

5 .BANDWIDTH TEST 21
5.1 APPLIED PROCEDURES 21
5.1.1 TEST PROCEDURE 21
5.1.2 DEVIATION FROM STANDARD 21
5.1.3 TEST SETUP 21
5.1.4 EUT OPERATION CONDITIONS 21
5.1.5 EUT TEST CONDITIONS 21
5.1.6 TEST RESULTS 21

6 .MAXIMUM PEAK CONDUCTED OUTPUT POWER TEST 22
Table of Contents Page
6.1 APPLIED PROCEDURES / LIMIT 22
6.1.1 TEST PROCEDURE 22
6.1.2 DEVIATION FROM STANDARD 22
6.1.3 TEST SETUP 22
6.1.4 EUT OPERATION CONDITIONS 22
6.1.5 EUT TEST CONDITIONS 22
6.1.6 TEST RESULTS 22
7 .ANTENNA CONDUCTED SPURIOUS EMISSION 23
7.1 APPLIED PROCEDURES / LIMIT 23
7.1.1 TEST PROCEDURE 23
7.1.2 DEVIATION FROM STANDARD 23
7.1.3 TEST SETUP 23
7.1.4 EUT OPERATION CONDITIONS 23
7.1.5 EUT TEST CONDITIONS 23
7.1.6 TEST RESULTS 23
8 .POWER SPECTRAL DENSITY TEST 24
8.1 APPLIED PROCEDURES / LIMIT 24
8.1.1 TEST PROCEDURE 24
8.1.2 DEVIATION FROM STANDARD 24
8.1.3 TEST SETUP 24
8.1.4 EUT OPERATION CONDITIONS 24
8.1.5 EUT TEST CONDITIONS 24
8.1.6 TEST RESULTS 24
9 . MEASUREMENT INSTRUMENTS LIST 25
10 .EUT TEST PHOTO 27
ATTACHMENTA -CONDUCTED EMISSION 31
ATTACHMENTB -RADIATED EMISSION (9KHZ TO 30MHZ) 34
ATTACHMENTC -RADIATED EMISSION (30MHZ TO 1000MHZ) 39
ATTACHMENTD -RADIATED EMISSION (ABOVE 1000MHZ) 46
ATTACHMENTE - BANDWIDTH 95
ATTACHMENTF- MAXIMUM AVERAGE CONDUCTED OUTPUT POWER 104
ATTACHMENTG - ANTENNA CONDUCTED SPURIOUS EMISSION 108
ATTACHMENTH - POWER SPECTRAL DENSITY 133

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCCP-1-1611C207	Original Issue.	Dec. 13, 2016

1．CERTIFICATION

Equipment $:$	AC1300 Wireless Dual Band USB Adapter
Brand Name ：	Tenda
Model Name $:$	U12
Applicant $:$	SHENZHEN TENDA TECHNOLOGY CO．，LTD
Manufacturer ：SHENZHEN TENDA TECHNOLOGY CO．，LTD	
Address $:$	6－8 Floor，Tower E3，No．1001，Zhongshanyuan Road，Nanshan District，
	Shenzhen，China．518052
Date of Test $:$	Nov．28，2016～Dec．12，2016
Test Sample $:$	Engineering Sample
Standard（s）$:$	FCC Part15，Subpart C：（15．247）／ANSI C63．10－2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc．
The test data，data evaluation，and equipment configuration contained in our test report（Ref No． BTL－FCCP－1－1611C207）were obtained utilizing the test procedures，test instruments，test sites that has been accredited by the Authority of TAF according to the ISO－17025 quality assessment standard and technical standard（s）．

Test results included in this report is only forWLAN 2．4G part．

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15 (15.247), Subpart C			
Standard(s) Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
$15.247(\mathrm{~d})$	Antenna conducted Spurious Emission	PASS	
$15.247(\mathrm{a})(2)$	PdB Bandwidth	PASS	
$15.247(\mathrm{~b})(3)$	Poak Output Power	PASS	
$15.247(\mathrm{e})$	Antenna Requirement	PASS	
15.203	Transmitter Radiated Emissions	PASS	
$15.209 / 15.205$			

NOTE

(1)" N/A" denotes test is not applicable in this test report.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.
BTL's test firm number for FCC: 319330

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimatedfor tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U cispr requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on astandard uncertainty multiplied by a coverage factor of $\mathrm{k}=2$, providing a level of confidence of approximately 95%.
A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	$\mathrm{U},(\mathrm{dB})$
DG-C02	CISPR	$150 \mathrm{KHz}-30 \mathrm{MHz}$	2.32

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
DG-CB03	CISPR	$9 \mathrm{KHz}-30 \mathrm{MHz}$	V	3.79
		$9 \mathrm{KHz} \sim 30 \mathrm{MHz}$	H	3.57
		$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	V	3.82
		30 MHz 200MHz	H	3.78
		$200 \mathrm{MHz} \sim 1,000 \mathrm{MHz}$	V	4.10
		$200 \mathrm{MHz} \sim 1,000 \mathrm{MHz}$	H	4.06
		$1 \mathrm{GHz}-18 \mathrm{GHz}$	V	3.12
		$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	H	3.68
		$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	V	4.15
		$18 \mathrm{GHz}-40 \mathrm{GHz}$	H	4.14

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	AC1300 Wireless Dual Band USB Adapter	
Brand Name	Tenda	
Model Name	U12	
Model Difference	N/A	
Product Description	Operation Frequency	2412~2462 MHz
	Modulation Technology	802.11b:DSSS 802.11g:OFDM 802.11n:OFDM
	Bit Rate of Transmitter	$\begin{aligned} & \hline \text { 802.11b:11/5.5/2/1 Mbps } \\ & \text { 802.11g: } \\ & \text { 54/48/36/24/18/12/9/6 Mbps } \\ & 802.11 \mathrm{n} \text { up to } 300 \mathrm{Mbps} \\ & \hline \end{aligned}$
	Average Output Power (Max.)	$\begin{aligned} & \text { 802.11b: } 9.63 \mathrm{dBm} \\ & \text { 802.11g: } 9.54 \mathrm{dBm} \\ & 802.11 \mathrm{n}(20 \mathrm{MHz}): 9.67 \mathrm{dBm} \\ & 802.11 \mathrm{n}(40 \mathrm{MHz}): 9.56 \mathrm{dBm} \\ & \hline \end{aligned}$
PowerSource	Supplied from PC USB port.	
Power Rating	DC 5V	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. Channel List:

CH01-CH11 for 802.11b, 802.11g, 802.11n(20MHz) CH03-CH09 for 802.11n(40MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Printed	N/A	1
2	N/A	N/A	Printed	N/A	1

Note:
The EUT incorporates a MIMO function. Physically, the EUTprovides two completed transmitters and receivers (2T2R).
4. The worst case for $1 T X / 2 T X /$ as following:

Operating Mode_TX Mode	1 TX	2 TX
802.11 b	V (Ant 1)	-
802.11 g	V (Ant 1)	-
$802.11 \mathrm{n}(20 \mathrm{MHz})$	-	V (Ant 1+Ant 2)
$802.11 \mathrm{n}(40 \mathrm{MHz})$	-	V (Ant 1+Ant 2)

来書
数检
境测
30

3．2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT，the test system was pre－scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level．Each of these EUT operation mode（s）or test configuration mode（s）mentioned above was evaluated respectively．

Pretest Mode	Description
Mode 1	TX B MODE CHANNEL 01／06／11
Mode 2	TX G MODE CHANNEL 01／06／11
Mode 3	TX N－20MHZ MODE CHANNEL 01／06／11
Mode 4	TX N－40MHZ MODE CHANNEL 03／06／09
Mode 5	Normal Link

The EUT system operated these modes were found to be the worst case during the pre－scanning test as following：

For Conducted Test

Final Test Mode	Description
Mode 5	Normal Link

For Radiated Test	
Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01／06／11
Mode 2	TX G MODE CHANNEL 01／06／11
Mode 3	TX N－20MHZ MODE CHANNEL 01／06／11
Mode 4	TX N－40MHZ MODE CHANNEL 03／06／09

For Band Edge Test

Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01／06／11
Mode 2	TX G MODE CHANNEL 01／06／11
Mode 3	TX N－20MHZ MODE CHANNEL 01／06／11
Mode 4	TX N－40MHZ MODE CHANNEL 03／06／09

6dB Spectrum Bandwidth

Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-4OMHZ MODE CHANNEL 03/06/09

Maximum Conducted Output Power	
Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-4OMHZ MODE CHANNEL 03/06/09

Power Spectral Density	
Final Test Mode	Description
Mode 1	TX B MODE CHANNEL 01/06/11
Mode 2	TX G MODE CHANNEL 01/06/11
Mode 3	TX N-20MHZ MODE CHANNEL 01/06/11
Mode 4	TX N-40MHZ MODE CHANNEL 03/06/09

Note:
(1) The measurements are performed at the high, middle, low available channels.
(2) 802.11 b mode: DBPSK (1Mbps)
802.11g mode: OFDM (6Mbps)
802.11n HT20 mode : BPSK (6.5Mbps)
802.11n HT4Omode : BPSK (13.5Mbps)

For radiated emission tests, the highest output powers were set for final test.
(3)For radiated below 1G test, the 802.11bis found to be the worst case and recorded.
(4) The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel \& power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN

Test software version	MPTool		
Frequency (MHz)	2412	2437	2462
802.11 b	21	20	20
802.11 g	30	33	33
$802.11 \mathrm{n}(20 \mathrm{MHz})$	28	28	27
Frequency	2422	2437	2452
$802.11 \mathrm{n}(40 \mathrm{MHz})$	29	29	29

3．4BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED

3．5DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units．The following support units or accessories were used to form a representative test configuration during the tests．

Item	Equipment	Mfr／Brand	Model／Type No．	FCC ID	Series No．
A	Notebook	Lenovo	INSPIRON 1420－	DOC	JX193A01SDC2

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

4.EMC EMISSION TEST

4.1CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Limit ($\mathrm{dB} \mu \mathrm{V}$)	
	Quasi-peak	Average
$0.15-0.50$	66 to 56^{*}	56 to 46^{*}
$0.50-5.0$	56	46
$5.0-30.0$	60	50

Note
(1) The limit of " * " decreases with the logarithm of the frequency
(2) The test result calculated as following:

Measurement Value $=$ Reading Level + Correct Factor
Correct Factor $=$ Insertion Loss + Cable Loss + Attenuator Factor(if use)
Margin Level $=$ Measurement Value - Limit Value
The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.2 TEST PROCEDURE

a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipmentspowered from additional LISN(s). The LISN provide $50 \mathrm{Ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Interconnecting cables that hang closer than 40 cm to the groundplane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m .
d. LISN at least 80 cm from nearest part of EUT chassis.
e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3DEVIATIONFROMTESTSTANDARD

No deviation

4.1.4 TESTSETUP

Note: 1.Support units were connected to second LISN.
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5EUT OPERATING CONDITIONS

The EUT was placed on the test table and programmed in normal function.

4.1.6EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{CR}$ elative Humidity: 55\%Test Voltage: DC 5V

4.1.7TEST RESULTS

Please refer to the Attachment A.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9KHz-1000MHz)

Frequency (MHz)	Field Strength $($ microvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
$960 \sim 1000$	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	(dBuV/m) (at 3 meters)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:
(1) The limit for radiated test was performed according to FCC PART 15C.
(2) The tighter limit applies at the band edges.
(3) Emission level ($\mathrm{dBuV} / \mathrm{m}$) $=20 \log$ Emission level (uV / m).
(4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor $=$ Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level $=$ Measurement Value - Limit Value

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RBW / VBW	$1 \mathrm{MHz} / 3 \mathrm{MHz}$ for Peak,
(Emission in restricted band)	$1 \mathrm{MHz} / 1 / \mathrm{T}$ for Average

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	$9 \mathrm{KHz} \sim 90 \mathrm{KHz}$ for PK/AVG detector
Start \sim Stop Frequency	$90 \mathrm{KHz} \sim 110 \mathrm{KHz}$ for QP detector
Start \sim Stop Frequency	$110 \mathrm{KHz} \sim 490 \mathrm{KHz}$ for PK/AVG detector
Start $~$ Stop Frequency	$490 \mathrm{KHz} \sim 30 \mathrm{MHz}$ for QP detector
Start \sim Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$ for QP detector

4.2.2 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m ; the height of the test antenna shall vary between 1 m to 4 m . Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz .
f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak \& AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.2.3DEVIATIONFROMTESTSTANDARD

No deviation
4.2.4 TESTSETUP
(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz

(C) For Radiated Emissions Below 30MHz

4.2.5EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.2.6EUT TEST CONDITIONS

Temperature: $\mathbf{2 5}^{\circ}$ CRelative Humidity: 55% Test Voltage: DC 5V

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment B
Remark:
(1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
(2) Distance extrapolation factor $=40 \log$ (specific distance / test distance) (dB).
(3) Limit line $=$ specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS(30MHZTO 1000 MHZ)

Please refer to the Attachment C.

4.2.9 TEST RESULTS(ABOVE 1000 MHZ)

Please refer to the Attachment D.
Remark:
(1) No limit:This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.
5.BANDWIDTH TEST

5.1APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C			
Section	Test Item	Frequency Range (MHz)	Result
$15.247(\mathrm{a})(2)$	Bandwidth	$2400-2483.5$	PASS

5.1.1TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
b. Spectrum Setting: RBW=100KHz, VBW=300KHz, Sweep time $=2.5 \mathrm{~ms}$.

5.1.2DEVIATION FROM STANDARD

No deviation.

5.1.3TEST SETUP

5.1.4EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.1.5EUT TEST CONDITIONS

Temperature: 25° CRelative Humidity: 55% Test Voltage: DC 5 V

5.1.6TEST RESULTS

Please refer to the Attachment E.

6．MAXIMUM PEAK CONDUCTED OUTPUT POWER TEST

6．1APPLIED PROCEDURES／LIMIT

FCC Part15（15．247），Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
$15.247(\mathrm{~b})(3)$	Maximum Output Power	1 Watt or 30dBm	$2400-2483.5$	PASS	

6．1．1TEST PROCEDURE

a．The EUT was directly connected to the power meter and antenna output port as show in the block diagram below，
b．The maximum peak conducted output power was performed in accordance with method 9．1．2 of FCC KDB 558074D01 DTS Meas Guidance．

6．1．2DEVIATION FROM STANDARD

No deviation．

6．1．3TEST SETUP

6．1．4EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode．

6．1．5EUT TEST CONDITIONS

Temperature： 25° CRelative Humidity： 55% Test Voltage：DC 5 V

6．1．6TEST RESULTS

Please refer to the Attachment F ．

7.ANTENNA CONDUCTED SPURIOUS EMISSION

7.1APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum ordigitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band thatcontains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

7.1.1TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
b. Spectrum Setting: RBW=100KHz, VBW=300KHz, Sweep time $=$ Auto.
c. Offset=antenna gain+cable loss

7.1.2DEVIATION FROM STANDARD

No deviation.

7.1.3TEST SETUP

7.1.4EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.1.5EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{C}$ Relative Humidity: 55\%Test Voltage: DC 5V

7.1.6TEST RESULTS

Please refer to the Attachment G.
8.POWER SPECTRAL DENSITY TEST
8.1APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
$15.247(\mathrm{e})$	Power Spectral Density	8 dBm (in any 3KHz)	$2400-2483.5$	PASS	

8.1.1TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
b. Spectrum Setting: RBW=3KHz, VBW=10KHz, Sweep time = Auto.

8.1.2DEVIATION FROM STANDARD

No deviation.

8.1.3TEST SETUP

8.1.4EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.1.5EUT TEST CONDITIONS

Temperature: $25^{\circ} \mathrm{C}$ Relative Humidity: 55% Test Voltage: DC 5V

8.1.6TEST RESULTS

Please refer to the Attachment H .
9. MEASUREMENT INSTRUMENTS LIST

Conducted Emission Measurement						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	LISN	EMCO	$3816 / 2$	0052765	Mar. 27, 2017	
2	LISN	R\&S	ENV216	101447	Mar. 27, 2017	
3	Test Cable	emci	RG223(9KHz $-30 M H z)$	C_17	Mar. 10, 2017	
4	EMI Test Receiver	R\&S	ESCI	100382	Mar. 27, 2017	
5	50Ω Terminator	SHX	TF2-3G-A	08122901	Mar. 27, 2017	
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A1 -01	N/A	N/A	

Radiated Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 27, 2017
2	Amplifier	HP	8447D	2944A09673	Oct. 20, 2017
3	Receiver	AGILENT	N9038A	$\begin{array}{\|c\|} \hline \text { MY5213003 } \\ 9 \end{array}$	Sep. 04, 2017
4	Test Cable	emci	$\begin{gathered} \text { LMR-400(30MH } \\ z-1 G H z) \\ \hline \end{gathered}$	C-01	Jun. 26, 2017
5	Control	CT	SC100	N/A	N/A
6	Position Control	MF	MF-7802	$\begin{gathered} \hline \text { MF78020841 } \\ 6 \\ \hline \end{gathered}$	N/A
7	Antenna	ETS	3115	00075789	Mar. 27, 2017
8	Amplifier	Agilent	8449B	3008A02274	Mar. 10, 2017
9	Test Cable	emci	$\begin{gathered} \hline \text { EMC104-SM-S } \\ \text { M-10000(1GHz } \\ -26.5 \mathrm{GHz}) \\ \hline \end{gathered}$	C-68	Jun. 26, 2017
10	Controller	CT	SC100	N/A	N/A
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Apr. 23, 2017
12	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	$\begin{gathered} 980039 \text { \& } \\ \text { HA01 } \end{gathered}$	Mar. 27, 2017
13	Active Loop Antenna	R\&S	HFH2-Z2	830749/020	Sep. 06, 2017
14	Measurement Software	Farad	$\begin{gathered} \hline \text { EZ-EMC } \\ \text { Ver.NB-03A1-01 } \end{gathered}$	N/A	N/A

6dB BandwidthMeasurement						
Item	Kind of Equipment	Manufacturer	Type No．	Serial No．	Calibrated until	
1	Spectrum Analyzer	R\＆S	FSP 40	100185	Sep．04，2017	

Peak Output PowerMeasurement						
Item	Kind of Equipment	Manufacturer	Type No．	Serial No．	Calibrated until	
1	P－series Power meter	Agilent	N1911A	MY45100473	Sep．04，2017	
2	Wireband Power sensor	Agilent	N1921A	MY51100041	Sep．04，2017	

Antenna Conducted Spurious Emission Measurement

Item	Kind of Equipment	Manufacturer	Type No．	Serial No．	Calibrated until
1	Spectrum Analyzer	R\＆S	FSP 40	100185	Sep．04，2017

Power Spectral Density Measurement						
Item	Kind of Equipment	Manufacturer	Type No．	Serial No．	Calibrated until	
1	Spectrum Analyzer	R\＆S	FSP 40	100185	Sep．04，2017	

Remark：＂N／A＂denotes no model name，serial no．or calibration specified．
All calibration period of equipment list is one year．
10.EUT TEST PHOTO

Conducted Measurement Photos

3ㄴㄴ

Radiated Measurement Photos

9 KHz to 30 MHz

3ㄴㄴ

Radiated Measurement Photos

3TL

Radiated Measurement Photos

Above 1000 MHz

ATTACHMENTA -CONDUCTED EMISSION

Test Mode : Normal Link

Line

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	44.95	9.62	54.57	66.00	-11.43	Peak	
2	0.1500	24.92	9.62	34.54	56.00	-21.46	AVG	
$3 *$	0.1819	43.44	9.63	53.07	64.40	-11.33	Peak	
4	0.1819	25.39	9.63	35.02	54.40	-19.38	AVG	
5	0.2180	37.88	9.67	47.55	62.89	-15.34	Peak	
6	0.5700	23.99	9.81	33.80	56.00	-22.20	Peak	
7	6.0580	21.69	9.72	31.41	60.00	-28.59	Peak	
8	8.9660	21.94	9.93	31.87	60.00	-28.13	Peak	

Test Mode : Normal Link

Neutral

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
$1 *$	0.1580	47.92	9.52	57.44	65.57	-8.13	Peak	
2	0.1580	18.46	9.52	27.98	55.57	-27.59	AVG	
3	0.1780	43.19	9.55	52.74	64.58	-11.84	Peak	
4	0.1780	24.68	9.55	34.23	54.58	-20.35	AVG	
5	0.2060	39.78	9.63	49.41	63.37	-13.96	Peak	
6	0.5660	24.55	9.64	34.19	56.00	-21.81	Peak	
7	0.9420	16.78	9.66	26.44	56.00	-29.56	Peak	
8	8.1899	22.58	9.84	32.42	60.00	-27.58	Peak	

ATTACHMENTB -RADIATED EMISSION (9KHZ TO 30MHZ)

\section*{| Test Mode: | TX B MODE CHANNEL 01 |
| :--- | :--- |}

Ant 0°

Z背

\section*{| Test Mode: | TX B MODE CHANNEL 01 |
| :--- | :--- |}

Ant 0°

洏

\section*{| Test Mode: | TX B MODE CHANNEL 01 |
| :--- | :--- |}

Ant 90°

\section*{| Test Mode: | TX B MODE CHANNEL 01 |
| :--- | :--- |}

Ant 90°

ATTACHMENTC -RADIATED EMISSION (30MHZ TO 1000MHZ)

Test Mode: \quad TX B MODE CHANNEL 01

Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Hargin		
	$\mathbf{H H z}$	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1 *}$	76.5600	52.82	-16.42	36.40	40.00	-3.60	Peak	
2	228.8500	50.78	-13.47	37.31	46.00	-8.69	Peak	
3	304.5100	42.74	-10.26	32.48	46.00	-13.52	Peak	
4	380.1700	39.98	-9.14	30.84	46.00	-15.16	Peak	
5	456.8000	40.24	-8.23	32.01	46.00	-13.99	Peak	
6	764.2900	34.79	-1.33	33.46	46.00	-12.54	Peak	

Test Mode: TX B MODE CHANNEL 01

Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Hargin		
	$\mathbf{H H z}$	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	46.4900	29.29	-12.59	16.70	40.00	-23.30	Peak	
2	216.2400	43.83	-14.40	29.43	46.00	-16.57	Peak	
$3 *$	299.6600	43.33	-10.20	33.13	46.00	-12.87	Peak	
4	398.6000	34.93	-7.88	27.05	46.00	-18.95	Peak	
5	540.2199	30.84	-5.55	25.29	46.00	-20.71	Peak	
6	800.1800	31.20	0.25	31.45	46.00	-14.55	Peak	

Test Mode: \quad TX B MODE CHANNEL 06
Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Hargin		
	$\mathbf{H H z}$	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1 *}$	76.5600	54.26	-16.42	37.84	40.00	-2.16	Peak	
2	153.1900	40.92	-12.69	28.23	43.50	-15.27	Peak	
3	228.8500	46.69	-13.47	33.22	46.00	-12.78	Peak	
4	304.5100	42.18	-10.26	31.92	46.00	-14.08	Peak	
5	380.1700	39.38	-9.14	30.24	46.00	-15.76	Peak	
6	458.7400	38.90	-8.30	30.60	46.00	-15.40	Peak	

Test Mode: TX B MODE CHANNEL 06

Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Hargin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	30.0000	35.55	-14.03	21.52	40.00	-18.48	Peak	
2	216.2400	43.22	-14.40	28.82	46.00	-17.18	Peak	
$3 *$	298.6900	42.90	-10.30	32.60	46.00	-13.40	Peak	
4	398.6000	33.47	-7.88	25.59	46.00	-20.41	Peak	
5	563.5000	28.17	-5.22	22.95	46.00	-23.05	Peak	
6	800.1800	31.66	0.25	31.91	46.00	-14.09	Peak	

Test Mode: TX B MODE CHANNEL 11

Vertical

| No. | Freq. | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{H H z}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBu} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $1 *$ | 76.5600 | 53.76 | -16.42 | 37.34 | 40.00 | -2.66 | Peak | |
| 2 | 228.8500 | 46.69 | -13.47 | 33.22 | 46.00 | -12.78 | Peak | |
| 3 | 380.1700 | 39.38 | -9.14 | 30.24 | 46.00 | -15.76 | Peak | |
| 4 | 458.7400 | 38.40 | -8.30 | 30.10 | 46.00 | -15.90 | Peak | |
| 5 | 699.3000 | 32.97 | -2.13 | 30.84 | 46.00 | -15.16 | Peak | |
| 6 | 796.3000 | 33.22 | 0.09 | 33.31 | 46.00 | -12.69 | Peak | |

Test Mode: TX B MODE CHANNEL 11

Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	101.7800	31.97	-15.32	16.65	43.50	-26.85	Peak	
2	216.2400	43.39	-14.40	28.99	46.00	-17.01	Peak	
3	298.6900	44.25	-10.30	33.95	46.00	-12.05	Peak	
4	399.5700	34.01	-7.81	26.20	46.00	-19.80	Peak	
5	800.1800	31.51	0.25	31.76	46.00	-14.24	Peak	
$6 *$	831.2199	36.02	-0.68	35.34	46.00	-10.66	Peak	

ATTACHMENTD -RADIATED EMISSION (ABOVE 1000MHZ)

Orthogonal Axis : X
Test Mode: \quad TX B MODE 2412MHz

Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Hargin		
	$\mathbf{H H z}$	dBuV/m	dB	dBuV/m	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	24.01	33.01	57.02	74.00	-16.98	Peak	
2	2390.0000	13.30	33.01	46.31	54.00	-7.69	AVG	
$3 *$	2410.8000	60.48	33.10	93.58	54.00	39.58	AVG	No Limit
4	2411.9000	63.64	33.10	96.74	74.00	22.74	Peak	No Limit

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2412MHz

Vertical

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Hargin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{ml}$ | dB | Detector | Comment |
| $1 *$ | 7033.0000 | 20.57 | 10.82 | 31.39 | 54.00 | -22.61 | AVG | |
| 2 | 7084.5000 | 32.37 | 10.92 | 43.29 | 74.00 | -30.71 | Peak | |

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2412MHz
Horizontal

| No． | Freq． | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{m H z}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 2390.0000 | 23.98 | 33.01 | 56.99 | 74.00 | -17.01 | Peak | |
| 2 | 2390.0000 | 13.39 | 33.01 | 46.40 | 54.00 | -7.60 | AVG | |
| 3 | 2411.9000 | 66.55 | 33.10 | 99.65 | 74.00 | 25.65 | Peak | No Limit |
| $4 *$ | 2413.3000 | 63.49 | 33.11 | 96.60 | 54.00 | 42.60 | AVG | No Limit |

Orthogonal Axis ：X
Test Mode：\quad TX B MODE 2412MHz
Horizontal

No．	Freq．	Reading Level	Correct Factor	Measure ment	Limit	Hargin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	7034.0000	20.54	10.82	31.36	54.00	-22.64	AVG	
2	7169.0000	32.98	11.09	44.07	74.00	-29.93	Peak	

Orthogonal Axis :	X
Test Mode :	TX B MODE 2437MHz

Vertical

| No. | Freq. | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{H H z}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 2436.9000 | 64.25 | 33.21 | 97.46 | 74.00 | 23.46 | Peak | No Limit |
| $2 *$ | 2438.3000 | 61.09 | 33.21 | 94.30 | 54.00 | 40.30 | AVG | No Limit |

Orthogonal Axis ：X
 Test Mode：\quad TX B MODE 2437MHz

Vertical

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	7303.1200	31.10	11.36	42.46	74.00	-31.54	Peak	
$2 *$	7310.2730	20.27	11.37	31.64	54.00	-22.36	AVG	

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2437MHz

Horizontal

No．	Freq．	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	dBuV／m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2436.9000	67.64	33.21	100.85	74.00	26.85	Peak	No Limit
$2 *$	2438.3000	64.60	33.21	97.81	54.00	43.81	AVG	No Limit

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2437MHz

Horizontal

No．	Freq．	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	7303.5500	31.95	11.36	43.31	74.00	-30.69	Peak	
$2 *$	7310.0500	20.17	11.37	31.54	54.00	-22.46	AVG	

Orthogonal Axis : X
Test Mode: \quad TX B MODE 2462MHz
Vertical

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Hargin		
	mHz	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2461.9000	63.33	33.31	96.64	74.00	22.64	Peak	No Limit
$2 *$	2463.2000	60.19	33.32	93.51	54.00	39.51	AVG	No Limit
3	2483.5000	23.33	33.40	56.73	74.00	-17.27	Peak	
4	2483.5000	13.27	33.40	46.67	54.00	-7.33	AVG	

Orthogonal Axis ：X
 Test Mode：\quad TX B MODE 2462MHz

Vertical

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	7370.1800	31.88	11.49	43.37	74.00	-30.63	Peak	
$2 *$	7380.9140	20.13	11.51	31.64	54.00	-22.36	AVG	

Orthogonal Axis ：X

Test Mode：\quad TX B MODE 2462MHz

Horizontal

No．	Freq．	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2462.0000	68.02	33.31	101.33	74.00	27.33	Peak	No Limit
$2 *$	2463.3000	65.05	33.32	98.37	54.00	44.37	AVG	No Limit
3	2483.5000	23.77	33.40	57.17	74.00	-16.83	Peak	
4	2483.5000	13.56	33.40	46.96	54.00	-7.04	AVG	

Orthogonal Axis : X
Test Mode: TX B MODE 2462MHz
Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	7370.0000	32.39	11.49	43.88	74.00	-30.12	Peak	
$2 *$	7380.7000	20.01	11.51	31.52	54.00	-22.48	AVG	

Orthogonal Axis : X
Test Mode: \quad TX G MODE 2412MHz

Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{m H z}$	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	22.96	33.01	55.97	74.00	-18.03	Peak	
2	2390.0000	13.58	33.01	46.59	54.00	-7.41	AVG	
$3 *$	2418.2000	58.20	33.13	91.33	54.00	37.33	AVG	No Limit
4	2418.5000	66.32	33.13	99.45	74.00	25.45	Peak	No Limit

Orthogonal Axis ：X
 Test Mode：\quad TX G MODE 2412MHz

Vertical

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{H H z}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 7316.3870 | 32.76 | 11.38 | 44.14 | 74.00 | -29.86 | Peak | |
| $2 *$ | 7319.4720 | 19.95 | 11.39 | 31.34 | 54.00 | -22.66 | AVG | |

Orthogonal Axis ： X

Test Mode：\quad TX G MODE 2412MHz
Horizontal

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Hargin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | dBuV／m | dB | dBuV／m | dBuV／m | dB | Detector | Comment |
| 1 | 2390.0000 | 25.09 | 33.01 | 58.10 | 74.00 | -15.90 | Peak | |
| 2 | 2390.0000 | 13.71 | 33.01 | 46.72 | 54.00 | -7.28 | AVG | |
| 3 | 2418.3000 | 68.35 | 33.13 | 101.48 | 74.00 | 27.48 | Peak | No Limit |
| $4 *$ | 2418.3000 | 60.45 | 33.13 | 93.58 | 54.00 | 39.58 | AVG | No Limit |

Orthogonal Axis : X
Test Mode: \quad TX G MODE 2412MHz
Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	7316.5800	33.11	11.38	44.49	74.00	-29.51	Peak	
$2 *$	7319.9600	20.31	11.39	31.70	54.00	-22.30	AVG	

Orthogonal Axis :	X
Test Mode :	TX G MODE 2437MHz

Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{m H z}$	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	2443.0000	58.22	33.23	91.45	54.00	37.45	AVG	No Limit
2	2443.4000	66.19	33.23	99.42	74.00	25.42	Peak	No Limit

Orthogonal Axis ：X
 Test Mode：\quad TX G MODE 2437MHz

Vertical

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{H H z}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 7309.2370 | 28.37 | 11.37 | 39.74 | 74.00 | -34.26 | Peak | |
| $2 *$ | 7309.5210 | 20.26 | 11.37 | 31.63 | 54.00 | -22.37 | AVG | |

Orthogonal Axis ： X

Test Mode：\quad TX G MODE 2437MHz
Horizontal

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{m H z}$ | dBuV／m | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $1 *$ | 2442.9000 | 62.24 | 33.23 | 95.47 | 54.00 | 41.47 | AVG | No Limit |
| 2 | 2443.5000 | 70.04 | 33.23 | 103.27 | 74.00 | 29.27 | Peak | No Limit |

Orthogonal Axis : X
Test Mode: \quad TX G MODE 2437MHz
Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{H H z}$	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
$1 *$	7309.0200	20.32	11.37	31.69	54.00	-22.31	AVG	
2	7309.6400	28.90	11.37	40.27	74.00	-33.73	Peak	

Orthogonal Axis : X
Test Mode: \quad TX G MODE 2462MHz

Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{H H z}$	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2467.1000	64.34	33.33	97.67	74.00	23.67	Peak	No Limit
$2 *$	2467.7000	56.91	33.33	90.24	54.00	36.24	AVG	No Limit
3	2483.5000	25.83	33.40	59.23	74.00	-14.77	Peak	
4	2483.5000	13.53	33.40	46.93	54.00	-7.07	AVG	

Orthogonal Axis ：X
 Test Mode：\quad TX G MODE 2462MHz

Vertical

| No． | Freq． | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Hargin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $1 *$ | 7383.6380 | 20.64 | 11.52 | 32.16 | 54.00 | -21.84 | AVG | |
| 2 | 7391.7230 | 31.68 | 11.53 | 43.21 | 74.00 | -30.79 | Peak | |

Orthogonal Axis ：X

Test Mode：\quad TX G MODE 2462MHz

Horizontal

| No． | Freq． | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | HHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 2455.7000 | 69.89 | 33.28 | 103.17 | 74.00 | 29.17 | Peak | No Limit |
| $2 *$ | 2467.7000 | 61.93 | 33.33 | 95.26 | 54.00 | 41.26 | AVG | No Limit |
| 3 | 2483.5000 | 24.52 | 33.40 | 57.92 | 74.00 | -16.08 | Peak | |
| 4 | 2483.5000 | 14.34 | 33.40 | 47.74 | 54.00 | -6.26 | AVG | |

Orthogonal Axis ： X

Test Mode：\quad TX G MODE 2462MHz
Horizontal

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	7383.5400	20.21	11.52	31.73	54.00	-22.27	AVG	
2	7391.5800	32.48	11.53	44.01	74.00	-29.99	Peak	

Orthogonal Axis : X
Test Mode: \quad TX N-20M MODE 2412MHz
Vertical

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	23.09	33.01	56.10	74.00	-17.90	Peak	
2	2390.0000	13.61	33.01	46.62	54.00	-7.38	AVG	
3	2406.4000	65.00	33.08	98.08	74.00	24.08	Peak	No Limit
$4 *$	2418.4000	55.19	33.13	88.32	54.00	34.32	AVG	No Limit

Orthogonal Axis ：X

Test Mode：	TX N－20M MODE 2412MHz

Vertical

$80 \mathrm{dBu} / \mathrm{m}$

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	4823.2450	36.00	4.85	40.85	74.00	-33.15	Peak	
$2 *$	4824.2280	27.29	4.85	32.14	54.00	-21.86	AVG	

Orthogonal Axis : X
Test Mode: \quad TX N-20M MODE 2412MHz

Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	mHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	24.13	33.01	57.14	74.00	-16.86	Peak	
2	2390.0000	13.95	33.01	46.96	54.00	-7.04	AVG	
3	2406.5000	68.02	33.08	101.10	74.00	27.10	Peak	No Limit
$4 *$	2418.2000	57.54	33.13	90.67	54.00	36.67	AVG	No Limit

Orthogonal Axis: X
Test Mode: \quad TX N-20M MODE 2412MHz
Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	4823.8300	36.66	4.85	41.51	74.00	-32.49	Peak	
$2 *$	4824.0000	27.74	4.85	32.59	54.00	-21.41	AVG	

Orthogonal Axis :	X
Test Mode :	TX N-20M MODE 2437MHz

Vertical

| No. | Freq. | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | mHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 2434.0000 | 65.73 | 33.19 | 98.92 | 74.00 | 24.92 | Peak | No Limit |
| $2 *$ | 2443.0000 | 55.02 | 33.23 | 88.25 | 54.00 | 34.25 | AVG | No Limit |

Orthogonal Axis ：X

Test Mode：	TX N－20M MODE 2437MHz

Vertical

$80 \mathrm{dBu} / \mathrm{m}$

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	4873.8270	27.44	5.06	32.50	54.00	-21.50	AVG	
2	4874.5370	36.06	5.07	41.13	74.00	-32.87	Peak	

Orthogonal Axis ：X

Test Mode：\quad TX N－20M MODE 2437MHz

Horizontal

No．	Freq．	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	dBuV／m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1}$	2431.5000	68.41	33.18	101.59	74.00	27.59	Peak	No Limit
$2 *$	2442.9000	57.98	33.23	91.21	54.00	37.21	AVG	No Limit

Orthogonal Axis : X
Test Mode: \quad TX N-20M MODE 2437MHz
Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	4873.9400	27.60	5.07	32.67	54.00	-21.33	AVG	
2	4874.2750	36.46	5.07	41.53	74.00	-32.47	Peak	

Orthogonal Axis ：X
Test Mode：\quad TX N－20M MODE 2462MHz
Vertical

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{H H z}$	dBuV／m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2458.9000	63.86	33.30	97.16	74.00	23.16	Peak	No Limit
$2 *$	2466.2000	53.36	33.33	86.69	54.00	32.69	AVG	No Limit
3	2483.5000	24.65	33.40	58.05	74.00	-15.95	Peak	
4	2483.5000	13.53	33.40	46.93	54.00	-7.07	AVG	

Orthogonal Axis ：X

Test Mode：\quad TX N－20M MODE 2462MHz

Vertical

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1 *}$	4923.3710	25.33	5.27	30.60	54.00	-23.40	AVG	
2	4924.7320	34.85	5.28	40.13	74.00	-33.87	Peak	

Orthogonal Axis ：X

Test Mode：\quad TX N－20M MODE 2462MHz

Horizontal

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{H H z}$ | dBuV／m | dB | dBuV／m | dBuV／m | dB | Detector | Comment |
| $\mathbf{1 *}$ | 2456.8000 | 56.63 | 33.29 | 89.92 | 54.00 | 35.92 | AVG | No Limit |
| 2 | 2457.8000 | 66.84 | 33.29 | 100.13 | 74.00 | 26.13 | Peak | No Limit |
| 3 | 2483.5000 | 25.41 | 33.40 | 58.81 | 74.00 | -15.19 | Peak | |
| 4 | 2483.5000 | 13.89 | 33.40 | 47.29 | 54.00 | -6.71 | AVG | |

Orthogonal Axis: X
Test Mode: TX N-20M MODE 2462MHz

Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	4923.9850	25.33	5.28	30.61	54.00	-23.39	AVG	
2	4924.1450	35.11	5.28	40.39	74.00	-33.61	Peak	

Orthogonal Axis : X
Test Mode: \quad TX N-40M MODE 2422MHz
Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{m H z}$	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2390.0000	23.63	33.01	56.64	74.00	-17.36	Peak	
2	2390.0000	13.57	33.01	46.58	54.00	-7.42	AVG	
3	2423.4000	61.29	33.15	94.44	74.00	20.44	Peak	No Limit
$4 *$	2424.4000	51.65	33.15	84.80	54.00	30.80	AVG	No Limit

Orthogonal Axis ：X

Test Mode：	TX N－40M MODE 2422MHz

Vertical

$80 \mathrm{dBu} / \mathrm{m}$

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	4844.2250	29.49	4.94	34.43	54.00	-19.57	AVG	
2	4844.3820	36.39	4.94	41.33	74.00	-32.67	Peak	

Orthogonal Axis : X

Test Mode:	TX N-40M MODE 2422MHz

Horizontal

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	mHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	2390.0000	24.41	33.01	57.42	74.00	-16.58	Peak	
2	2390.0000	13.96	33.01	46.97	54.00	-7.03	AVG	
3	2420.8000	63.80	33.14	96.94	74.00	22.94	Peak	No Limit
$4 *$	2424.4000	54.37	33.15	87.52	54.00	33.52	AVG	No Limit

Orthogonal Axis : X
Test Mode: \quad TX N-40M MODE 2422MHz

Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	4844.0120	37.03	4.94	41.97	74.00	-32.03	Peak	
$2 *$	4844.0620	29.37	4.94	34.31	54.00	-19.69	AVG	

Orthogonal Axis :
Test Mode: \quad TX N-40M MODE 2437MHz
Vertical

| No. | Freq. | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | MHz | dBuV/m | dB | $\mathrm{dBu} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $\mathbf{1 *}$ | 2439.4000 | 52.02 | 33.22 | 85.24 | 54.00 | 31.24 | AVG | No Limit |
| 2 | 2441.8000 | 61.99 | 33.23 | 95.22 | 74.00 | 21.22 | Peak | No Limit |

Orthogonal Axis ：X

Test Mode：	TX N－40M MODE 2437MHz

Vertical

No．	Freq．	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	4873.5379	35.43	5.06	40.49	74.00	-33.51	Peak	
$2 *$	4873.8590	27.02	5.07	32.09	54.00	-21.91	AVG	

Orthogonal Axis ：X

Test Mode：\quad TX N－40M MODE 2437MHz

Horizontal

No．	Freq．	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	HHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$\mathbf{1}$	2433.6000	64.20	33.19	97.39	74.00	23.39	Peak	No Limit
$2 *$	2439.4000	54.69	33.22	87.91	54.00	33.91	AVG	No Limit

Orthogonal Axis : X
Test Mode: TX N-40M MODE 2437MHz
Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	4873.8950	36.42	5.07	41.49	74.00	-32.51	Peak	
$2 *$	4873.9650	27.94	5.07	33.01	54.00	-20.99	AVG	

Orthogonal Axis : X
Test Mode: \quad TX N-40M MODE 2452MHz
Vertical

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	$\mathbf{H H z}$	dBuV/m	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
1	2448.2000	61.48	33.25	94.73	74.00	20.73	Peak	No Limit
$2 *$	2449.4000	51.46	33.26	84.72	54.00	30.72	AVG	No Limit
3	2483.5000	25.29	33.40	58.69	74.00	-15.31	Peak	
4	2483.5000	13.55	33.40	46.95	54.00	-7.05	AVG	

Orthogonal Axis ：X

Test Mode：	TX N－40M MODE 2452MHz

Vertical

| No． | Freq． | Reading
 Leve1 | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{H H z}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| 1 | 4903.9750 | 35.03 | 5.19 | 40.22 | 74.00 | -33.78 | Peak | |
| $2 *$ | 4904.0250 | 25.78 | 5.19 | 30.97 | 54.00 | -23.03 | AVG | |

Orthogonal Axis ：X

Test Mode：\quad TX N－40M MODE 2452MHz

Horizontal

| No． | Freq． | Reading
 Level | Correct
 Factor | Measure
 ment | Limit | Margin | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | HHz | $\mathrm{dBuV} / \mathrm{m}$ | dB | $\mathrm{dBuV} / \mathrm{m}$ | $\mathrm{dBuV} / \mathrm{m}$ | dB | Detector | Comment |
| $\mathbf{1 *}$ | 2449.8000 | 54.03 | 33.26 | 87.29 | 54.00 | 33.29 | AVG | No Limit |
| 2 | 2466.2000 | 63.75 | 33.33 | 97.08 | 74.00 | 23.08 | Peak | No Limit |
| 3 | 2483.5000 | 24.01 | 33.40 | 57.41 | 74.00 | -16.59 | Peak | |
| 4 | 2483.5000 | 13.91 | 33.40 | 47.31 | 54.00 | -6.69 | AVG | |

Orthogonal Axis : X
Test Mode: \quad TX N-40M MODE 2452MHz

Horizontal

No.	Freq.	Reading Leve1	Correct Factor	Measure ment	Limit	Margin		
	MHz	$\mathrm{dBuV} / \mathrm{m}$	dB	$\mathrm{dBuV} / \mathrm{m}$	$\mathrm{dBuV} / \mathrm{m}$	dB	Detector	Comment
$1 *$	4904.0150	26.89	5.19	32.08	54.00	-21.92	AVG	
2	4904.1549	35.95	5.19	41.14	74.00	-32.86	Peak	

ATTACHMENTE - BANDWIDTH

Test Mode : TX B Mode_CH01/06/11

Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2412	10.16	14.92	500	Complies
2437	10.14	14.96	500	Complies
2462	10.14	14.92	500	Complies

TX CH01

Date: 5.DEC. 2016 19:33:58

TX CH06

Date: 5.DEC.2016 19:36:19

TX CH11

Date: 5.DEC. 2016 19:38:14

Test Mode: TX G Mode_CH01/06/11

Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2412	16.58	16.48	500	Complies
2437	16.64	16.52	500	Complies
2462	16.62	16.48	500	Complies

TX CH01

Date: 5.DEC. 2016 19:40:48

TX CH06

Date: 5.DEC. 2016 19:42:32
TX CH11

Date: 5.DEC. 2016 19:43:54

Test Mode : TX N-20MHz Mode_CH01/06/11

Frequency (MHz)	6dB Bandwidth (MHz)	99\% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2412	17.84	17.68	500	Complies
2437	17.85	17.68	500	Complies
2462	17.84	17.64	500	Complies

TX CH01

Date: 5.DEC. 2016 19:46:10

TX CH06

Date: 5.DEC. 2016 19:48:13

TX CH11

Date: 5.DEC. 2016 19:50:26

Test Mode : TX N-40MHz Mode_CH03/06/09

Frequency (MHz)	6dB Bandwidth (MHz)	99\% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2422	36.48	36.16	500	Complies
2437	36.44	36.24	500	Complies
2452	36.52	36.24	500	Complies

TX CH03

TX CH06

Date: 5.DEC. 2016 20:23:31

TX CH09

ATTACHMENTF- MAXIMUM AVERAGE CONDUCTED OUTPUT POWER

Test Mode :TX B Mode_CH01/06/11 - Ant 1

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result
2412	9.63	0.009	30.00	1.00	Complies
2437	9.51	0.009	30.00	1.00	Complies
2462	9.49	0.009	30.00	1.00	Complies

Test Mode :TX G Mode_CH01/06/11 - Ant 1						
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result	
2412	9.32	0.009	30.00	1.00	Complies	
2437	9.54	0.009	30.00	1.00	Complies	
2462	9.36	0.009	30.00	1.00	Complies	

Test Mode :TX N20 Mode_CH01/06/11 - Ant 1

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result
2412	6.67	0.005	30.00	1.00	Complies
2437	6.53	0.004	30.00	1.00	Complies
2462	6.54	0.005	30.00	1.00	Complies

Test Mode :TX N20 Mode_CH01/06/11 - Ant 2						
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result	
2412	6.65	0.005	30.00	1.00	Complies	
2437	6.61	0.005	30.00	1.00	Complies	
2462	6.39	0.004	30.00	1.00	Complies	

Test Mode :TX N20 Mode_CH01/06/11 - Total					
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result
2412	9.67	0.009	30.00	1.00	Complies
2437	9.58	0.009	30.00	1.00	Complies
2462	9.48	0.009	30.00	1.00	Complies

Test Mode :TX N40 Mode_CH03/06/09 - Ant 1						
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result	
2422	6.52	0.004	30.00	1.00	Complies	
2437	6.67	0.005	30.00	1.00	Complies	
2452	6.55	0.005	30.00	1.00	Complies	

Test Mode :TX N40 Mode_CH03/06/09 - Ant 2						
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result	
2422	6.48	0.004	30.00	1.00	Complies	
2437	6.43	0.004	30.00	1.00	Complies	
2452	6.48	0.004	30.00	1.00	Complies	

Test Mode:TX N40 Mode_CH03/06/09 - Total					
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Result
2422	9.51	0.009	30.00	1.00	Complies
2437	9.56	0.009	30.00	1.00	Complies
2452	9.53	0.009	30.00	1.00	Complies

ATTACHMENTG - ANTENNA CONDUCTED SPURIOUS EMISSION

Test Mode ：
TX B Mode

TX B mode CHO1

Date：5．DEC．2016 19：34：37
TX B modeCH11

Date：5．DEC．2016 19：38：52

TX B mode CH01 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:34:13

Date: 5.DEC. 2016 19:34:21

Date: 5.DEC.2016 19:34:29
TX B mode CH06 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:36:33

Date: 5.DEC.2016 19:36:41

Date: 5.DEC. 2016 19:36:50

TX B mode CH11 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:38:28

Date: 5.DEC. 2016 19:38:36

Date: 5.DEC.2016 19:38:45

Test Mode ： TX G Mode

TX G mode CH01

Date：5．DEC． 2016 19：41：27

TX G modeCH11

Date：5．DEC．2016 19：44：32

TX G mode CH01 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:41:02

Date: 5.DEC.2016 19:41:11

Date：5．DEC．2016 19：41：19
TX G mode CH06（10 Harmonic of the frequency）

Date：5．DEC．2016 19：42：46

Date: 5.DEC.2016 19:42:55

Date: 5.DEC. 2016 19:43:03

TX G mode CH11 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:44:08

Date: 5.DEC.2016 19:44:16

Date: 5.DEC.2016 19:44:25

Test Mode : TX N-20M Mode

TX HT20 mode CHO1

Date: 5.DEC. 2016 19:46:49
TX HT20 mode CH11

Date: 5.DEC.2016 19:51:05

TX HT20 mode CH01 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:46:24

Date: 5.DEC.2016 19:46:33

Date: 5.DEC. 2016 19:46:41
TX HT20 mode CH06 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:48:27

Date: 5.DEC.2016 19:48:36

Date: 5.DEC. 2016 19:48:44

TX HT20 mode CH11 (10 Harmonic of the frequency)

Date: 5.DEC.2016 19:50:41

Date: 5.DEC. 2016 19:50:49

Date: 5.DEC.2016 19:50:57

Test Mode : TX N-40M Mode

TX HT40 mode CH03

Date: 5.DEC.2016 20:21:11
TX HT40 mode CH09

Date: 5.DEC. 2016 20:25:54

TX HT40 mode CH03 (10 Harmonic of the frequency)

Date: 5.DEC. 2016 20:20:47

Date: 5.DEC.2016 20:20:55

Date：5．DEC．2016 20：21：04
TX HT40 mode CH06（10 Harmonic of the frequency）

Date：5．DEC． 2016 20：23：45

Date: 5.DEC.2016 20:23:54

Date: 5.DEC. 2016 20:24:14

TX HT40 mode CH09 (10 Harmonic of the frequency)

Date: 5.DEC.2016 20:25:29

Date: 5.DEC. 2016 20:25:38

Date: 5.DEC.2016 20:25:46

ATTACHMENTH - POWER SPECTRAL DENSITY

Test Mode :TX B Mode_CH01/06/11

Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Power Density $(\mathrm{mW} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
2412	-21.95	0.0064	8.00	Complies
2437	-21.99	0.0063	8.00	Complies
2462	-21.65	0.0068	8.00	Complies

TX CH01

Date: 5.DEC. 2016 19:34:46

TX CH06

䠓

Date: 5.DEC. 2016 19:36:59
TX CH11

Date: 5.DEC. 2016 19:39:02

Test Mode :TX G Mode_CH01/06/11

Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Power Density $(\mathrm{mW} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
2412	-16.81	0.0208	8.00	Complies
2437	-16.69	0.0214	8.00	Complies
2462	-16.64	0.0217	8.00	Complies

TX CHO1

TX CH06

焉

Date: 5.DEC.2016 19:43:12

TX CH11

Date: 5.DEC.2016 19:44:41

Test Mode : TX N-20M Mode_CH01/06/11

Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Power Density $(\mathrm{mW} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
2412	-18.36	0.0146	8.00	Complies
2437	-17.93	0.0161	8.00	Complies
2462	-17.85	0.0164	8.00	Complies

TX CH01

TX CH06

Date: 5.DEC. 2016 19:48:53

TX CH11

Date: 5.DEC. 2016 19:51:14

Test Mode : TX N-40M Mode CH03/06/09

Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{kHz})$	Power Density $(\mathrm{mW} / 3 \mathrm{kHz})$	Max. Limit $(\mathrm{dBm} / 3 \mathrm{kHz})$	Result
2422	-25.37	0.0029	8.00	Complies
2437	-25.43	0.0029	8.00	Complies
2452	-25.80	0.0026	8.00	Complies

TX CH03

Date: 5.DEC.2016 20:21:23

TX CH06

Date: 5.DEC. 2016 20:24:06

TX CH09

Date: 5.DEC. 2016 20:26:06

