

FCC PART 15.407 TEST REPORT

For

SHENZHEN TENDA TECHNOLOGY CO., LTD.

Tenda Industrial Park, No. 34-1, Shilong Rd., Shiyan Town, Bao'an District, Shenzhen, P.R.China

FCC ID: V7TN60

Report Type: Product Type:

Original Report Concurrent Dual Band Wireless N600 Gigabit

Router

Test Engineer: Ares Liu

Report Number: R1DG120716001-00B

Report Date: 2012-08-01

Ivan Cao

Reviewed By: EMC Engineer

Bay Area Compliance Laboratories Corp. (Shenzhen)

fram Car

6/F, the 3rd Phase of WanLi Industrial Building,

Prepared By: ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China

Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

^{*} This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC §15.407 (f), §2.1091, §1.1307(b) (1) – RF EXPOSURE EVALUATION	q
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
Measurement Uncertainty	11
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.407(b) (1) (6) (7) – UNDESIRABLE EMISSION & RESTRICTED BANDS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY	
TEST DATA	
CONDUCTED SPURIOUS EMISSION AT ANTENNA PORT	
TEST DATA	
FCC §15.407(a) (1) – 26 dB OCCUPIED BANDWIDTH	41
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS.	
Test Procedure	
Test Data	42

FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER	50
APPLICABLE STANDARD	50
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	50
Test Data	50
FCC §15.407(a) (1) (5) - POWER SPECTRAL DENSITY	59
APPLICABLE STANDARD	59
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.407(a) (6) – PEAK EXCURSION RATIO	68
APPLICABLE STANDARD	68
TEST PROCEDURE	68
TEST EQUIPMENT LIST AND DETAILS.	68
Test Data	68
FCC §407(g) - FREQUENCY STABILITY	77
APPLICABLE STANDARDS	77
Test Procedure	77
TEST EQUIPMENT LIST AND DETAILS	77
Test Data	77

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The SHENZHEN TENDA TECHNOLOGY CO.,LTD.'s product, model number: N60 (FCC ID: V7TN60) or ("EUT") in this report is a Concurrent Dual Band Wireless N600 Gigabit Router, which was measured approximately: 17.0 cm (L) x13.5 cm (W) x17.5 cm (H), the operating frequency are 2400-2483.5MHz, 5150-5250MHz, 5725-5850MHz, rated input voltage: DC 9V from adapter.

Report No.: R1DG120716001-00B

Adapter information: Model: TEA09U-09100

Input: 100-240V, 50/60Hz, 0.3A

Output: 9V, 1.0A

* All measurement and test data in this report was gathered from production sample serial number: 120716001 (Assigned by BACL, Dongguan). The EUT was received on 2012-07-17.

Objective

This type approval report is prepared on behalf of *SHENZHEN TENDA TECHNOLOGY CO.,LTD.* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: V7TN60 for 2.400-2483.5MHz band. FCC Part 15C DTS submissions with FCC ID: V7TN60 for 5725-5850MHz band. FCC Part 15B JBP submissions with FCC ID: V7TN60.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.407 Page 4 of 78

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Report No.: R1DG120716001-00B

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

FCC Part 15.407 Page 5 of 78

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: R1DG120716001-00B

For 5150-5250MHz 802.11a and 802.11n20 mode, 4 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	5180	2	5200
3	5220	4	5240

EUT was tested with Channel 1, 2 and 4.

For 802.11n40 mode, 2 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	5190	2	5230

EUT was tested with Channel 1, 2.

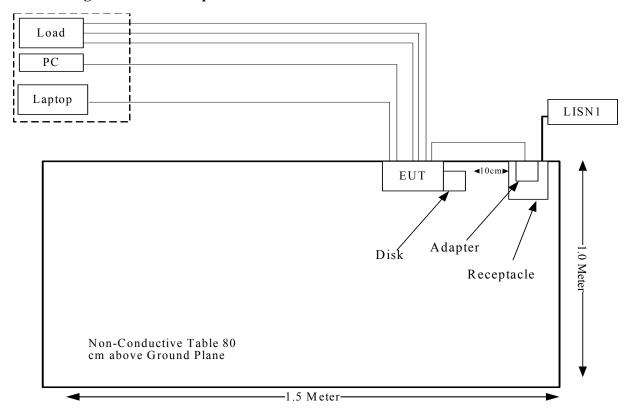
EUT Exercise Software

The test was performed under "Duck 1.1.9" which was provided by the manufacturer.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
DELL	Laptop	PP11L	QDS-BRCM1017
DELL	PC	GX620	JPTVOB2337
KingSton	USB Flash Disk	DT101G2	0236722

FCC Part 15.407 Page 6 of 78

External I/O Cable

Cable Description	Length (m)	From Port	То
RJ45 Cable	1.5	RJ45 Port of Laptop	EUT
RJ45 Cable	10	RJ45 Port of PC	EUT
RJ45 Cable	10	Load	EUT
RJ45 Cable	10	Load	EUT
RJ45 Cable	10	Load	EUT

Block Diagram of Test Setup

FCC Part 15.407 Page 7 of 78

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
\$15.407 (f), \$2.1091, \$1.1307(b)(1)	RF Exposure Evaluation	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
\$15.205& \$15.209 &\$15.407(b) (1),(6),(7)	Undesirable Emission& Restricted Bands	Compliance
§15.407(a) (1)	26 dB Bandwidth	Compliance
§15.407(a)(1),	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(5)	Power Spectral Density	Compliance
§15.407(a)(6)	Peak Excursion Ratio	Compliance
§15.407(g)	Frequency Stability	Compliance

Report No.: R1DG120716001-00B

FCC Part 15.407 Page 8 of 78

FCC §15.407 (f), §2.1091, §1.1307(b) (1) – RF EXPOSURE EVALUATION

Applicable Standard

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: R1DG120716001-00B

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

M. I.	Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE
Mode	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	Limit (mW/cm ²)
802.11a	5240	5.0	3.16	12.23	16.71	20	0.0105	1.0
802.11n ht20	5180	5.0	3.16	12.3	16.98	20	0.0107	1.0
802.11n ht40	5230	5.0	3.16	12	15.85	20	0.0100	1.0

Result: The device meet FCC MPE at 20cm distance

FCC Part 15.407 Page 9 of 78

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: R1DG120716001-00B

And according to FCC 47 CFR section 15.407 (a)(1),if transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has two dipole antennas permanently soldered on the printed circuit boards, which complied with 15.203, the maximum gain is 5.0 dBi, please refer to the internal photos.

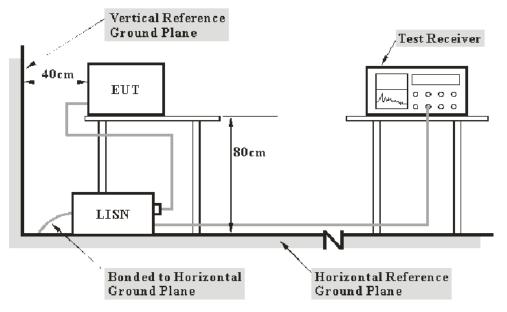
Result: Compliance.

FCC Part 15.407 Page 10 of 78

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207, §15.407(b) (6)


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Report No.: R1DG120716001-00B

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Dongguan) is ± 2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120VAC/60 Hz power source.

FCC Part 15.407 Page 11 of 78

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Report No.: R1DG120716001-00B

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Reciever	ESCS 30	830245/006	2011-10-08	2012-10-07
Rohde & Schwarz	LISN	ESH3-Z5	843331/015	2011-10-08	2012-10-07
Rohde & Schwarz	LISN	ESH3-Z5	100113	2011-10-08	2012-10-07

^{*}Statement of Traceability: Bay Area Compliance Laboratory Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

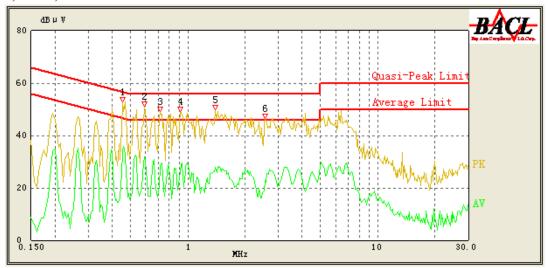
Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, with the worst margin reading of:

12.96 dB at 0.455 MHz in the Line conducted mode

Test Data

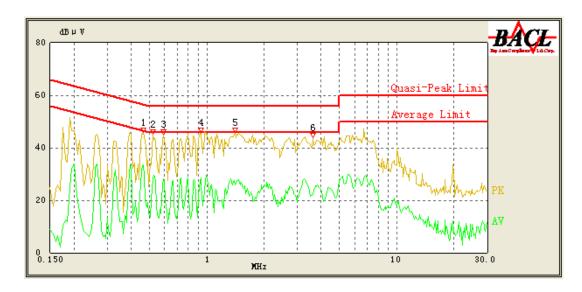
Environmental Conditions


Temperature:	25 ° C
Relative Humidity:	48 %
ATM Pressure:	100.0 kPa

The testing was performed by Ares Liu on 2012-07-31.

Test Mode: Operating

FCC Part 15.407 Page 12 of 78


120 V, 60 Hz, Line:

Frequency (MHz)	Corrected Result (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.455	44.33	0.42	57.29	12.96	QP
0.455	33.72	0.42	47.29	13.57	Ave.
0.590	42.20	0.43	56.00	13.80	QP
0.590	31.67	0.43	46.00	14.33	Ave.
0.915	41.55	0.45	56.00	14.45	QP
0.715	41.21	0.44	56.00	14.79	QP
1.395	39.87	0.46	56.00	16.13	QP
0.920	28.89	0.45	46.00	17.11	Ave.
0.715	28.87	0.44	46.00	17.13	Ave.
1.390	27.93	0.46	46.00	18.07	Ave.
2.565	32.69	0.49	56.00	23.31	QP
2.585	22.29	0.49	46.00	23.71	Ave.

FCC Part 15.407 Page 13 of 78

120V, 60 Hz, Neutral:

Report No.: R1DG120716001-00B

Frequency (MHz)	Corrected Result (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.465	33.46	0.42	47.00	13.54	Ave.
0.930	42.26	0.45	56.00	13.74	QP
0.465	43.21	0.42	57.00	13.79	QP
0.520	41.58	0.42	56.00	14.42	QP
1.405	41.22	0.46	56.00	14.78	QP
0.590	39.91	0.43	56.00	16.09	QP
0.930	28.51	0.45	46.00	17.49	Ave.
0.590	28.22	0.43	46.00	17.78	Ave.
0.520	28.09	0.42	46.00	17.91	Ave.
1.395	27.35	0.46	46.00	18.65	Ave.
3.635	35.21	0.50	56.00	20.79	QP
3.625	22.32	0.50	46.00	23.68	Ave.

FCC Part 15.407 Page 14 of 78

FCC §15.209, §15.205 & §15.407(b) (1) (6) (7) – UNDESIRABLE EMISSION & RESTRICTED BANDS

Report No.: R1DG120716001-00B

Applicable Standard

FCC §15.407 (b) (1), (6), (7); §15.209; §15.205;

For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Dongguan) is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source,

FCC Part 15.407 Page 15 of 78

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: R1DG120716001-00B

Frequency Range	RBW	Video B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 40 GHz	1 MHz	3 MHz	PK
1000 MHz – 40 GHz	1 MHz	10 Hz	Ave.

Test Procedure

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Reciever	ESCI	1166.5950.03	2011-10-08	2012-10-07
Sunol Sciences	Hybrid Antennas	JB3	A060611-1	2011-09-06	2012-09-05
HP	Pre-amplifier	8447E	2434A02181	2011-10-08	2012-10-07
R&S	Spectrum Analyzer	FSEM	1079 8500	2011-10-09	2012-10-08
Dayang	Horn Antenna	OMCDH10180	10279001B	2010-07-30	2015-07-29
Mini-Circuits	Wideband Amplifier	ZVA-183-S+	96901149	N/A	N/A
Rohde & Schwarz	Spectrum Analyzer	FSP38	100478	2012-05-27	2013-05-26

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

FCC Part 15.407 Page 16 of 78

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, Section 15.205, 15.209 and 15.407</u>, with the worst margin reading of:

3.06 dB at 10400 MHz in the Vertical polarization for 802.11n20 Mode of transmitting.

Report No.: R1DG120716001-00B

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Ares Liu from 2012-07-20 to 2012-07-26.

FCC Part 15.407 Page 17 of 78

Mode: Transmitting

802.11a Mode:

Frequency	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	15.4	107
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude		Margin (dB)
			Lov	w Channel:	5180(M	Hz)			
5150	11.2	AV	V	33.87	5.45	0.00	50.52	54.00	3.48*
5150	25.3	PK	V	33.87	5.45	0.00	64.62	68.20	3.58*
10360	42.36	PK	V	39.80	8.34	26.81	63.69	68.20	4.51
400.36	42.85	QP	Н	16.19	2.43	27.36	34.11	46.00	11.89
625.14	38.42	QP	Н	19.88	3.06	27.42	33.94	46.00	12.06
1468.36	34.03	AV	Н	25.47	2.94	27.29	35.15	54.00	18.85
1468.36	40.28	PK	Н	25.47	2.94	27.29	41.40	68.20	26.80
5180	54.74	AV	Н	33.92	5.49	0.00	94.15	N/A	N/A
5180	61.24	PK	Н	33.92	5.49	0.00	100.65	N/A	N/A
5180	71.68	AV	V	33.92	5.49	0.00	111.09	N/A	N/A
5180	77.61	PK	V	33.92	5.49	0.00	117.02	N/A	N/A
			Midd	lle Channe	l: 5200(N	ИHz)			
10400	42.06	PK	V	39.86	8.34	26.81	63.45	68.20	4.75
4324.52	31.02	AV	Н	32.54	6.42	26.77	43.20	54.00	10.80
1347.25	39.52	AV	Н	25.35	2.91	27.43	40.35	54.00	13.65
425.36	34.68	QP	Н	16.72	2.49	21.83	32.06	46.00	13.94
4324.52	40.52	PK	Н	32.54	6.42	26.77	52.70	68.20	15.50
1347.25	41.38	PK	Н	25.35	2.91	27.43	42.21	68.20	25.99
5200	57.58	AV	Н	33.96	5.51	0.00	97.05	N/A	N/A
5200	64.32	PK	Н	33.96	5.51	0.00	103.79	N/A	N/A
5200	70.24	AV	V	33.96	5.51	0.00	109.71	N/A	N/A
5200	75.42	PK	V	33.96	5.51	0.00	114.89	N/A	N/A
			Hig	h Channel:	5240(M	Hz)			
5350	26.1	PK	Н	34.23	4.58	0.00	64.91	68.20	3.29*
10480	42.38	PK	V	39.97	8.34	26.82	63.87	68.20	4.33
5350	9.76	AV	Н	34.23	4.58	0.00	48.57	54.00	5.43
2256.32	34.06	AV	Н	30.24	3.77	27.61	40.45	54.00	13.55
345.12	36.24	QP	Н	14.98	2.22	21.63	31.80	46.00	14.20
400.36	38.57	QP	V	16.19	2.43	27.35	29.84	46.00	16.16
2256.32	42.15	PK	V	30.24	3.77	27.61	48.54	68.20	19.66
5240	57.15	AV	Н	34.03	5.09	0.00	96.28	N/A	N/A
5240	61.75	PK	Н	34.03	5.09	0.00	100.88	N/A	N/A
5240	67.86	AV	V	34.03	5.09	0.00	106.99	N/A	N/A
5240	80.24	PK	V	34.03	5.09	0.00	119.37	N/A	N/A

Report No.: R1DG120716001-00B

FCC Part 15.407 Page 18 of 78

802.11n20 Mode:

Frequency	Re	eceiver	Rx A	Antenna	Cable	Amplifier	Corrected	FCC 15	5.407	
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB(1/m))	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
	Low Channel:5180(MHz)									
10360	43.52	PK	V	39.80	8.34	26.81	64.85	68.20	3.35*	
5150	25.31	PK	V	33.87	5.45	0.00	64.63	68.20	3.57*	
5150	10.56	AV	V	33.87	5.45	0.00	49.88	54.00	4.12	
725.11	38.67	QP	Н	21.01	3.27	27.42	35.53	46.00	10.47	
400.32	40.25	QP	Н	16.19	2.43	27.36	31.51	46.00	14.49	
1276.36	32.69	AV	Н	25.28	2.62	27.22	33.37	54.00	20.63	
1276.36	41.36	PK	Н	25.28	2.62	27.22	42.04	68.20	26.16	
5180	56.36	AV	Н	33.92	5.49	0.00	95.77	N/A	N/A	
5180	62.47	PK	Н	33.92	5.49	0.00	101.88	N/A	N/A	
5180	70.69	AV	V	33.92	5.49	0.00	110.10	N/A	N/A	
5180	80.27	PK	V	33.92	5.49	0.00	119.68	N/A	N/A	
			Mic	ddle Channel	: 5200(M	Hz)				
10400	43.75	PK	V	39.86	8.34	26.81	65.14	68.20	3.06*	
500.12	35.87	QP	Н	18.10	2.72	22.02	34.67	46.00	11.33	
3338.35	31.26	AV	Н	31.44	4.59	27.38	39.91	54.00	14.09	
1347.26	30.15	AV	Н	25.35	2.91	27.43	30.98	46.00	15.02	
3338.35	41.37	PK	Н	31.44	4.59	27.38	50.02	68.20	18.18	
1347.26	38.62	PK	Н	25.35	2.91	27.43	39.45	68.20	28.75	
5200	56.59	AV	Н	33.96	5.51	0.00	96.06	N/A	N/A	
5200	65.21	PK	Н	33.96	5.51	0.00	104.68	N/A	N/A	
5200	68.52	AV	V	33.96	5.51	0.00	107.99	N/A	N/A	
5200	76.34	PK	V	33.96	5.51	0.00	115.81	N/A	N/A	
			Hi	igh Channel:	5240(MI	łz)				
5350	25.66	PK	Н	34.23	4.58	0.00	64.47	68.20	3.73*	
10480	41.96	PK	V	39.97	8.34	26.82	63.45	68.20	4.75	
5350	10.29	AV	Н	34.23	4.58	0.00	49.10	54.00	4.90	
525.41	37.52	QP	Н	18.31	2.79	22.08	36.54	46.00	9.46	
400.26	40.18	QP	V	16.19	2.43	27.35	31.45	46.00	14.55	
1626.32	31.62	AV	V	26.33	3.17	27.30	33.83	54.00	20.17	
1626.32	40.82	PK	V	26.33	3.17	27.30	43.03	68.20	25.17	
5240	55.15	AV	Н	34.03	5.09	0.00	94.28	N/A	N/A	
5240	60.47	PK	Н	34.03	5.09	0.00	99.60	N/A	N/A	
5240	65.37	AV	V	34.03	5.09	0.00	104.50	N/A	N/A	
5240	80.76	PK	V	34.03	5.09	0.00	119.89	N/A	N/A	

Report No.: R1DG120716001-00B

FCC Part 15.407 Page 19 of 78

^{*}Within measurement uncertainty!

802.11n40 Mode:

Frequency	Re	eceiver	Rx A	Antenna	Cable	Amplifier	Corrected	FCC 15	5.407
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB(1/m))	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			L	ow Channel:	5190(MH	Iz)			
5150	25.21	PK	V	33.87	5.45	0.00	64.53	68.20	3.67*
5150	10.72	AV	V	33.87	5.45	0.00	50.04	54.00	3.96*
10380	42.56	PK	V	39.83	8.34	26.81	63.92	68.20	4.28
825.12	37.64	QP	Н	22.15	3.48	27.42	35.85	46.00	10.15
1472.36	39.86	AV	V	25.47	2.95	27.29	40.99	54.00	13.01
400.03	41.53	QP	Н	16.18	2.43	27.36	32.78	46.00	13.22
1472.36	40.25	PK	Н	25.47	2.95	27.29	41.38	68.20	26.82
5190	58.15	AV	Н	33.94	5.50	0.00	97.59	N/A	N/A
5190	63.47	PK	Н	33.94	5.50	0.00	102.91	N/A	N/A
5190	69.45	AV	V	33.94	5.50	0.00	108.89	N/A	N/A
5190	78.15	PK	V	33.94	5.50	0.00	117.59	N/A	N/A
			Hi	igh Channel:	5230(MI	Hz)			
5350	25.74	PK	Н	34.23	4.58	0.00	64.55	68.20	3.65*
5350	11.05	AV	Н	34.23	4.58	0.00	49.86	54.00	4.14
10460	40.66	PK	V	39.94	8.34	26.82	62.13	68.20	6.07
550.31	37.52	QP	Н	18.60	2.85	22.15	36.82	46.00	9.18
1472.36	40.47	AV	Н	25.47	2.95	27.29	41.60	54.00	12.40
400.03	41.23	QP	V	16.18	2.43	27.35	32.49	46.00	13.51
1472.36	42.36	PK	V	25.47	2.95	27.29	43.49	68.20	24.71
5230	54.73	AV	Н	34.01	5.20	0.00	93.94	N/A	N/A
5230	61.47	PK	Н	34.01	5.20	0.00	100.68	N/A	N/A
5230	66.28	AV	V	34.01	5.20	0.00	105.49	N/A	N/A
5230	79.43	PK	V	34.01	5.20	0.00	118.64	N/A	N/A

Report No.: R1DG120716001-00B

FCC Part 15.407 Page 20 of 78

^{*}Within measurement uncertainty!

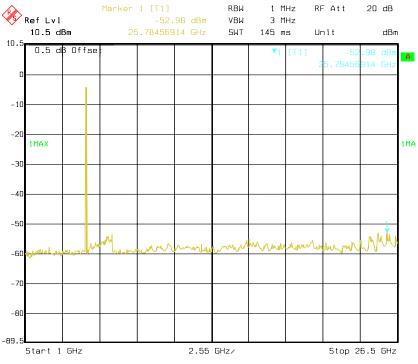
Conducted Spurious Emission at Antenna Port

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. The Resolution bandwidth is set to 1MHz, The Video bandwidth is set to \geq 1MHz, report the peak value out of the oprating band.

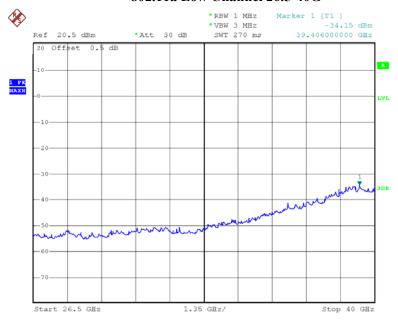
Report No.: R1DG120716001-00B

3. Repeat above procedures until all frequencies measured were complete.


Test data

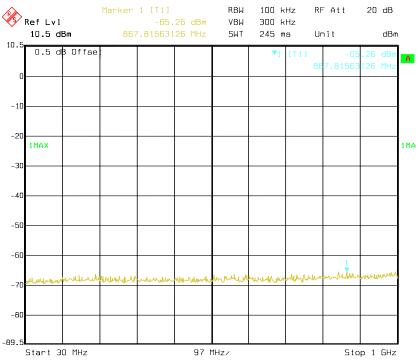
Please refer to the following plots.

802.11a Low Channel 30M-1G RBW 100 kHz Marker 1 [T1] RF Att 20 dB Ref Lvl -65.84 dBm VBW 300 kHz 10.5 dBm 136.91382766 MHz SWT 245 ms Un i t dBm 0.5 dB Offse 1MAX 1MA Start 30 MHz 97 MHz/ Stop 1 GHz 21.JUL.2012 14:49:27 Date:

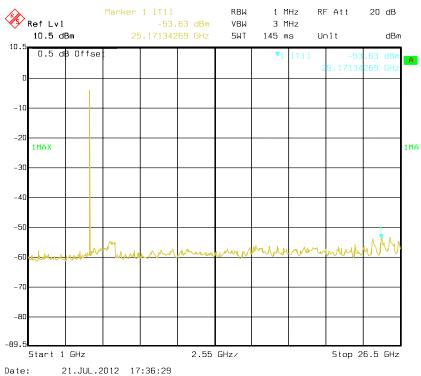

FCC Part 15.407 Page 21 of 78

802.11a Low Channel 1G-26.5G

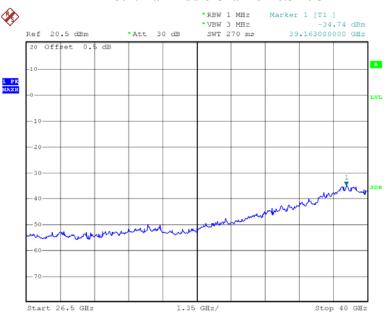
Date: 21.JUL.2012 17:35:50


802.11a Low Channel 26.5-40G

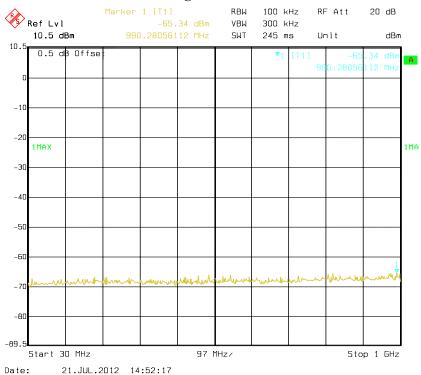
Date: 26.JUL.2012 15:36:45


FCC Part 15.407 Page 22 of 78

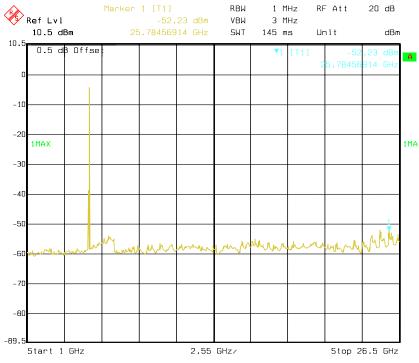
802.11a Middle Channel 30M-1G


Date: 21.JUL.2012 14:51:44

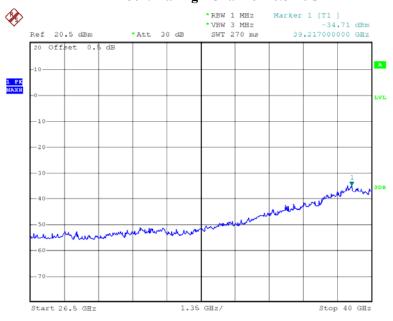
802.11a Middle Channel 1G -26.5G


FCC Part 15.407 Page 23 of 78

802.11a Middle Channel 26.5-40G


Date: 26.JUL.2012 15:33:27

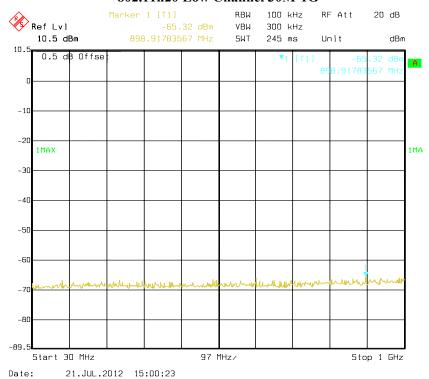
802.11a High Channel 30M-1G


FCC Part 15.407 Page 24 of 78

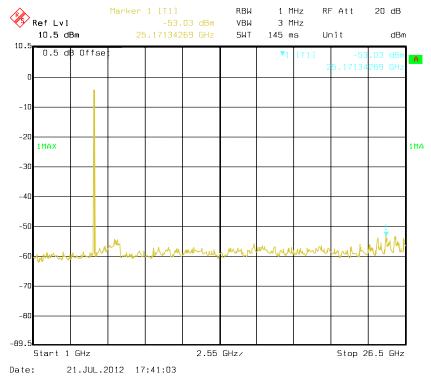
802.11a High Channel 1G-26.5G

Date: 21.JUL.2012 17:38:25

802.11a High Channel 26.5-40G

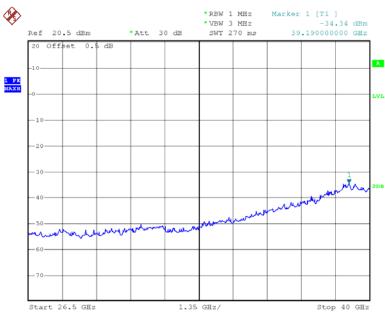


Date: 26.JUL.2012 15:37:42

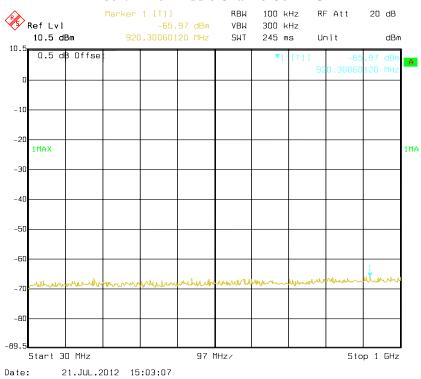

FCC Part 15.407 Page 25 of 78

802.11n20 Low Channel 30M-1G

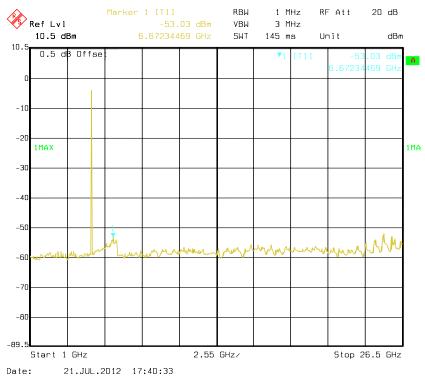
Report No.: R1DG120716001-00B



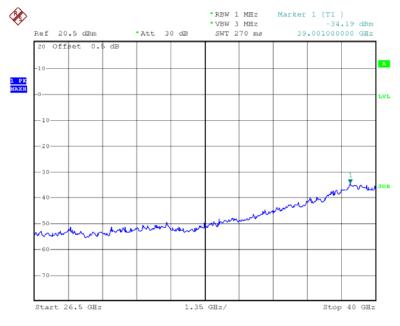
802.11n20 Low Channel 1G-26.5G


FCC Part 15.407 Page 26 of 78

802.11n20 Low Channel 26.5-40G

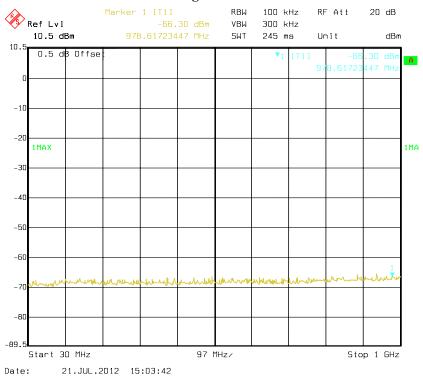

Date: 27.JUL.2012 15:39:43

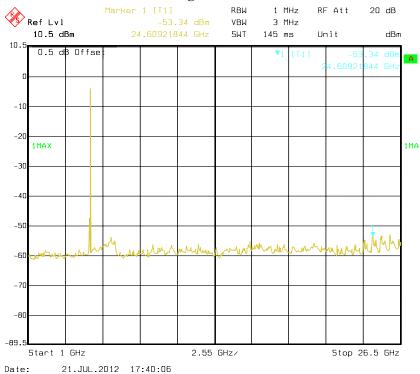
802.11n20 Middle Channel 30M-1G



FCC Part 15.407 Page 27 of 78

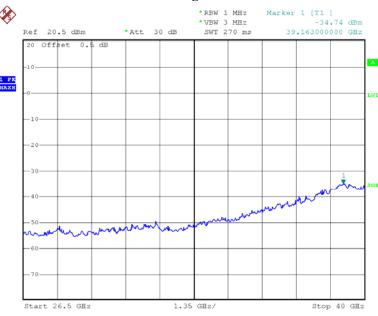
802.11n20 Middle Channel 1G -26.5G


802.11n20 Middle Channel 26.5-40G

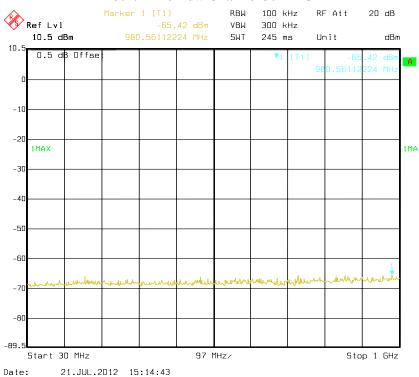

Date: 27.JUL.2012 15:41:40

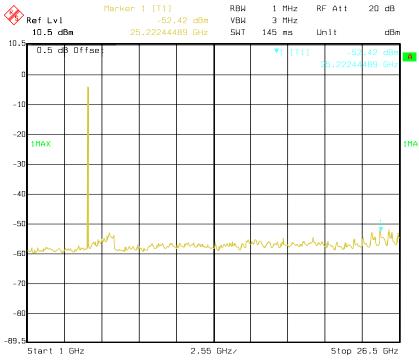
FCC Part 15.407 Page 28 of 78

802.11n20 High Channel 30M-1G

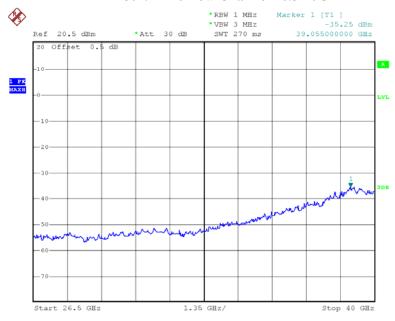

802.11n20 High Channel 1G-26.5G

FCC Part 15.407 Page 29 of 78


Report No.: R1DG120716001-00B

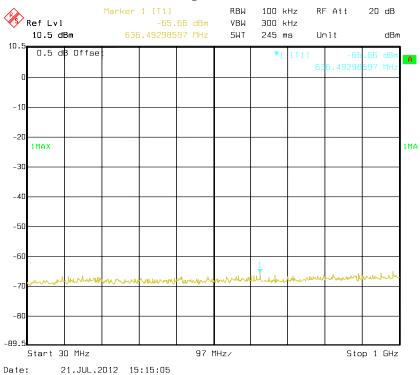

Date: 27.JUL.2012 15:41:03

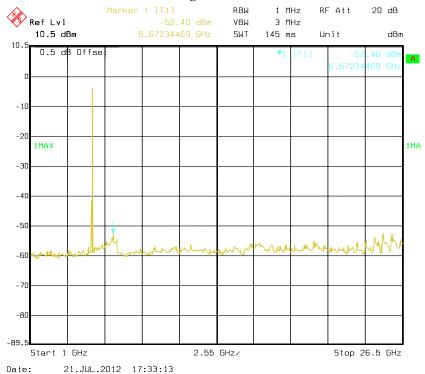
802.11n40 Low Channel 30M-1G


FCC Part 15.407 Page 30 of 78

802.11n40 Low Channel 1G-26.5G

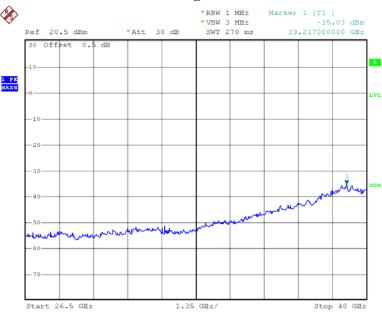
Date: 21.JUL.2012 17:32:45


802.11n40 Low Channel 26.5-40G


Date: 27.JUL.2012 15:45:04

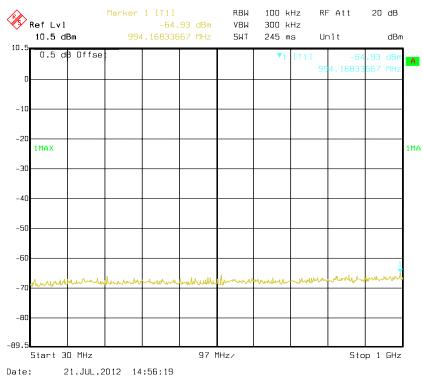
FCC Part 15.407 Page 31 of 78

802.11n40 High Channel 30M-1G

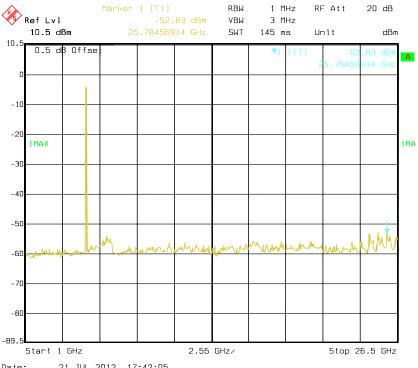

802.11n40 High Channel 1G-26.5G

FCC Part 15.407 Page 32 of 78

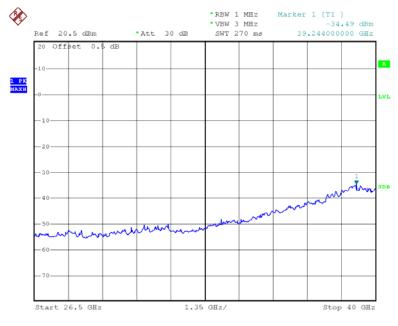
Report No.: R1DG120716001-00B



Date: 27.JUL.2012 15:44:42

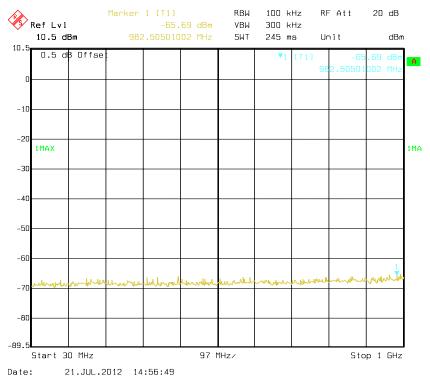

Chain 1:

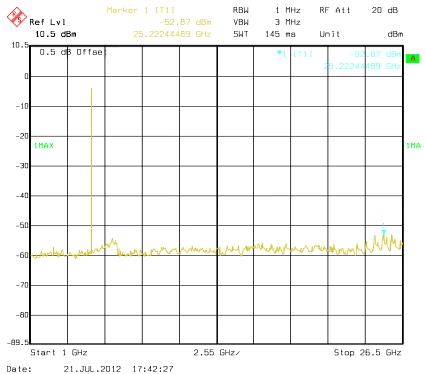
802.11n20 Low Channel 30M-1G


FCC Part 15.407 Page 33 of 78

802.11n20 Low Channel 1G-26.5G

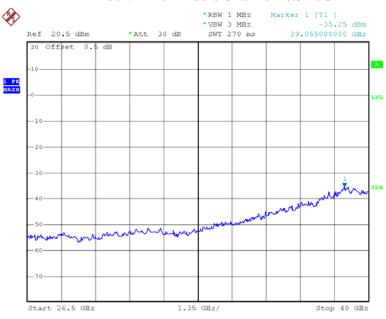
21.JUL.2012 17:42:05 Date:


802.11n20 Low Channel 26.5-40G

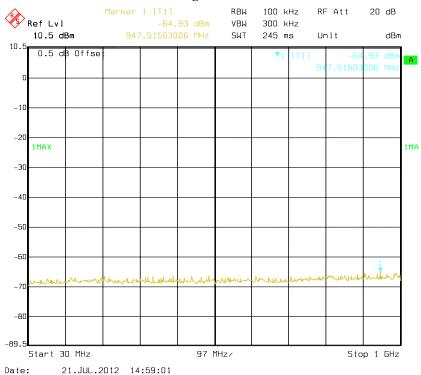

Date: 27.JUL.2012 15:45:37

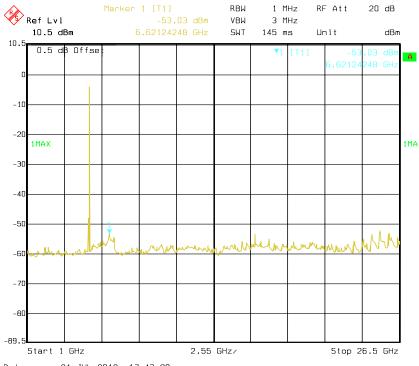
FCC Part 15.407 Page 34 of 78

802.11n20 Middle Channel 30M-1G

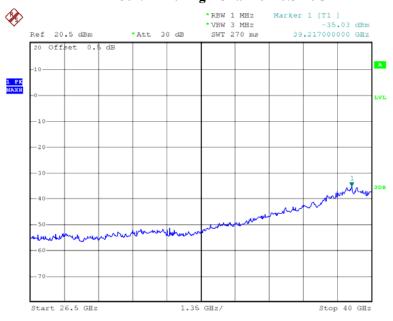

802.11n20 Middle Channel 1G -26.5G

FCC Part 15.407 Page 35 of 78


Report No.: R1DG120716001-00B

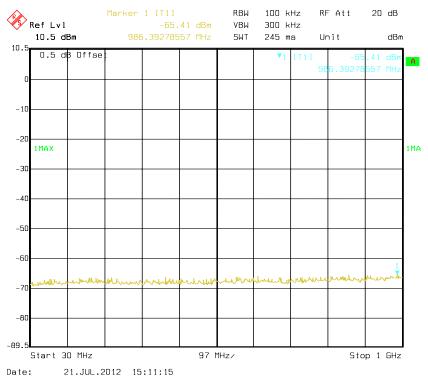

Date: 27.JUL.2012 15:45:04

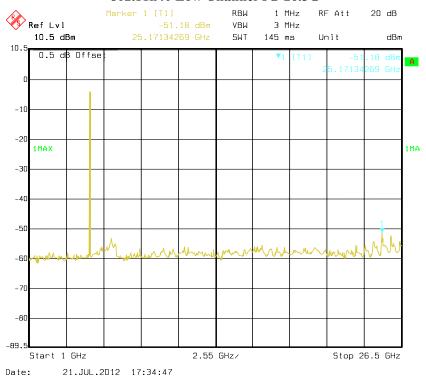
802.11n20 High Channel 30M-1G


FCC Part 15.407 Page 36 of 78

802.11n20 High Channel 1G-26.5G

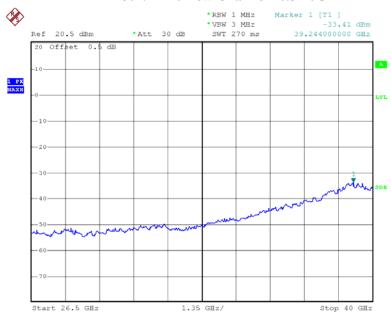
Date: 21.JUL.2012 17:43:20


802.11n20 High Channel 26.5-40G

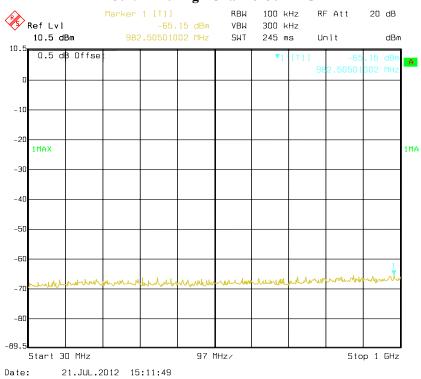

Date: 27.JUL.2012 15:44:42

FCC Part 15.407 Page 37 of 78

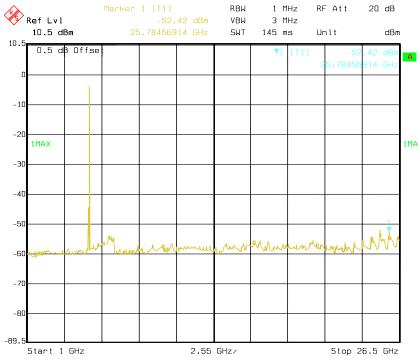
802.11n40 Low Channel 30M-1G



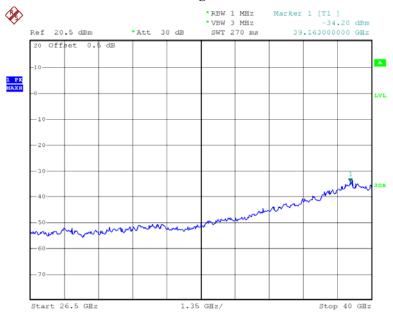
802.11n40 Low Channel 1G-26.5G


FCC Part 15.407 Page 38 of 78

802.11n40 Low Channel 26.5-40G


Date: 27.JUL.2012 16:02:28

802.11n40 High Channel 30M-1G


FCC Part 15.407 Page 39 of 78

802.11n40 High Channel 1G-26.5G

Date: 21.JUL.2012 17:34:18

802.11n40 High Channel 26.5-40G

Date: 27.JUL.2012 15:47:22

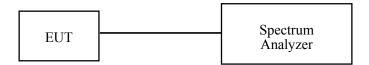
FCC Part 15.407 Page 40 of 78

FCC $\S15.407(a)$ (1) – 26 dB OCCUPIED BANDWIDTH

Applicable Standard

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: R1DG120716001-00B


Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2012-07-08	2013-07-07

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Use a RBW = approximately 1% of the emission bandwidth.Set the VBW > RBW. Use a peak detector.Do not use the Max Hold function. Rather, use the view button to capture the emission. Measure maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat, measurement as needed until the RBW/EBW ratio is approximately 1%.
- 4. Repeat above procedures until all frequencies measured were complete.

FCC Part 15.407 Page 41 of 78

Test Data

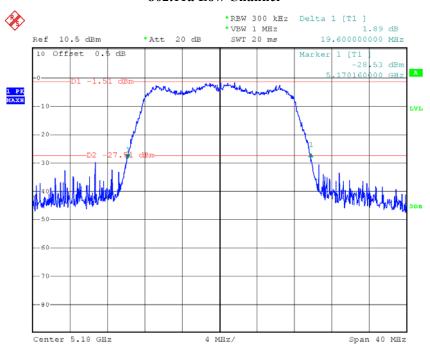
Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	56%	
ATM Pressure:	100.0kPa	

The testing was performed by Ares Liu from 2012-07-19 to 2012-07-20 .

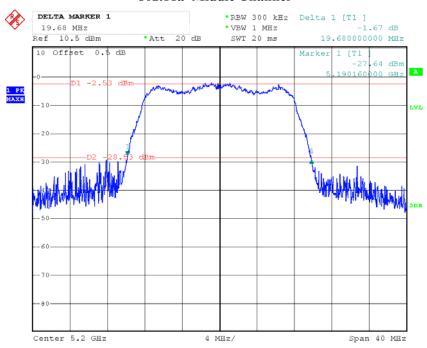
Test Result: Pass.

Please refer to the following tables and plots.


Test mode: Transmitting

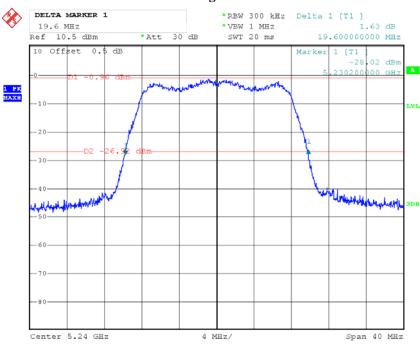
Channel	Frequency	26 dB Bandwidth	Limit			
	(MHz)	(MHz)	(KHz)			
802.11a mode						
Low	5180	19.60	>500			
Middle	5200	19.68	>500			
High	5240	19.60	>500			
	chain	0:802.11n20 mode				
Low	5180	19.68	>500			
Middle	5200	19.68	>500			
High	5240	20.00	>500			
	chain	0:802.11n40 mode				
Low	5190	39.68	>500			
High	5230	39.68 >500				
	chain	1:802.11n20 mode				
Low	5180	20.00	>500			
Middle	5200	20.00	>500			
High	5240	20.00	>500			
	chain	1:802.11n40 mode				
Low	5190	39.36	>500			
High	5230	39.36	>500			

Report No.: R1DG120716001-00B

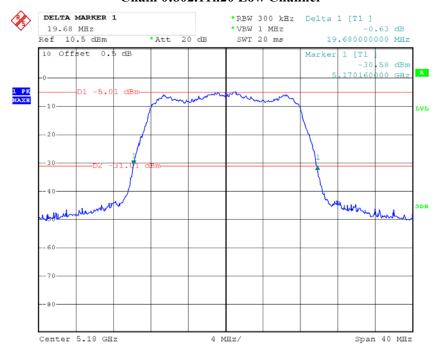

FCC Part 15.407 Page 42 of 78

802.11a Low Channel

Date: 19.JUL.2012 16:42:17

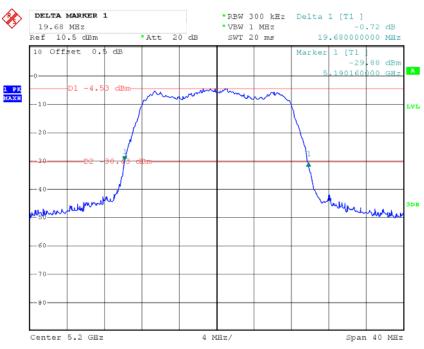

802.11a Middle Channel

Date: 19.JUL.2012 20:18:39

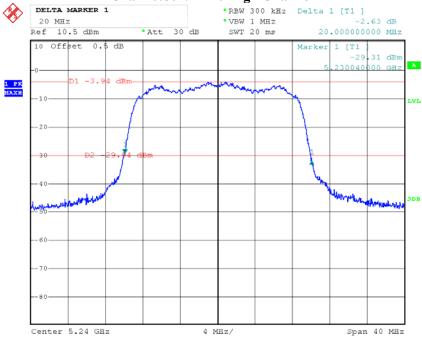

FCC Part 15.407 Page 43 of 78

802.11a High Channel

Date: 20.JUL.2012 21:22:03

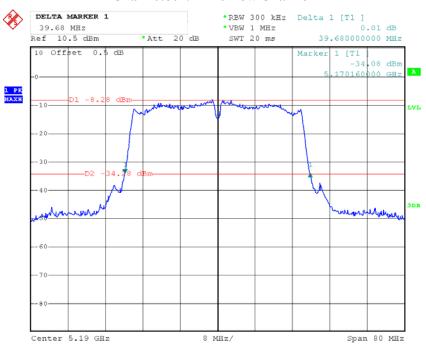

Chain 0:802.11n20 Low Channel

Date: 20.JUL.2012 11:51:37

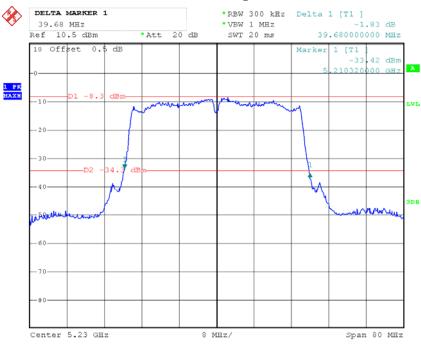

FCC Part 15.407 Page 44 of 78

Chain 0:802.11n20 Middle Channel

Date: 20.JUL.2012 13:09:50

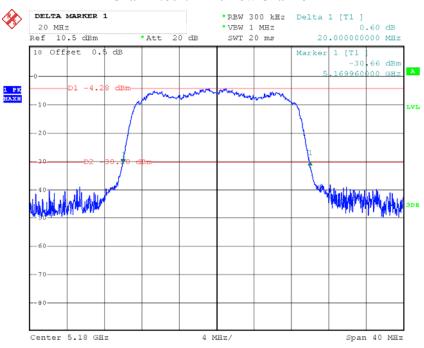

Chain 0:802.11n20 High Channel

Date: 20.JUL.2012 21:32:24

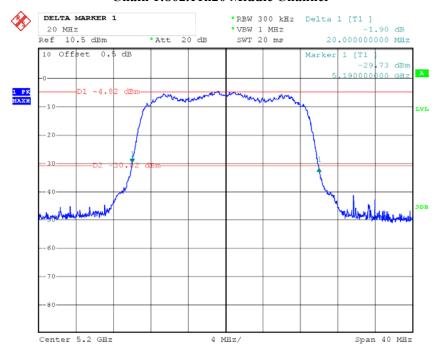

FCC Part 15.407 Page 45 of 78

Chain 0:802.11n40 Low Channel

Date: 20.JUL.2012 13:26:18

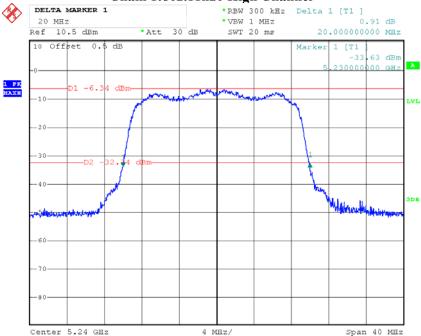

Chain 0:802.11n40 High Channel

Date: 20.JUL.2012 13:38:01

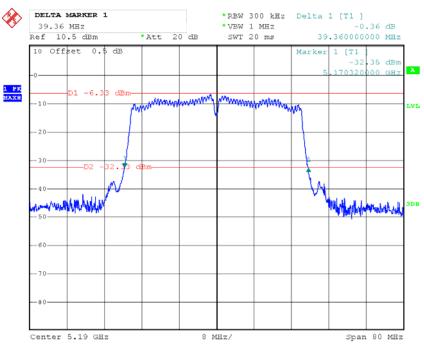

FCC Part 15.407 Page 46 of 78

Chain 1:802.11n20 Low Channel

Date: 19.JUL.2012 20:49:26

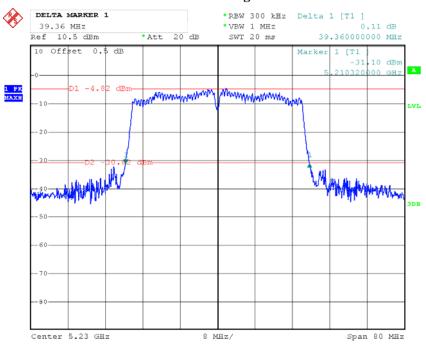

Chain 1:802.11n20 Middle Channel

Date: 19.JUL.2012 21:05:14


FCC Part 15.407 Page 47 of 78

Chain 1:802.11n20 High Channel

Date: 20.JUL.2012 21:46:38


Chain 1:802.11n40 Low Channel

Date: 19.JUL.2012 22:12:08

FCC Part 15.407 Page 48 of 78

Chain 1:802.11n40 High Channel

Date: 19.JUL.2012 21:50:24

FCC Part 15.407 Page 49 of 78

FCC §15.407(a) (1) – CONDUCTED TRANSMITTER OUTPUT POWER

Report No.: R1DG120716001-00B

Applicable Standard

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2012-07-08	2013-07-07

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set span to encompass the entire emission bandwidth (EBW) of the signal. Set RBW = 1 MHz.Set VBW ≥ 3 MHz. Use sample detector mode Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

The testing was performed by Ares Liu on 2012-07-20.

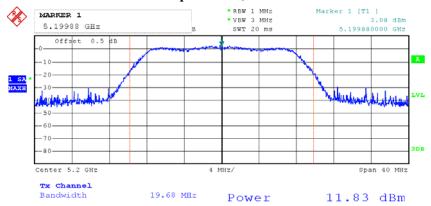
FCC Part 15.407 Page 50 of 78

Channel	Frequency	Conducted Output Power	Limit	Result		
	(MHz)	(dBm)	(dBm)			
	802.11a mode					
Low	5180	11.70	17	PASS		
Middle	5200	11.83	17	PASS		
High	5240	12.23	17	PASS		
	chain 0:802.11n20 mode					
Low	5180	9.08	17	PASS		
Middle	5200	9.20	17	PASS		
High	5240	9.20	17	PASS		
	cl	nain 1:802.11n20 mode				
Low	5180	9.08	17	PASS		
Middle	5200	9.16	17	PASS		
High	5240	8.56	17	PASS		
	cl	nain 0:802.11n40 mode				
Low	5190	8.53	17	PASS		
High	5230	8.58	17	PASS		
_	chain 1:802.11n40 mode					
Low	5190	9.03	17	PASS		
High	5230	9.38	17	PASS		


Total power of 802.11n: chain 0+ chain 1

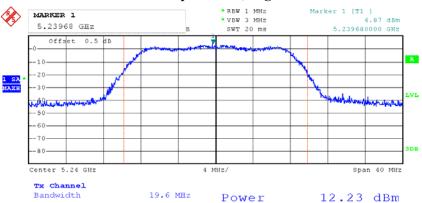
Channel	Frequency	Conducted Output Power	Limit	Result	
	(MHz)	(dBm)	(dBm)		
	Total:802.11n20 mode				
Low	5180	12.30	17	PASS	
Middle	5200	12.19	17	PASS	
High	5240	11.9	17	PASS	
	Total:802.11n40 mode				
Low	5190	11.80	17	PASS	
High	5230	12.00	17	PASS	

Note: MIMO technology only for 802.11n.

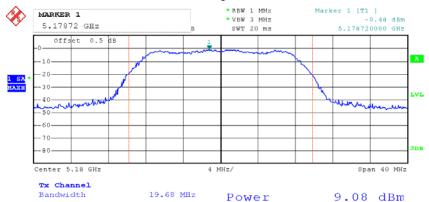

FCC Part 15.407 Page 51 of 78

802.11a RF Output Power, Low Channel

Date: 19.JUL.2012 16:44:42

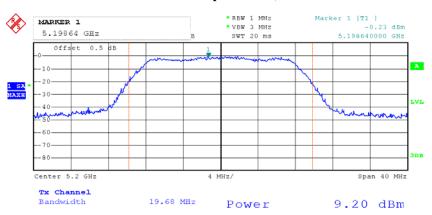

802.11a RF Output Power, Middle Channel

Date: 19.JUL.2012 20:19:46

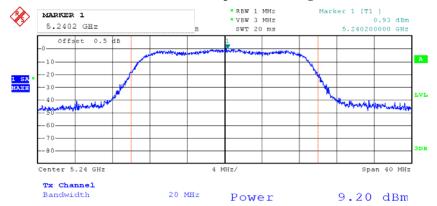

FCC Part 15.407 Page 52 of 78

802.11a RF Output Power, High Channel

Date: 20.JUL.2012 21:23:14

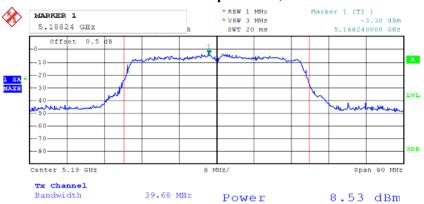

Chain 0:802.11n20 RF Output Power, Low Channel

Date: 20.JUL.2012 11:53:03

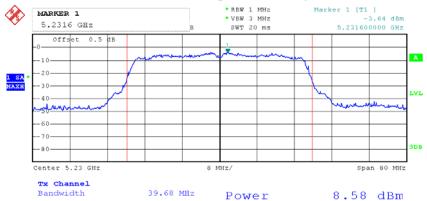

FCC Part 15.407 Page 53 of 78

Chain 0:802.11n20 RF Output Power, Middle Channel

Date: 20.JUL.2012 13:10:34


Chain 0:802.11n20 RF Output Power, High Channel

Date: 20.JUL.2012 21:33:29


FCC Part 15.407 Page 54 of 78

Chain 0:802.11n40 RF Output Power, Low Channel

Date: 20.JUL.2012 13:27:47

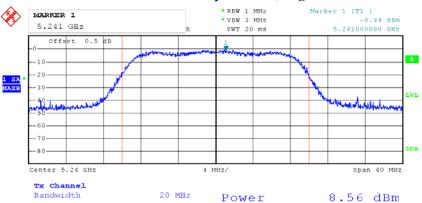
Chain 0:802.11n40 RF Output Power, High Channel

Date: 20.JUL.2012 13:39:46

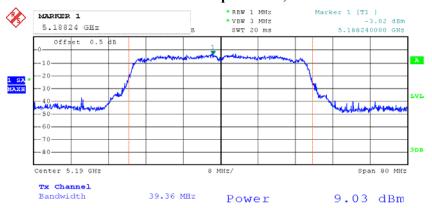

FCC Part 15.407 Page 55 of 78

Chain 1:802.11n20 RF Output Power, Low Channel

Date: 19.JUL.2012 20:50:20

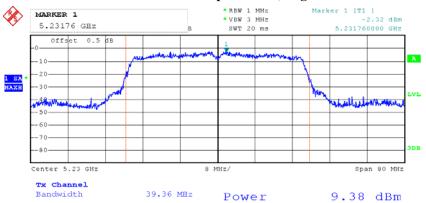

Chain 1:802.11n20 RF Output Power, Middle Channel

Date: 19.JUL.2012 21:06:29


FCC Part 15.407 Page 56 of 78

Chain 1:802.11n20 RF Output Power, High Channel

Date: 20.JUL.2012 21:48:42


Chain 1:802.11n40 RF Output Power, Low Channel

Date: 19.JUL.2012 22:13:12

FCC Part 15.407 Page 57 of 78

Chain 1:802.11n40 RF Output Power, High Channel

Date: 19.JUL.2012 21:56:39

FCC Part 15.407 Page 58 of 78

FCC §15.407(a) (1) (5) - POWER SPECTRAL DENSITY

Applicable Standard

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: R1DG120716001-00B

The peak power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Use sample detector and power averaging (not video averaging) mode. Set RBW= 1 MHz*, VBW > 1 MHz. The PPSD is the highest level found across the emission in any 1-MHz band after 100 sweeps of averaging. This method is permitted only if the transmission pulse or sequence of pulses remains at maximum transmits power throughout each of the 100 sweeps of averaging and that the interval between pulses is not included in any of the sweeps.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2012-07-08	2013-07-07

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

FCC Part 15.407 Page 59 of 78

Test Data

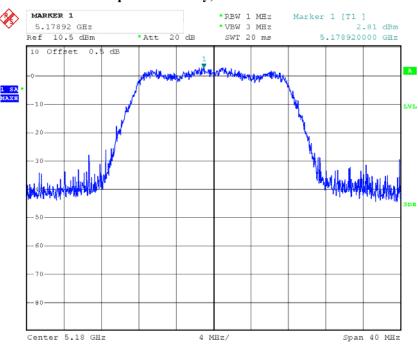
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Ares Liu from 2012-07-19 to 2012-07-20.

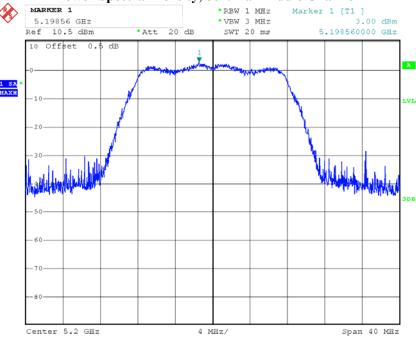
Test Mode: Transmitting

Test Result: Pass


Test mode: Transmitting

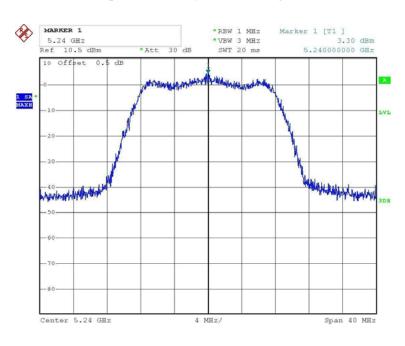
Channel	Power Spectral Density	Limit	Result				
	(dBm/MHz)	(dBm/MHz)					
	802.11a mode						
Low	2.81	4	PASS				
Middle	3.00	4	PASS				
High	3.30	4	PASS				
	Chain 0:802.1	1n20 mode					
Low	-0.63	4	PASS				
Middle	-0.15	4	PASS				
High	0.25	4	PASS				
	Chain 1:802.1	1n20 mode					
Low	-0.08	4	PASS				
Middle	-0.14	4	PASS				
High	-0.47	4	PASS				
	Chain 0:802.1	1n40 mode					
Low	-3.54	4	PASS				
High	-4.36	4	PASS				
	Chain 1:802.1	1n40 mode					
Low	-2.91	4	PASS				
High	-1.47	4	PASS				

Report No.: R1DG120716001-00B

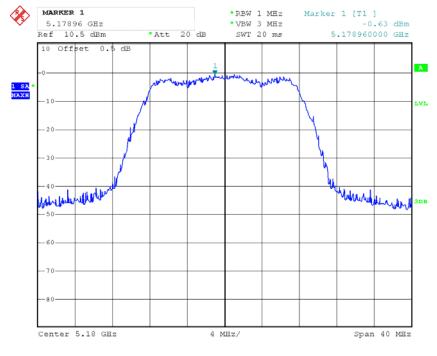

FCC Part 15.407 Page 60 of 78

Power Spectral Density, 802.11a Low Channel

Date: 19.JUL.2012 16:46:10


Power Spectral Density, 802.11a Middle Channel

Date: 19.JUL.2012 20:20:52

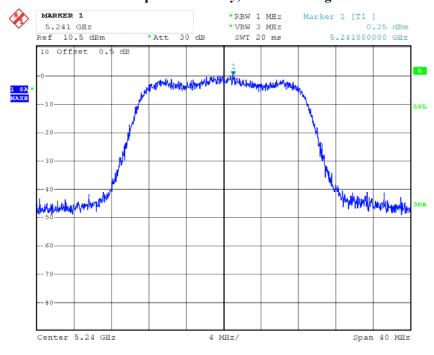

FCC Part 15.407 Page 61 of 78

Power Spectral Density, 802.11a High Channel

Date: 20.JUL.2012 21:24:11

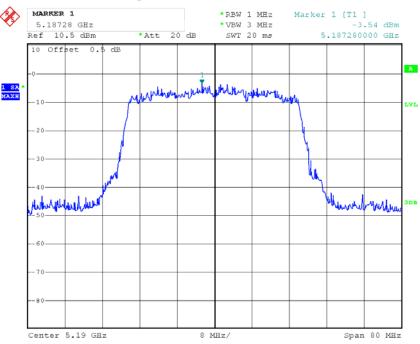
Chain 0:Power Spectral Density, 802.11 n20 Low Channel

Date: 20.JUL.2012 11:53:38

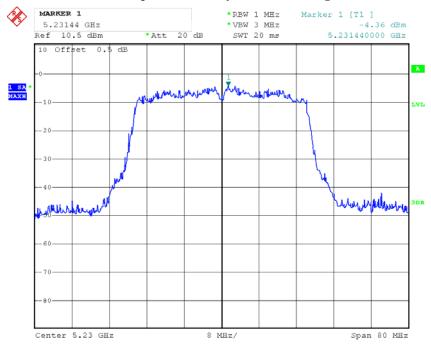

FCC Part 15.407 Page 62 of 78

Chain 0:Power Spectral Density, 802.11n20 Middle Channel

Date: 20.JUL.2012 13:11:13

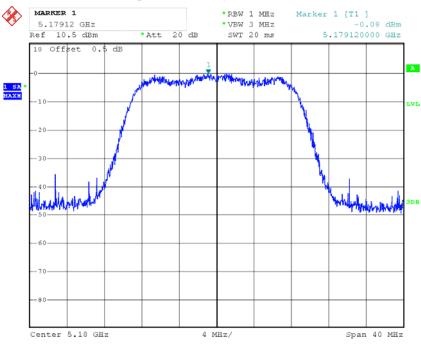

Chain 0:Power Spectral Density, 802.11n20 High Channel

Date: 20.JUL.2012 21:34:00


FCC Part 15.407 Page 63 of 78

Chain 0:Power Spectral Density, 802.11n40 Low Channel

Date: 20.JUL.2012 13:29:04

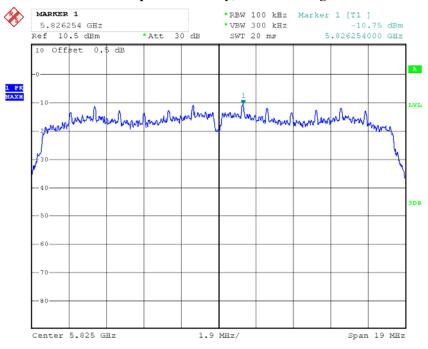

Chain 0:Power Spectral Density, 802.11n40 High Channel

Date: 20.JUL.2012 13:40:35

FCC Part 15.407 Page 64 of 78

Chain 1:Power Spectral Density, 802.11 n20 Low Channel

Date: 19.JUL.2012 20:52:34

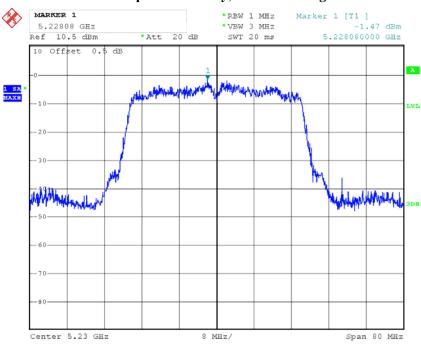

Chain 1: Power Spectral Density, 802.11n20 Middle Channel

Date: 19.JUL.2012 21:07:00

FCC Part 15.407 Page 65 of 78

Chain 1: Power Spectral Density, 802.11n20 High Channel

Date: 20.JUL.2012 22:17:52


Chain 1: Power Spectral Density, 802.11n40 Low Channel

Date: 19.JUL.2012 22:13:41

FCC Part 15.407 Page 66 of 78

Chain 1:Power Spectral Density, 802.11n40 High Channel

Date: 19.JUL.2012 21:57:43

FCC Part 15.407 Page 67 of 78

FCC §15.407(a) (6) – PEAK EXCURSION RATIO

Applicable Standard

According to §15.407(a) (6), the ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Report No.: R1DG120716001-00B

Test Procedure

Set the spectrum analyzer span to view the entire emission bandwidth.

The largest difference between the following two traces must be \leq 13 dB for all frequencies across the emission bandwidth. Submit a plot.

1st Trace:

• Set RBW = 1 MHz, VBW \geq 3 MHz with peak detector and maxhold settings.

2nd Trace:

• create the 2nd trace using the settings described in the setion "FCC §15.407(a)(1)(2) – CONDUCTED TRANSMITTER OUTPUT POWER".

EUT Spectrum Analyzer

Test Equipment List and Details

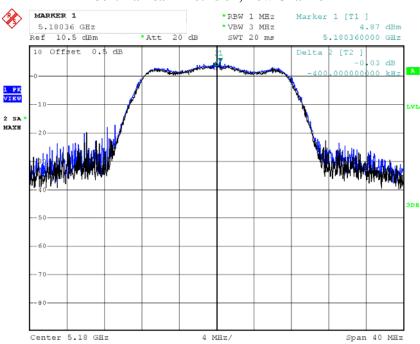
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2012-07-08	2013-07-07

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

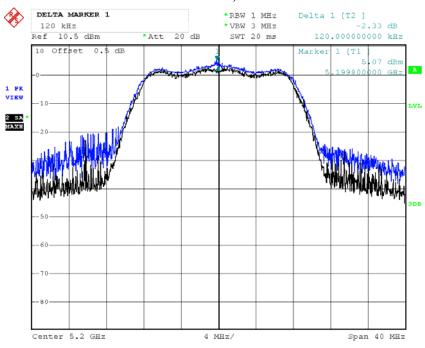
Environmental Conditions

Temperature:	25 ° C	
Relative Humidity:	56 %	
ATM Pressure:	100.0 kPa	


The testing was performed by Ares Liu form 2012-07-19 to 2012-07-20.

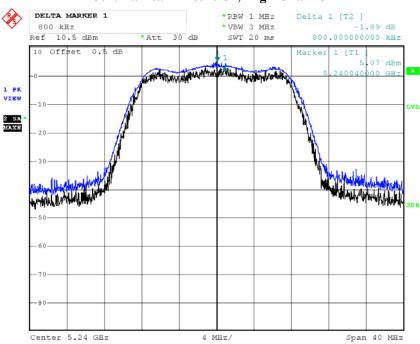
FCC Part 15.407 Page 68 of 78

Mode	Channel Frequency (MHz)	Antenna Port	Peak Excursion Ratio (dB)	Limit (dB)
802.11a	Low	Chain 0	0.03	13
	Middle	Chain 0	2.33	13
	High	Chain 0	1.89	13
802.11n20	Low	Chain 0	1.85	13
		Chain 1	2.85	13
	Middle	Chain 0	1.01	13
		Chain 1	2.33	13
	High	Chain 0	1.63	13
		Chain 1	2.25	13
802.11n40	Low	Chain 0	0.96	13
		Chain 1	1.57	13
	High	Chain 0	1.34	13
		Chain 1	1.93	13

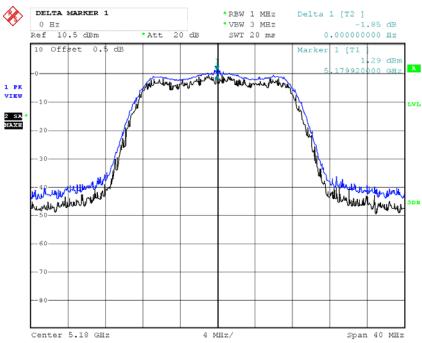

FCC Part 15.407 Page 69 of 78

802.11a Peak Excursion, Low Channel

Date: 19.JUL.2012 16:53:34

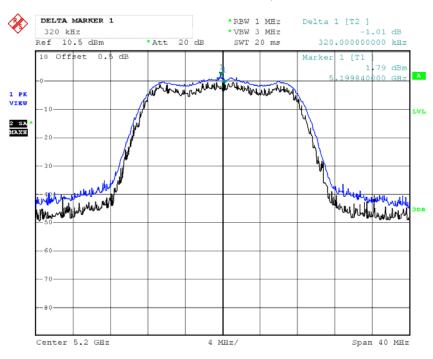

802.11a Peak Excursion, Middle Channel

Date: 19.JUL.2012 20:24:28

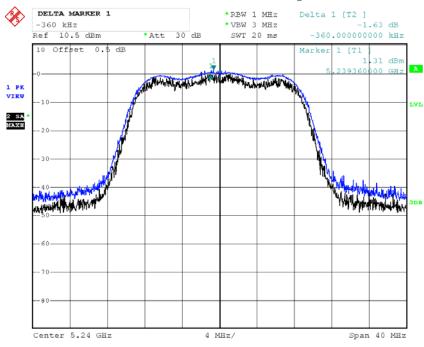

FCC Part 15.407 Page 70 of 78

802.11a Peak Excursion, High Channel

Date: 20.JUL.2012 21:25:26

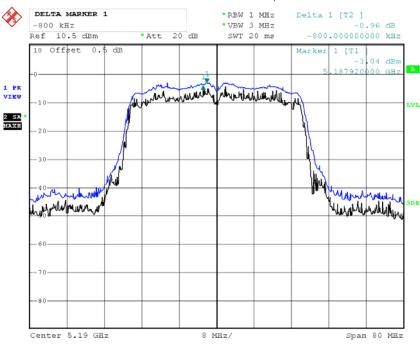

Chain 0:802.11n20 Peak Excursion, Low Channel

Date: 20.JUL.2012 11:54:38

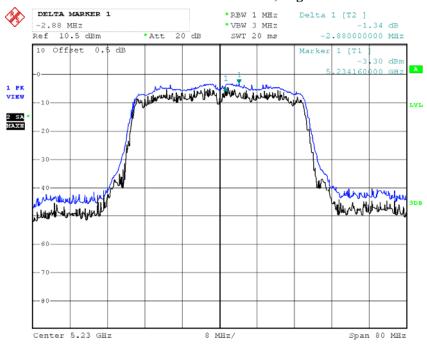

FCC Part 15.407 Page 71 of 78

Chain 0:802.11n20 Peak Excursion, Middle Channel

Date: 20.JUL.2012 13:12:09

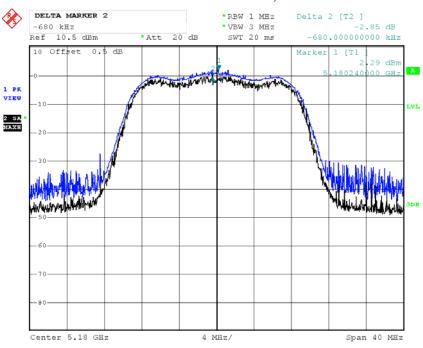

Chain 0:802.11n20 Peak Excursion, High Channel

Date: 20.JUL.2012 21:34:55

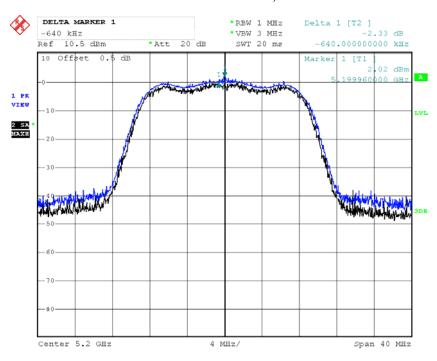

FCC Part 15.407 Page 72 of 78

Chain 0:802.11n40 Peak Excursion, Low Channel

Date: 20.JUL.2012 13:30:18

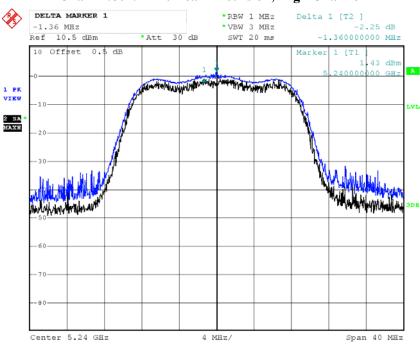

Chain 0:802.11n40 Peak Excursion, High Channel

Date: 20.JUL.2012 13:42:39

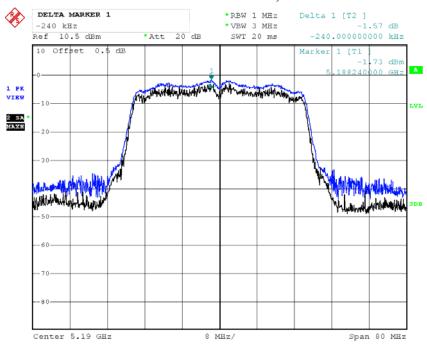

FCC Part 15.407 Page 73 of 78

Chain 1:802.11n20 Peak Excursion, Low Channel

Date: 19.JUL.2012 20:58:38

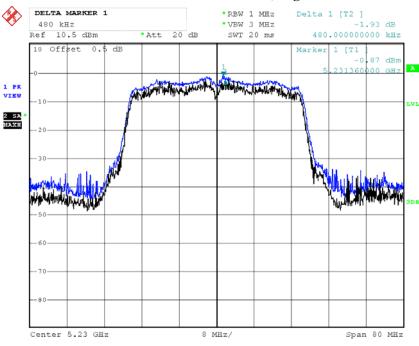

Chain 1:802.11n20 Peak Excursion, Middle Channel

Date: 19.JUL.2012 21:09:53


FCC Part 15.407 Page 74 of 78

Chain 1:802.11n20 Peak Excursion, High Channel

Date: 20.JUL.2012 21:51:00


Chain 1:802.11n40 Peak Excursion, Low Channel

Date: 19.JUL.2012 22:15:26

FCC Part 15.407 Page 75 of 78

Chain 1:802.11n40 Peak Excursion, High Channel

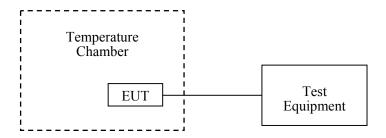
Date: 19.JUL.2012 22:01:29

FCC Part 15.407 Page 76 of 78

FCC §407(g) - FREQUENCY STABILITY

Applicable Standards

FCC§407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.


Report No.: R1DG120716001-00B

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The AC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable AC power supply was connected to the adaptor terminals of the equipment under test. The voltage was set to 80% and 115% of the nominal value and was then decreased until the transmitter light no longer illuminated. The output frequency was recorded for each voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ESPEC	Humidity tester	ESX-4CA	018 463	2012-03-02	2013-03-01
R&S	Spectrum Analyzer	FSEM	1079 8500	2011-10-09	2012-10-08

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %

The testing was performed by Ares Liu from 2012-07-19 to 2012-07-20.

FCC Part 15.407 Page 77 of 78

Test Mode: Transmitting

Channel Frequency (MHz)	Power supply (V _{AC})	Temperature (°C)	Measurement Frequency (MHz)
5180	120	-30	5180.012
		-20	5180.014
		-10	5180.016
		+0	5180.014
		+10	5180.016
		+20	5180.018
		+30	5180.018
		+40	5180.020
		+50	5180.018
	138	+20	5180.016
	96	+20	5180.014

***** END OF REPORT *****

FCC Part 15.407 Page 78 of 78