

Date: 8.APR.2023 19:26:58

Page 116 of 125

Page 117 of 125

Page 118 of 125

Page 119 of 125

4.6 Duty Cycle:

Serial Number:	231Y	Test Date:	2023/04/08~2023/04/10	
Test Site:	RF	Test Mode:	Transmitting	
Tester:	Jim Wei	Test Result:	N/A	

Report No.: CR230311771-00B

Environmental Conditions:						
Temperature: $(^{\circ}\mathbb{C})$	23.4~23.6	Relative Humidity: (%)	53~56	ATM Pressure: (kPa)	101.1~101.4	

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	R&S Spectrum Analyzer		101943	2022/07/25	2023/07/24	
zhuoxiang	zhuoxiang Coaxial Cable		211001	Each time	N/A	
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A	

^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Modes	Ton (ms)	Ton+off (ms)	Duty cycle (%)	1/T (Hz)	Duty Cycle Factor (dB)
802.11a	1.5061	3.9213	38.41	664	4.16
802.11n ht20	2.11n ht40 0.6087		33.06	821	4.81
802.11n ht40			19.86	1643	7.02
802.11ac vht20			34.81	786	4.58
802.11ac vht40	0.6087	3.0725	19.81	1643	7.03
802.11ac vht80	.11ac vht80 0.3354		12.04	2982	9.19
802.11ax hew20	1.1065	3.5217	31.42	904	5.03
802.11ax hew40	302.11ax hew40 0.5507		18.27	1816	7.38
802.11ax hew80	0.3464	2.7846	12.44	2887	9.05

Note:

Test only was performed at chain 0. Duty cycle <98%, duty cycle variations are less than $\pm 2\%$.

Page 121 of 125

Date: 10.APR.2023 09:06:16

802.11ac vht20

802.11ac vht40

802.11ac vht80

Page 122 of 125

Date: 8.APR.2023 14:30:03

Page 123 of 125

Date: 8.APR.2023 14:31:56

5. RF EXPOSURE EVALUATION

5.1 Applicable Standard

According to §1.1307(b)(3)(i)

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

Report No.: CR230311771-00B

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 cm} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 cm} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{\mathit{ERP}_{20\,cm}\sqrt{f}}\right) \, \mathrm{and} \, f \, \mathrm{is} \, \, \mathrm{in} \, \, \mathrm{GHz};$$

and

$$ERP_{20~cm}~(\text{mW}) = \begin{cases} 2040f & 0.3~\text{GHz} \le f < 1.5~\text{GHz} \\ \\ 3060 & 1.5~\text{GHz} \le f \le 6~\text{GHz} \end{cases}$$

d = the separation distance (cm);

5.2 Measurement Result

Operation Modes	Frequency (MHz)	Distance (mm)	(mW)	(dBm)	Maximum Conducted Power including Tune-up Tolerance (dBm)	Antenna Gain (dBi)	ERP (P) (dBm)	ERP (P) (mW)	Exemption
WLAN 2.4G	2412-2462	200	3060	34.86	23	7.84	28.69	739.61	Compliant
WI AN 5C	5150-5250	200	3060	34.86	25	8.93	31.78	1506.61	Compliant
WLAN 5G	5725-5850	200	3060	34.86	24	8.34	30.19	1044.72	Compliant

Report No.: CR230311771-00B

Note:

Antenna gain includes bearmforming gain for WLAN 2.4G and 5150-5250MHz/5725-5850MHz. The Maximum Conducted Power including Tune-up Tolerance was declared by manufacturer.

WLAN 2.4G and 5G can transmit simultaneously.

$$\sum_{i=1}^{a} \left(\frac{P_i}{P_{|th_i}} \right) + \sum_{j=1}^{b} \left(\frac{ERP_j}{ERP_{th_j}} \right) + \sum_{k=1}^{c} \left(\frac{Evaluated_k}{Exposure\ Limit_k} \right)$$

 $= P_{-2.4G}/P_{th\text{-}2.4G} + P_{-5G}/P_{th\text{-}5G}$

=739.61/3060+1506.61/3060

=0.73<1

Result: The device compliant the Exemption at 20cm distances.

==== END OF REPORT =====