

Test report 23-0149RP15-002-A

Product / EUT: Type designation: Tested type:	RFID Reader ARE i9x ARE i9x		
EUT authorization:	Certification Suppliers Declaration of Conformity		
Production level: S/N:	n/a n/a		
FCC ID:	V7IAREI9XHF		
Manufacturer:	AEG Identifikationssysteme GmbH Hörvelsinger Weg 47 89081 Ulm / Germany		
Test remit:	47 CFR Part 15 – Subpart B – Unintentional radiators		
	in accordance with the procedures given in ANSI C63.4-2014 and ANSI C63.4a-2017		
The standards were:	kept kept, for the limited scope of testing not kept		
Remark:	Validation covered by the accredited scope Validation not covered by the accredited scope according: Validation of the EMC-requirements partly proceeded		

Applicant: AEG Identifikationssysteme GmbH

Hörvelsinger Weg 47 89081 Ulm / Germany

EUT-

Date of arrival: 02/21/2024

Test ID: 23-0149PR08-003

Date(s) of test: 03/07/2024 - 03/12/2024

Burgrieden, 05/26/2024

Released by:

Principal Engineer - Christian Vogelmann

Test laboratory: EMCE GmbH

Ingenieurbüro für EMV-Prüfungen und

Schaltungsentwicklung

Untere Wiesen 1 / 88483 Burgrieden / Germany

DAkkS-Registration No: D-PL-12122-01-00 CAB-Registration No.: BnetzA-CAB-02/21-01/4

FCC-Registration No.: 239304

Accredited by:

Bundesnetzagentur

BNetzA-CAB-02/21-01

Deutsche Akkreditierungsstelle GmbH

Scope:

1	General information	4
2	EUT information	5
3	Decision rules for conformity assessment	8
4	Test equipment list of EMCE GmbH	9
5	Testplan provided by customer	13
6	Test(s) according 47 CFR Part 15 Subpart B - 03/08/2024	14
6.1	Requirements and conformance test specifications	14
6.2	Terminal voltage on powerline	15
6.2.1	Test set up	17
6.2.2	Test	21
6.3	Radiated emissions E-Field of unintentional radiators	31
6.3.1	Test set up	34
6.3.2	·	
7	Summary	46

1 <u>General information</u>

Project manager: Mr. S. Vogelmann **Inspector:** Mr. S. Vogelmann

EMCE GmbH

Ingenieurbüro für EMV-Prüfungen und Schaltungsentwicklung

Contact person: Mr. Waitzinger / AEG Identifikationssysteme GmbH

Remarks: n/a

State of revision:

Source	New	Date /	Modifications
document	Document	Reviser	
23-0149RP15-	23-0149RP15-	05/23/2024	Reduced pixel rate for the images.
002	002-A	S. Vogelmann	

2 **EUT information**

Sampling: The device was selected and provided by the customer.

Description: RFID Reader operating in the frequency range 13.56 MHz with

an external antenna.

Voltage supply: 120 V / 60 Hz

Frequency list: 13.56 MHz

Max. clock frequency: n/a

Temperature range: n/a

Dimension: $(LxWxH) / mm^3 - 90 \times 40 \times 25$

Used antennas:

Antenna designation	Manufacturer	Connector / cable length	Gain (dBi) @ f / GHz
AAN Xi9F – HF Ser. 000580	AEG Identifikationssysteme GmbH	2.0 m	n/a

Supplied / used equipment:

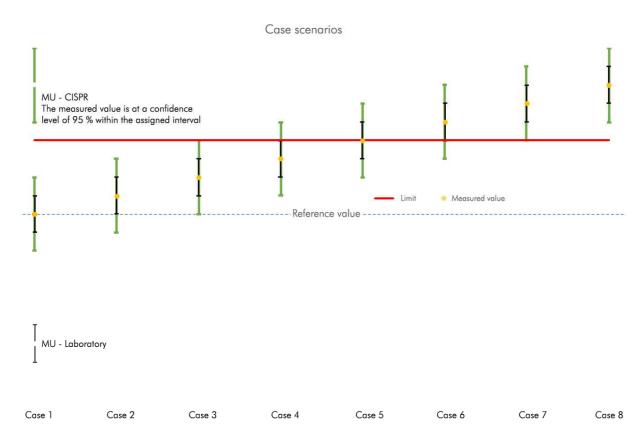
Designation	Туре	Manufacturer	S/N
Laptop	W25CSW	Terra	n/a
Power supply – Laptop	A12-065N2A	Chicony	F134091506009041
USB A Converter	151801	Manhattan	n/a
Power supply – EUT	SITP PSU3600	Siemens	n/a

Configuration:	As-delivered conditior Modified *
	7

Cable designation	Туре	Length	Remarks
Antenna cable	n/a	2.0 m	n/a
Interconnection cable	5-core	1.6 m	n/a
Power cord (AC) Notebook	3-core	1.0 m	n/a
Power cord (DC) Notebook	2-core	1.8 m	n/a
Power Cord (AC) PSU	3-core	1.8 m	n/a
Data cable	Sub-D 9-core	1.4 m	n/a
USB to SUB-D converter	151801	1.6 m	Ferrite with 2 turns WE 742 712 21

Software designation	Туре	Manufacturer	Version
Evaluation software	Evaluation software ARE i9 Terminal		1.084

Pictures of the EUT



3 <u>Decision rules for conformity assessment</u>

"Binary" decision rule - pass / fail Unless otherwise stated in the test module, the following specifications apply:

Interference emission

No measurement uncertainties are taken into account for the statement of conformity. In the case of conducted and radiated interference emission, the measurement is considered passed if the measurement result is below the permitted limit value. The accepted measurement uncertainties for a direct statement of conformity, determined for the U_{Lab} laboratory, must be less than the U_{CISPR} values determined in the CISPR16-4-2 standard. The measurement uncertainties are stated with a confidence level of 95 %. In this case the uncertainty of measurement is not taken into account for the conformity statement.

The test is passed for case 1 - 5. A rejection is made in case 6 - 8.

The test is considered as passed if the evaluation criteria for immunity to interference and the limits of emitted interference of the specified standard are met. Measurement uncertainties are not considered.

4 <u>Test equipment list of EMCE GmbH</u>

Inv No.	Designation	Туре	Manufacturer	S/N	Calibration: Interval /valid until
002	Passive probe	ESH2-Z3	Rohde & Schwarz		1 Year(s)/ 2024-12-31
003	LISN 1	ESH3-Z5	Rohde & Schwarz	835268/007	1 Year(s)/ 2025-03-31
004	LISN 2	ESH3-Z5	Rohde & Schwarz	835268/003	1 Year(s)/ 2025-03-31
006	LISN	NNBM 8125	Schwarzbeck	8125371	1 Year(s)/ 2025-02-28
007	Absorbing clamp	MDS 21	Schwarzbeck	942436	1 Year(s)/ 2025-01-31
800	Loop antenna 9kHz-30MHz	HFH2-Z2	Rohde & Schwarz	835776/0002	3 Year(s)/ 2026-02-28
009	Antenna 30-300MHz	VHBA9123 / BBA9106	Schwarzbeck	435	3 Year(s)/ 2024-12-22
010	Antenna 250-1200MHz	UHALP 9108A	Schwarzbeck	108	3 Year(s)/ 2025-12-20
013	Antenna 9 kHz-30 MHz	Ø 1.5 m	EMCE GmbH		1 Year(s)/ 2024-12-31
014	OATS	Test site 3 m referred to ANSI C63.4a-2017	EMCE GmbH		3 Year(s)/ 2024-04-23
015	OATS	Test site 10 m referred to ANSI C63.4a-2017	EMCE GmbH		3 Year(s)/ 2024-04-26
041	Loop antenna shielded	HZ-10 0816.2511.02	Rohde & Schwarz	849788/0020	3 Year(s)/ 2026-01-10
042-2	AC-Source	EMV D 5000/PAS/SyCore	Spitzenberger & Spies	A274700 / 00501	3 Year(s)/ 2026-02-10
042-1	Analyser Reference System	ARS 16/3	Spitzenberger & Spies	A274707 / 00501	3 Year(s)/ 2024-12-28
043	Receiver	3DH/E Fieldmeter ESM-100	Maschek	971521	3 Year(s)/ 2026-09-11
058	Receiver	ESIB 40	Rohde & Schwarz	100200/ Firmware 4.35	1 Year(s)/ 2024-08-18
059	Logper. antenna	HL050	Rohde & Schwarz	100006	3 Year(s)/ 2025-10-21
067	LISN	ESH2-Z5	Rohde & Schwarz	872460/043	1 Year(s)/ 2025-03-31
068	LISN	ESH2-Z5	Rohde & Schwarz	872460/042	1 Year(s)/ 2025-03-31

Inv No.	Designation	Туре	Manufacturer	S/N	Calibration: Interval /valid until
070	Pulse limiter + 10 dB Attenuator	ESH3-Z2	Rohde & Schwarz	n/a	1 Year(s)/ 2024-08-31
116	Vertical rod antenna	VAMP 9243	Schwarzbeck	9243-205	3 Year(s)/ 2026-05-19
117	LISN	ESH3-Z6	Rohde & Schwarz	100521	1 Year(s)/ 2025-02-28
118	Current Probe	F-52	Fischer Customs Communication, Inc.	08398	1 Year(s)/ 2025-01-31
151	DSO Infiniium 2500 MHz	DSO9254A	Agilent Technologies	MY52090137	2 Year(s)/ 2024-05-18
155	Impedance stabilisation network	ISN T400A	Teseq GmbH	26541	3 Year(s)/ 2025-01-31
174	LISN	ESH3-Z6	Rohde & Schwarz	101003	1 Year(s)/ 2025-02-28
175	EMI Test receiver	ESR7	Rohde & Schwarz	101108 Firmware: FW V3.46 SP3	1 Year(s)/ 2024-11-15
178	V-LISN 5 μH	NNHV 8123-400	Schwarzbeck	018	1 Year(s)/ 2025-02-28
184	V-LISN 5 μH	NNHV8123-400	Schwarzbeck	019	1 Year(s)/ 2025-02-28
222	Broadband Preamplifier 0.5-18 GHz	BBV 9718	Schwarzbeck	9718-316	1 Year(s)/ 2024-07-31
223	Broadband Preamplifier 12-28 GHz	BBV 9719	Schwarzbeck	9719-024	1 Year(s)/ 2024-07-31
224	SMB100A Signal Generator	SMB100A	Rohde & Schwarz	108055	3 Year(s)/ 2026-01-25
225	Electric and Magnetic Field Probe-Analyzer	EHP-200A	Narda S.T.S. / PMM	170WX70205	3 Year(s)/ 2025-07-22
226	HL050 LogPer. Antenna 850 MHz to 26.5 GHz	HL050 4062.4063.02	Rohde & Schwarz	100829	3 Year(s)/ 2026-07-27
229	Test receiver	ESS 5 Hz - 1000 MHz	Rohde & Schwarz	845420/0005	1 Year(s)/ 2025-01-19
230	FSV40 Signal Analyzer 40 GHz	FSV40	Rohde & Schwarz	101717	2 Year(s)/ 2026-02-06
236	Broad-Band Horn Antenna 0.5-6 GHz	BBHA 9120 E	Schwarzbeck	00831	5 Year(s)/ 2024-05-13
237	Exposure Level Tester	ELT-400	Narda Safety Test Solutions	O-0028	3 Year(s)/ 2026-03-03

Inv No.	Designation	Туре	Manufacturer	S/N	Calibration: Interval /valid until
239	Broadband Horn Antenna 15-40 GHz	BBHA 9170	Schwarzbeck	00932	5 Year(s)/ 2024-05-23
240	Broadband Preamplifier 18-40 GHz	BBV 9721	Schwarzbeck	54	1 Year(s)/ 2024-07-31
253	Broadband Preamplifier 20-1000 MHz	ESV-Z3	Rohde & Schwarz	881 909/030	1 Year(s)/ 2024-08-31
257	Pulse limiter + 10 dB Attenuator	ESH3-Z2	Rohde & Schwarz	102769	1 Year(s)/ 2024-08-31
262	EM Clamp	KEMZ 801A	Teseq	78033	1 Year(s)/ 2025-01-31
718	EMC-Software	BAT-EMC Vers. 3.18.0.19	Nexio	n/a	
997	EMC Software	EMC32 Vers. 10.60.20	Rohde & Schwarz	n/a	
1046	Environmental Simulation Chamber	MKF 115 (E3.1)	Binder GmbH	12-02215	3 Year(s)/ 2026-03-24
1212	EMC Software	WMS32 Vers. 10.60.20	Rohde & Schwarz	n/a	
1341	Multimeter	8845A	Fluke	5905001	3 Year(s)/ 2025-11-30
8004	Broadband Preamplifier 18-40 GHz	BLMA 1840-5G	BONN Elektronik GmbH	2113300	1 Year(s)/ 2024-07-31
8007	LPDA Broadband Antenna 180 - 1500 MHz	VULP 9118A	Schwarzbeck	899	3 Year(s)/ 2024-10-27
8008	LPDA Broadband Antenna 180 - 1500 MHz	VULP 9118A	Schwarzbeck	900	3 Year(s)/ 2024-10-27
8009	Field Monitoring Loop	FESP 5134-1	Schwarzbeck	00078	3 Year(s)/ 2024-12-20
8013	Antenna 9 - 150 kHz	Ø 120 mm, 20 Turns	EMCE GmbH	n/a	
8015	Amplifier 2.5 - 6 GHz	BBA150-E100	Rohde & Schwarz	105302	1 Year(s)/ 2024-08-31
8016	Circular Loop Antenna 0.01 - 120 MHz	HFRA 5164	Schwarzbeck	00152	
8017	Compensation network for 13.56 MHz	NFCN 1356	Schwarzbeck	00122	
8025	Monopole Antenna 144 - 148 MHz	HLC 146	Schwarzbeck	00057	3 Year(s)/ 2026-02-28

Inv No.	Designation	Туре	Manufacturer	S/N	Calibration: Interval /valid until
8033	Antenna 30-300 MHz	VHBB9124 / BBA9106	Schwarzbeck	1808	3 Year(s)/ 2026-04-21
8034	Antenna 30-300 MHz	VHBB9124 / BBA9106	Schwarzbeck	1812	3 Year(s)/ 2026-04-21
8039	Impedance Stabilisation Network	Pilot ISN	Schwarzbeck	82	1 Year(s)/ 2024-08-31
8042	Manual Attenuator	8494B+8495B	Keysight	TH61358076+ TH61354943	1 Year(s)/ 2025-02-28
8044	EMI Test Receiver	ESW44	Rohde & Schwarz	103371	1 Year(s)/ 2025-02-28

5 <u>Testplan provided by customer</u>

	Test according to the test plan provided by the customer
	Deviation from the test plan authorised by the customer
X	Test according standard

Source document	Date / Reviser	Modifications
document	Reviser	

6 Test(s) according 47 CFR Part 15 Subpart B - 03/08/2024

6.1 Requirements and conformance test specifications

Standard

47 CFR Part 15 Subpart B ANSI C63.4-2014 ANSI-C63.04a-2017 KDB n/a

_

Require	ement	Regulation section
		47 CFR Part 15 Subpart B
\boxtimes	Terminal voltage on powerline	§ 15.107 (a)
	Radiated emissions E-Field of unintentional radiators	§ 15.109 (a)(c)(g(2))

6.2 Terminal voltage on powerline

\boxtimes	No deviation from the standard
	Deviation from the standard
	Test not requested
	Test not carried out
*	

Measurement procedure:

Rules and specification 47 CFR Part 15 Section 15.107

Guide ANSI C63,4-2014

The conducted disturbances are recorded in the frequency range from 150 kHz to 30 MHz. For this purpose line impedance stabilization networks (LISNs) are used which are inserted between the DUT and the mains supply. The output of one LISN is connected directly to a receiver according to CISPR 16 guidelines via a pulse limiter and 10 dB fixed attenuator. Not used ports of the LISN are terminated by 50 Ω . The Average- and Quasi-Peak-Detectors are provided to evaluate the spectrum. To speed up the measurement process, a pre-measurement is performed with the Peak- and Average-Detectors. The 10 frequencies with the smallest distance to the limit and priority with the highest exceeding are selected and remeasured. The Average and Quasi-Peak-Detectors are used for the final measurement. This measurement procedure is performed for each individual current conductor.

Depending on the limit lines, 6 final measurements are documented. The highest limit exceeding or, in case of compliance with the limit, the emissions found with the smallest distance to the limit are documented.

If less than six emission frequencies with a distance of 20 dB are below the limit value, the noise level of the measuring device at representative frequencies is indicated.

For the measurement, it may be necessary to terminate the antenna output to distinguish the interference level caused by the unintentional part from the intentional part (see ANSI C63.04 section 13.1.3.1).

The documented final test results are calculated using the following formula:

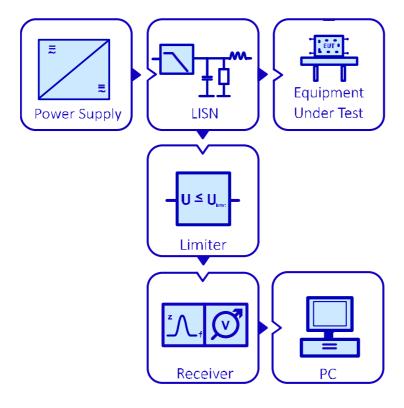
U(f)
$$(dB\mu V) = Measured Value (dB\mu V) + ATF (dB) + CF (dB)$$

U(f) = Final result of the terminal voltage at the test frequency

Measured Value = Reading of the uncorrected measured value

ATF = Correction factor for the pulse limiter + 10 dB attenuator

CF = Correction factor for the cable attenuation


Example:

Test frequency 13.56 MHz Reading 31.5 dB μ V AFT_(13.56 MHz) 10.2 dB CF_(13.56 MHz) 0.4 dB

Calculated final result for the terminal voltage u(f):

$$U_{(13.56 \text{ MHz})} = 31.5 \text{ dB}\mu\text{V} + 10.2 \text{ dB} + 0.4 \text{ dB} = 42.1 \text{ dB}\mu\text{V}$$

Basic structure - Setup

6.2.1 Test set up

According ANSI C63.4-2014

Test location

	InvNo.	Designation	Type (L x W x H)	Manufacturer	Location
\boxtimes	588	Shielded room # 2	8.3/5.8 x 5.5/2.9 x 3.4 m	EMC-Technik & Consulting GmbH	EMCE GmbH Untere Wiesen 1 88483 Burgrieden
	1319	Shielded room #5	5.6 x 5.0 x 3.8 m	Albatross Projects GmbH	EMCE GmbH Untere Wiesen 1 88483 Burgrieden

Used test equipment

\boxtimes	InvNo.	Designation	Туре	Manufacturer	S/N
\boxtimes	003	LISN 1	ESH3-Z5	Rohde & Schwarz	835268/007
	004	LISN 2	ESH3-Z5	Rohde & Schwarz	835268/003
	005	LISN 3	NNB 4/32T	Rolf Heine HF-Technik	4/32T-96015
\boxtimes	042	AC-Source / Analyzer / Norm impedance	EMV D5000/PAS	Spitzenberger + Spies	A274700/ 0 0501
	058	Test receiver	ESIB 40	Rohde & Schwarz	100200
	067	LISN 5	ESH2-Z5	Rohde & Schwarz	0872460/043
\boxtimes	068	LISN 4	ESH2-Z5	Rohde & Schwarz	0872460/042
\boxtimes	070	Pulse limiter / 10 dB attenuator	ESH3-Z2	Rohde & Schwarz	357.8810.52
\boxtimes	175	EMI Test receiver	ESR7	Rohde & Schwarz	101108
	229	Test receiver	ESS 5 Hz – 1000 MHz	Rohde & Schwarz	845420/0005
	997	Software	EMC32	Rohde & Schwarz	n/a

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements

Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the terminal voltage with an extended coverage factor of k=2:

Frequency Measurement uncertainty

9 kHz – 150 kHz 4.0 dB 150 kHz – 30 MHz 3.6 dB

6.2.2 Test

Rules and specification 47 CFR Part 15 Section 15.107 (a)

Frequency range: 150 kHz – 30 MHz

Limits for conducted emissions

Technical requirements								
Detector	Frequency / MHz	Limit QP-Detector / dBµV	Limit AV-Detector / dBµV					
QP AV	0.15 – 0.5	66.0 – 56.0	56.0 – 46.0					
QP AV	0.5 – 5.0	56.0	46.0					
QP AV	5.0 – 30.0	60	50.0					

Rationale for selecting the EUT test set up

Equipment units:

Minimal setup with EUT and external power supply unit. The DIN rail housing of the power supply unit was mounted on a metal plate. The metal plate was earthed via the power supply unit. The ground terminal and the cable shield of the reader's connection cable were connected to this metal plate. This design was chosen because it corresponds to the later intended use. The antenna was positioned away from the metal plate above a non-conductive surface. A remote laptop was provided for displaying the data from the reader.

Cabling:

Standard cables

___ Special cables provided by the manufacturer

Port #	Designation	Remarks
# 1	AC power line (EUT)	L1/N/PE
# 2	AC power line (AE)	L1/N/PE
# 3		

Operation mode

The EUT was operated in read mode at maximum read speed, where the ID of a tag was read out cyclically every 80 ms. This ID was sent to a remote PC which was connected to the EUT via a USB interface. The tag was placed at a distance of 2 cm in front of the antenna.

Environmental conditions

Temperature $[10 - 40 \, ^{\circ}\text{C}]$: 25 $^{\circ}\text{C}$ Relative humidity $[10 - 90 \, \%]$: 31 %

Environmental conditions during the test: kept not kept

Test result

Limits for conducted powerline emissions: kept not kept

not relevant

Remarks: n/a

Records

Readings – emissions for EUT

Diagrams - emissions for EUT

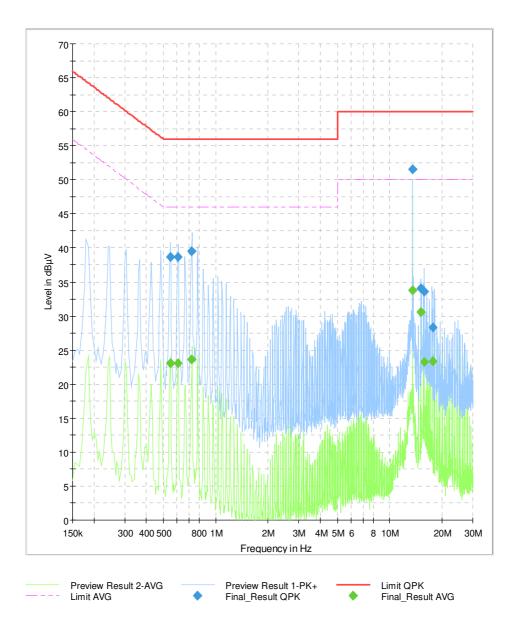
 $\begin{tabular}{|c|c|c|c|c|c|c|}\hline & Readings - emissions for AE \\ \hline \end{tabular}$

Diagrams - emissions for AE

EUT Information

EUT Name: ARE i9x

Test_ID: / SN: 23-0149PR08-003


Customer: AEG Identifikationssysteme GmbH

Operational condition: Reading mode (cyclical reading every 80 ms)
Test specification: 47 CFR Part 15 Subpart B §15.107 Class B

LISN port N / EUT Operator: S. Vogelmann

File #: 23-0149RC10-003-002

Comment #1: Comment #2:

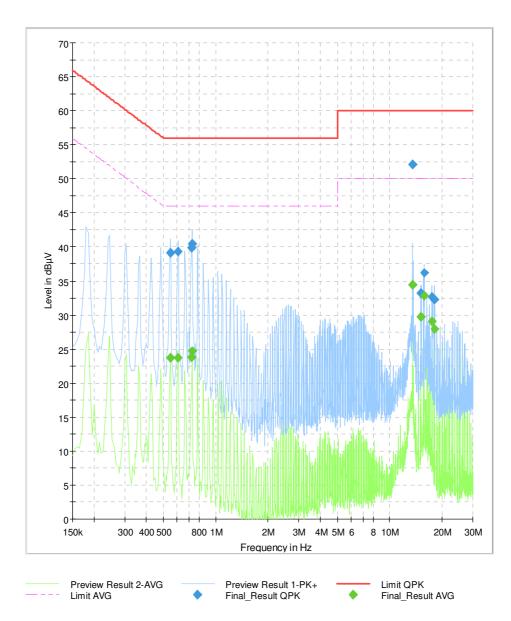
Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBμV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.545000		23.14	46.00	22.86	15000.0	9.000	N	10.1
0.545000	38.71		56.00	17.29	15000.0	9.000	N	10.1
0.605000		23.08	46.00	22.92	15000.0	9.000	N	10.1
0.605000	38.64		56.00	17.36	15000.0	9.000	N	10.1
0.728000	39.56		56.00	16.44	15000.0	9.000	N	10.2
0.728000		23.63	46.00	22.37	15000.0	9.000	N	10.2
13.563000	51.50		60.00	8.50	15000.0	9.000	N	10.7
13.563000		33.87	50.00	16.13	15000.0	9.000	N	10.7
15.155000	34.01		60.00	25.99	15000.0	9.000	N	10.8
15.155000		30.62	50.00	19.38	15000.0	9.000	N	10.8
15.750000	33.54		60.00	26.46	15000.0	9.000	N	10.8
15.750000		23.20	50.00	26.80	15000.0	9.000	N	10.8
17.604000	28.38		60.00	31.62	15000.0	9.000	N	10.8
17.604000		23.33	50.00	26.67	15000.0	9.000	N	10.8

EUT Information

EUT Name: ARE i9x

Test_ID: / SN: 23-0149PR08-003


Customer: AEG Identifikationssysteme GmbH

Operational condition: Reading mode (cyclical reading every 80 ms)
Test specification: 47 CFR Part 15 Subpart B §15.107 Class B

LISN port L1 / EUT Operator: S. Vogelmann

File #: 23-0149RC10-003-003

Comment #1: Comment #2:

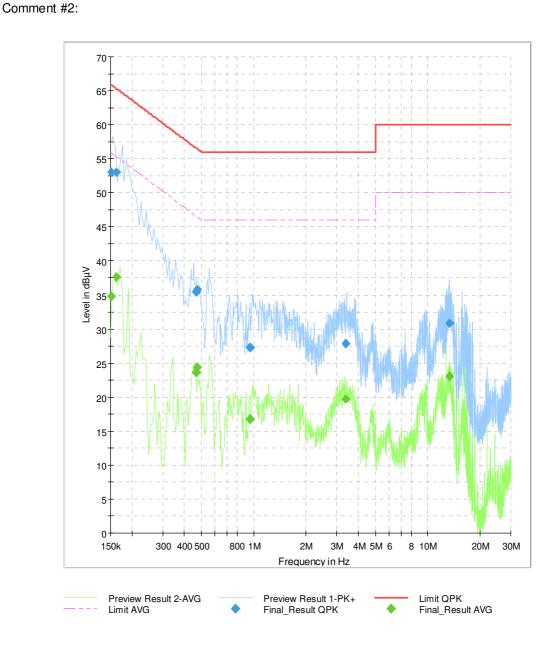
Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.545000	39.22		56.00	16.78	15000.0	9.000	L1	10.1
0.545000		23.74	46.00	22.26	15000.0	9.000	L1	10.1
0.607000	39.32		56.00	16.68	15000.0	9.000	L1	10.1
0.607000		23.76	46.00	22.24	15000.0	9.000	L1	10.1
0.728000	39.92		56.00	16.08	15000.0	9.000	L1	10.1
0.728000		23.86	46.00	22.14	15000.0	9.000	L1	10.1
0.730000	40.44		56.00	15.56	15000.0	9.000	L1	10.1
0.730000		24.72	46.00	21.28	15000.0	9.000	L1	10.1
13.558000		34.43	50.00	15.57	15000.0	9.000	L1	10.7
13.558000	52.16		60.00	7.84	15000.0	9.000	L1	10.7
15.139000		29.67	50.00	20.33	15000.0	9.000	L1	10.8
15.139000	33.23		60.00	26.77	15000.0	9.000	L1	10.8
15.743000		32.82	50.00	17.18	15000.0	9.000	L1	10.8
15.743000	36.21		60.00	23.79	15000.0	9.000	L1	10.8
17.560000		29.11	50.00	20.89	15000.0	9.000	L1	10.8
17.560000	32.65		60.00	27.35	15000.0	9.000	L1	10.8
18.169000		27.98	50.00	22.02	15000.0	9.000	L1	10.8
18.169000	32.28		60.00	27.72	15000.0	9.000	L1	10.8

EUT Information

EUT Name: ARE i9x

Test_ID: / SN: 23-0149PR08-003


Customer: AEG Identifikationssysteme GmbH

Operational condition: Reading mode (cyclical reading every 80 ms)
Test specification: 47 CFR Part 15 Subpart B §15.107 Class B

LISN port N / AE

Operator: S. Vogelmann

File #: 23-0149RC10-003-004 Comment #1:

Final Result

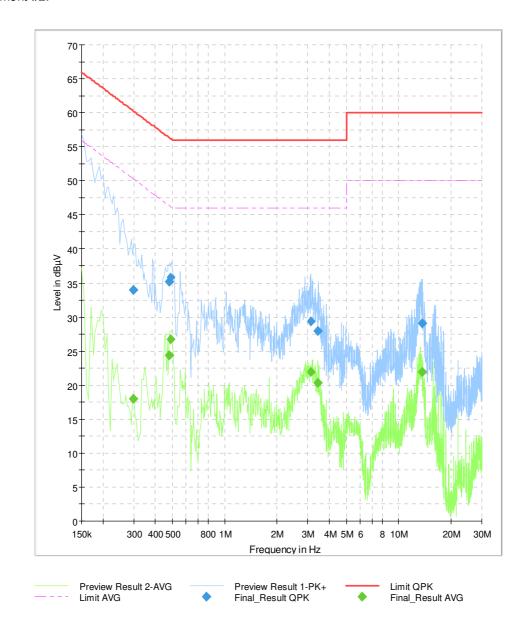
Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBμV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.152000		34.82	55.89	21.07	15000.0	9.000	N	10.0
0.152000	53.06		65.89	12.83	15000.0	9.000	N	10.0
0.162000		37.74	55.36	17.62	15000.0	9.000	N	10.0
0.162000	53.00		65.36	12.36	15000.0	9.000	N	10.0
0.468000	35.41		56.55	21.13	15000.0	9.000	N	10.1
0.468000		23.63	46.55	22.92	15000.0	9.000	N	10.1
0.471000	35.86		56.50	20.64	15000.0	9.000	N	10.1
0.471000		24.37	46.50	22.12	15000.0	9.000	N	10.1
0.944000	27.29		56.00	28.71	15000.0	9.000	N	10.2
0.944000		16.74	46.00	29.26	15000.0	9.000	N	10.2
3.391000	27.86		56.00	28.14	15000.0	9.000	N	10.3
3.391000		19.71	46.00	26.29	15000.0	9.000	N	10.3
13.386000	30.81		60.00	29.19	15000.0	9.000	N	10.7
13.386000		23.09	50.00	26.91	15000.0	9.000	N	10.7

EUT Information

EUT Name: ARE i9x

Test_ID: / SN: 23-0149PR08-003

Customer: AEG Identifikationssysteme GmbH


Operational condition: Reading mode (cyclical reading every 80 ms)
Test specification: 47 CFR Part 15 Subpart B §15.107 Class B

LISN port L1 / AE

 Operator:
 S. Vogelmann

 File #:
 23-0149RC10-003-005

Comment #1: Comment #2:

Final Result

Frequency	QuasiPeak	Average	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.297000	33.98		60.33	26.34	15000.0	9.000	L1	10.1
0.297000		17.96	50.33	32.37	15000.0	9.000	L1	10.1
0.477000	35.19		56.39	21.20	15000.0	9.000	L1	10.1
0.477000		24.37	46.39	22.02	15000.0	9.000	L1	10.1
0.489000	35.87		56.19	20.32	15000.0	9.000	L1	10.1
0.489000		26.67	46.19	19.52	15000.0	9.000	L1	10.1
3.142000	29.30		56.00	26.70	15000.0	9.000	L1	10.3
3.142000		21.91	46.00	24.09	15000.0	9.000	L1	10.3
3.407000	27.96		56.00	28.04	15000.0	9.000	L1	10.3
3.407000		20.32	46.00	25.68	15000.0	9.000	L1	10.3
13.614000	29.11		60.00	30.89	15000.0	9.000	L1	10.7
13.614000		22.02	50.00	27.98	15000.0	9.000	L1	10.7

6.3 Radiated emissions E-Field of unintentional radiators

\times	No deviation from the standard
	Deviation from the standard
	Test not requested
	Test not carried out
*	

Measurement procedure:

Rules and specification 47 CFR Part 15 Section 15.109

Guide ANSI C63,4-2014

The radiated interference emission is measured on an alternative open area test site OATS in the frequency range 30 - 1000 MHz. The measurement distance is 3 m or 10 m, depending on the standard. Above 1 GHz, the measurement is performed in a 3 m semi-anechoic chamber with floor absorber to reduce ground reflections. For the measurement of the field strength a biconical antenna up to 200 MHz, a logperiodic antenna from 200 MHz to 1 GHz and horn antennas or double stacked logperiodic antenna above 1 GHz are used. All antennas are linearly polarized. External low-noise preamplifiers are used in the range above 1 GHz to improve measurement sensitivity. Special measures, such as filters or attenuators, are taken to avoid overloading the amplifiers. The antenna height is varied between 1 m and 4 m as required. The elevation angle of the antenna can be corrected via the antenna mast to ensure that the main lobe of the antenna is always directed at the EUT. A turntable allows the alignment of the EUT towards the antenna to maximize the radiated emission. The test sites are located above a metallic ground plane. Table-top devices are placed on a non-conductive wooden table. Handheld, body-worn, or ceiling-mounted devices are examined in 3 orthogonal axis orientations to determine the maximum emission level. Floor-standing devices are placed directly on the grounded metal turntable/reference insulated from ground plane by an insulating material < 12 mm.

During an initial automated pre-test run in a semi-anechoic chamber, the desired frequency range is measured. The receiver is operated as an analyzer and the frequency ranges are run sequentially depending on the antenna. For the measurement, the turntable is continuously rotated from 0° - 360° and back, and the antenna height is changed in 0.5 m increments after each complete turntable cycle. The antenna position is then changed from 1.0 m to 4.0 m in 0.5 m steps for vertical polarization and back for horizontal polarization. During a cycle, the frequency range is continuously swept with peak detector and max hold function. Depending on the test specification, an average detector is also used if required. For each discrete antenna polarization over all positions, the maximum peak values

are recorded with frequency, level, turntable position, antenna height and antenna polarization. Significant peaks or clock frequencies are marked and re-measured with increased frequency accuracy. The recordings are used to determine the exact frequency and to optimize the interference level. At the predefined position, the turntable position is fine-adjusted in the range of $\pm 20^{\circ}$ and then the antenna height is varied by ± 0.3 m. At the maximized position, the emission is measured with quasi-peak or average detector and listed. The six highest emissions are selected for final measurement in the OATS.

In a final test run, an open area test site measurement is made at selected frequencies determined by the previous test procedure. For each selected frequency, the frequency setting is optimized again in the OATS and the field strength value is maximized, rotating the EUT 360° at an antenna height of 1.0 m for vertical antenna polarization and 2.0 m for horizontal antenna polarization. At the azimuth position of the EUT for the highest radiation, the antenna height is varied within 1.0 m and 4.0 m until the highest interference level is reached. To maximize the interference level at the determined position, the turntable azimuth is fine-adjusted by $\pm 45^\circ$ and the antenna height is fine-adjusted by ± 0.3 m. The setup of the instrument and the cables are manipulated within the range to produce the highest emission.

Final measurement is made using a receiver conforming to CISPR 16 guidelines with a guasi-peak and average detector.

The identified frequency and amplitude of the six highest radiated emissions relative to the limit lines are listed. If fewer than six emission frequencies are within 20 dB of the limit, the noise level of the instrument at representative frequencies is reported. For documentation of final testing below 1 GHz on the OATS the plots recorded in den SAC are indicated as pre-compliance.

In case the regulation requires testing at different distances, the result is extrapolated by an extrapolation factor 20 dB / decade to the required distance.

The reported test results are calculated using the following formula to normalize the results to the requested test distance:

E(f) $(dB\mu V/m) = Measured value (dB\mu V) + AF (dB/m) + CF (dB) + 20 *(D_T/D_R) (dB)$

E(f) = Final result of the electrical field strength

Measured Value = Reading of the uncorrected measured value

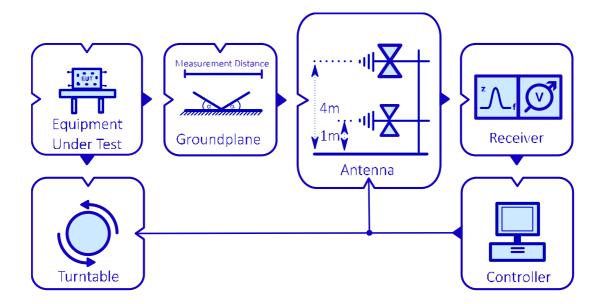
AF = Correction factor for the receiving antenna

CF = Correction factor for the cable loss

 $D_T =$ Test distance

 $D_R = Reference$ distance for the limit defined in the standard

Example:

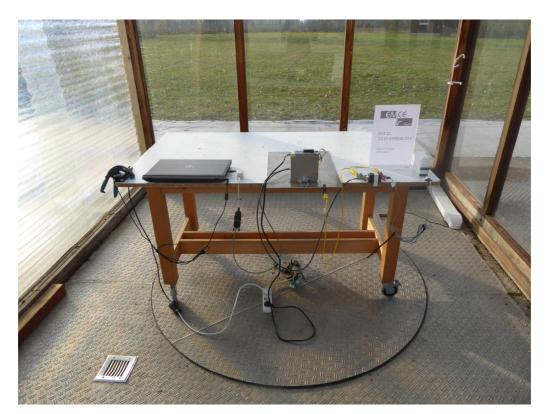

 $\begin{array}{lll} \text{Test frequency} & 500.00 \text{ MHz} \\ \text{Reading} & 12.3 \text{ dB}\mu\text{V} \\ \text{AF}_{(500.00 \text{ MHz})} & 17.1 \text{ dB/m} \\ \text{CF}_{(500.00 \text{ MHz})} & 1.4 \text{ dB} \\ \text{D}_{\text{T}} = & 3 \text{ m} \\ \text{D}_{\text{R}} = & 3 \text{ m} \end{array}$

Calculated final result for the electrical field strength E(f):

$$E_{(500.00\,MHz)} = 12.3\,dB\mu V + 17.1\,dB/m + 1.4\,dB + 0\,dB = 30.8\,dB\mu V/m$$

Basic structure - Setup

OATS / SAC



6.3.1 Test set up

According ANSI C63.4-2014

Photo(s) showing the interconnection of the major function units

Final test setup

Precompliance test setup

Test location

Pre-compliance test							
	InvNo.	Designation	Type (L x W x H)	Manufacturer	Location		
\boxtimes	062	Semi anechoic chamber # 2	13.5 x 6.1 x 5.5 m	EMC-Technik & Consulting GmbH	EMCE GmbH Untere Wiesen 1 88483 Burgrieden		

Final test									
\boxtimes	InvNo.	Designation	Type (L x W x H)	Manufacturer	Location				
	062	Semi anechoic chamber # 2	13.5 x 6.1 x 5.5 m	EMC-Technik & Consulting GmbH	EMCE GmbH Untere Wiesen 1 88483 Burgrieden				
	014	Open area test site	10 m	EMCE GmbH	EMCE GmbH Untere Wiesen 1 88483 Burgrieden				
	015	Open area test site	3 m	EMCE GmbH	EMCE GmbH Untere Wiesen 1 88483 Burgrieden				

Used test equipment

Pre-c	Pre-compliance test							
\boxtimes	InvNo.	o. Designation Type Manufacturer		S/N				
\boxtimes	042	AC-Source / Analyzer / Norm impedance	EMV D5000/PAS	Spitzenberger + Spies	A274700/ 0 0501			
\boxtimes	058	Test receiver	ESIB 40	Rohde & Schwarz	100200			
	059	Logper. Antenna	HL050	Rohde & Schwarz	100006			
\boxtimes	997	Software	EMC32	Rohde & Schwarz	n/a			
	8008	Logarithmic Periodic Broadband Antenna 180 - 1500 MHz	VULP 9118A	Schwarzbeck	900			
\boxtimes	8034	Antenna 30-300 MHz	VHBB9124 / BBA9106	Schwarzbeck	1812			

Final	Final test							
\boxtimes	InvNo.	Designation	Туре	Manufacturer	S/N			
\boxtimes	042	AC-Source / Analyzer / Norm impedance	EMV D5000/PAS	Spitzenberger + Spies	A274700/ 0 0501			
	058	Test receiver	ESIB 40	Rohde & Schwarz	100200			
	059	Logper. Antenna	HL050	Rohde & Schwarz	100006			
\boxtimes	229	Test receiver	ESS 5 Hz – 1000 MHz	Rohde & Schwarz	845420/0005			
	236	Broad-Band Horn Antenna 0.5-6 GHz	BBHA 9120 E	Schwarzbeck	00831			
	997	Software	EMC32	Rohde & Schwarz	n/a			
\boxtimes	8007	Logarithmic Periodic Broadband Antenna 180 - 1500 MHz	VULP 9118A	Schwarzbeck	899			
\boxtimes	8033	Antenna 30-300 MHz	VHBB9124 / BBA9106	Schwarzbeck	1808			

All used test equipment are checked resp. calibrated periodically.

Test equipment was checked and complied to the requirements

Test-/Measurement uncertainty

The measurement uncertainty in the test met the guideline of CISPR16-4-2 or better.

Measurement uncertainty of the radiated emission with an extended coverage factor of $\mathbf{k}=2$:

Frequency	Measurement uncertainty
30 MHz – 200 MHz	4.8 dB (valid for 10 m-OATS)
200 MHz – 1 GHz	4.9 dB (valid for 10 m-OATS)
30 MHz – 200 MHz	4.8 dB (valid for 3 m-OATS)
200 MHz – 1 GHz	6.2 dB (valid for 3 m-OATS)

6.3.2 Test

Rules and specification 47 CFR Part 15 Section 15.109 (a)(c)(g(2))

Limits for radiated emissions

Technical requirements							
Detector	Frequency / MHz	Limit / dBµV/m	Measurement distance / m				
QP	30.0 – 88.0	40.0	3				
QP	88.0 – 216.0	43.5	3				
QP	216.0 – 960.0	46.0	3				
QP	960.0 – 1000.0	54.0	3				
AV	> 1000	54.0	3				
PK	> 1000	74.0	3				

Highest frequency genera the device or on which the		Upper frequency of measurement:
operates or tunes:	 < 1.705 MHz ≥ 1.705 – 108 MHz □ 108 – 500 MHz □ 500 – 1000 MHz □ > 1000 MHz 	☐ 30 MHz ☐ 1000 MHz ☐ 2000 MHz ☐ 5000 MHz ☐ 5 th harmonic of the highest frequency or 40 GHz, whichever is lower
Frequency range:	☐ 9 kHz – 30 MHz☐ 1 – 5 GHz☐ 18 – 26 GHz	

Rationale for selecting the EUT test set up

Equipment units:

Minimal setup with EUT and external power supply unit. The DIN rail housing of the power supply unit was mounted on a metal plate. The metal plate was earthed via the power supply unit. The ground terminal and the cable shield of the reader's connection cable were connected to this metal plate. This design was chosen because it corresponds to the later intended use. The antenna was positioned away from the metal plate above a non-conductive surface. A remote laptop was provided for displaying the data from the reader.

Operation mode					
EUT arrangement: Power supply:	∑ Tabletop ∑ 120 V/60 Hz	Floor standing 240 V/60 Hz			
The EUT was operated in read mode at maximum read speed, where the ID of a tag was read out cyclically every 80 ms. This ID was sent to a remote PC which was connected to the EUT via a USB interface. The tag was placed at a distance of 2 cm in front of the antenna.					
Environmental conditions	- SAC				
Temperature [10 – 40 °C] Relative humidity [10 – 90		24 °C 35 %			
Environmental conditions	during the test:	kept not kept			
Environmental conditions	- OATS				
Temperature [10 – 40 °C] Relative humidity [10 – 90		14 °C 48 %			
Environmental conditions	during the test:	kept not kept			

Test result

Limits for un	wanted radiated emissions:	kept not kept not relevant
Remarks:	n/a	
Records		
Re	nce measurement adings agram	
	rement adings agram	

Pre-compliance measurement

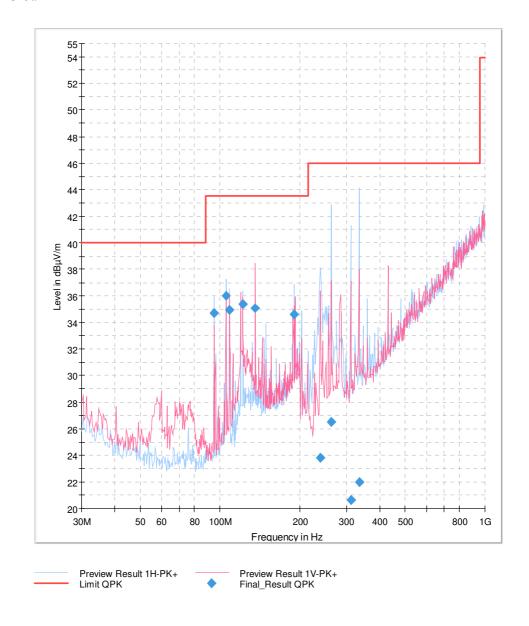
EUT Information

EUT Name: ARE i9x

Test ID: / SN: 23-0149PR08-003 Customer: AEG ID GmbH

Operational condition: Reading mode (cyclical reading every 80 ms)

Test specification: 47 CFR Part 15 Subpart B §15.109 Class B SAC @3m Antenna information:


Distance EUT-Ant.: 3.0 m / Polarisation: H/V / Ant. Height: 1.0-4.0 m.

S. Vogelmann

23-0149RC12-003-006

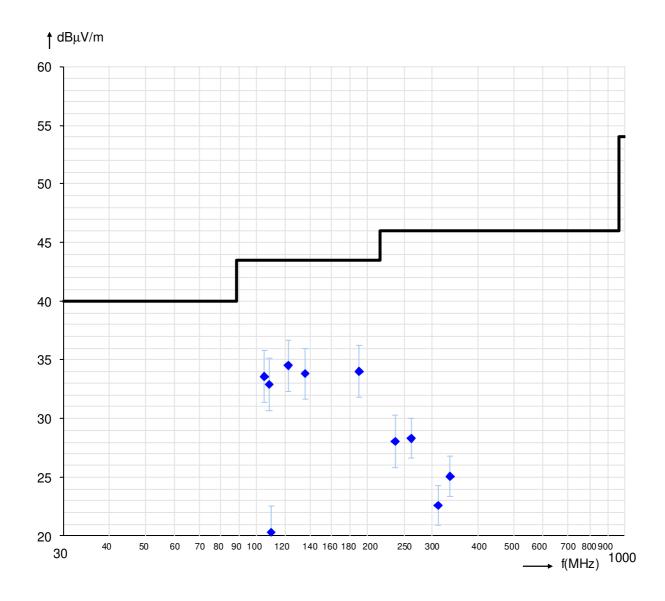
File #: Comment #1: Comment #2:

Operator:

Final Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB)
94.931863	34.72	43.50	8.78	5000.0	120.000	185.0	Н	28.0	10.2
105.030461	36.05	43.50	7.45	5000.0	120.000	212.0	Н	14.0	10.7
108.513427	34.95	43.50	8.55	5000.0	120.000	176.0	Н	37.0	10.9
122.052505	35.38	43.50	8.12	5000.0	120.000	235.0	Н	92.0	11.8
135.607615	35.09	43.50	8.41	5000.0	120.000	120.0	٧	110.0	12.6
189.856913	34.62	43.50	8.88	5000.0	120.000	180.0	Н	240.0	15.1
238.713828	23.83	46.00	22.17	5000.0	120.000	157.0	Н	348.0	12.4
262.639279	26.51	46.00	19.49	5000.0	120.000	103.0	Н	0.0	13.4
311.216433	20.67	46.00	25.33	5000.0	120.000	156.0	Н	22.0	14.7
334.393988	21.96	46.00	24.04	5000.0	120.000	105.0	Н	274.0	15.4

Final measurement


Readings – Antenna horizontal / vertical polarized

Frequency	Readings	+ AF Antenna correction factor	+ KF Cable correction factor	Field strength	Limit	Margin	Antenna- Polarization	Antenna- Height	Turn Table- Position
MHz	$dB\muV$	dB/m	dB	dBμV/m	dBμV/m	dB	hor./ver.	m	Degree
104.924	22.6	9.8	1.2	33.7	43.5	9.8	Н	2.00	0
108.481	21.7	10.1	1.2	33.0	43.5	10.5	Н	3.00	0
122.042	22.5	10.7	1.3	34.6	43.5	8.9	Н	1.60	90
135.602	21.0	11.5	1.4	33.9	43.5	9.6	V	1.00	90
189.860	18.6	13.9	1.7	34.1	43.5	9.4	Н	1.80	250
262.439	14.6	11.9	2.0	28.4	46.5	18.1	Н	1.24	180

<u>Diagram radio disturbances – Antenna horizontal / vertical polarized</u>

Limit: 47 CFR Part 15 Subpart B §15.109 (a)(c)

23-0149RP15-002-A Page 45 of 46

7 Summary

Reference

47 CFR Part 15 Subpart B

Requirement	Regulation section	Result	Remarks
	47 CFR Part 15 Subpart B		
Terminal voltage on powerline	§ 15.107 (a)	Pass	n/a
Radiated emissions E-Field of unintentional radiators	§ 15.109 (a)(c)(g(2))	Pass	n/a

Burgrieden, 05/26/2024

Responsible inspector:

Project manager – Steffen Vogelmann

- End of Test Report -