

RADIATED SPURIOUS EMISSIONS PORTIONS OF

FCC CFR47 PART 22 SUBPART H FCC CFR47 PART 24 SUBPART E

CERTIFICATION TEST REPORT FOR

DUAL-BAND 1xRTT CDMA PHONE WITH BLUETOOTH AND WIFI

FCC MODEL NUMBER: SCP-8600

FCC ID: V65SCP-8600

REPORT NUMBER: 10U13193-1

ISSUE DATE: MAY 10, 2010

Prepared for

KYOCERA COMMUNICATIONS, INC 10300 CAMPUS POINT DRIVE SAN DIEGO, CA 92121, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	lssue Date	Revisions	Revised By
	05/10/10	Initial Issue	T. Chan

Page 2 of 23

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS4	ł
2.	TES	T METHODOLOGY	;
3.	FAC	CILITIES AND ACCREDITATION	;
4.	CAL	IBRATION AND UNCERTAINTY	;
4	.1.	MEASURING INSTRUMENT CALIBRATION	5
4	.2.	SAMPLE CALCULATION	5
4	.3.	MEASUREMENT UNCERTAINTY	5
5.	EQL	JIPMENT UNDER TEST6	;
5	.1.	DESCRIPTION OF EUT	5
5	.2.	MAXIMUM OUTPUT POWER	3
5	.3.	SOFTWARE AND FIRMWARE	7
5	.4.	WORST-CASE CONFIGURATION AND MODE	7
5	.5.	DESCRIPTION OF TEST SETUP	3
6.	TES	T AND MEASUREMENT EQUIPMENT10)
7.	LIMI	ITS AND RESULTS	l
7.	.1.	RADIATED OUTPUT POWER11	ł
7.	.2.	FIELD STRENGTH OF SPURIOUS RADIATION	ļ
8.	SET	UP PHOTOS	,

Page 3 of 23

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	KYOCERA COMMUNICATIONS, INC 10300 CAMPUS POINT DRIVE SAN DIEGO, CA 92121, USA	
EUT DESCRIPTION:	DUAL-BAND 1xRTT CDMA PHONE WITH WIFI	BLUETOOTH AND
MODEL:	SCP-8600	
SERIAL NUMBER:	A0000012FEED44	
DATE TESTED:	MAY 04 and 05, 2010	
	APPLICABLE STANDARDS	
	STANDARD	TEST RESULTS

FCC PART 22H AND 24E PASS (Radiated Portion)

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

THU CHAN EMC MANAGER COMPLIANCE CERTIFICATION SERVICES Tested By:

MENGISTU MEKURIA EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 23

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR 47 Part 2, FCC CFR 47 Part 22, and FCC CFR Part 24.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 23

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth featured Dual-band CDMA Phone with Bluetooth and WiFi feature that manufactured by KYOCERA Communications, Inc.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum ERP & EIRP output powers as follows:

824 to 849 MHz Authorized Band

Frequency Range	Modulation	ERP	ERP
		Peak Power	Peak Power
(MHz)		(dBm)	(mW)
Low CH - 824.70		29.2	831.8
Mid CH - 836.52	CDMA2000	27.8	602.6
High CH - 848.31		26.5	446.7

1850 to 1910 MHz Authorized Band

Frequency Range	Modulation	EIRP	EIRP
		Peak Power	Peak Power
(MHz)		(dBm)	(mW)
Low CH - 1851.25		26.6	457.1
Mid CH - 1880.00	CDMA2000	26.1	407.4
High CH - 1908.75		25.4	346.7

Page 6 of 23

5.3. SOFTWARE AND FIRMWARE

The EUT is linked with Agilent Communication Test Set.

5.4. WORST-CASE CONFIGURATION AND MODE

The worst-position was the EUT with highest emissions. To determine the worst-case, the EUT was investigated for X, Y, and Z-Positions, and the worst position among X, Y, and Z with AC/DC adapter and Headset. After the investigations, the worst-position was turned out to be a Z-position without AC/DC adapter for Cell band and an X-position without AC/DC for PCS bands.

PROCEDURE USED TO ESTABLISH TEST SIGNAL

3G-CDMA2000 1xRTT

This procedure assumes the Agilent 8960 Test Set has the following applications installed and with valid license.

Application	<u>Rev, License</u>
CDMA2000 Mobil Test	B.10.11, L

<u>1xRTT</u>

- Call Setup > Shift & Preset
- Protocol Rev > 6 (IS-2000-0)
- Radio Config (RC) > RC3 (Fwd3, Rvs3)
- FCH Service Option (SO) Setup > 55
- Traffic Data Rate > Full
- TDSO SCH Info > F-SCH Parameters > F-SCH Data Rate > 153.6 kbps

> R-SCH Parameters > R-SCH Data Rate > 153.6 kbps

• Cell Info > Cell Parameters > System ID (SID) > 2

> Network ID (NID) > 65535

Once "Active Cell" show "Connected " then change "Rvs Power Ctrl" from "Active bits" to "All Up bits" to get the maximum power.

Worst-case Measurement Result @ Low, Middle and High Channel

Worst-case Measurement Result for Low, Middle and High Channel under Radio Configuration RC3 and Service Option 55.

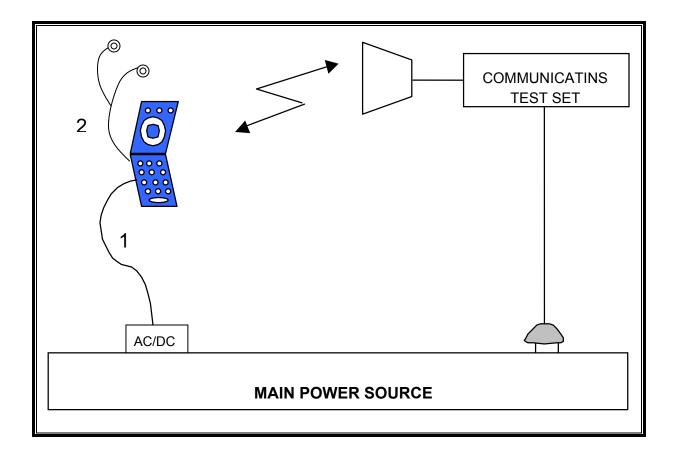
Page 7 of 23

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

	PERIPHERAL	SUPPORT EQUI	PMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
AC/DC Adapter	Sanyo	SCP-24ADT	0810B	N/A
Headset	N/A	N/A	N/A	N/A

I/O CABLES


			l.	O CABLE LIST		
Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identical	Туре	Туре	Length	
		Ports				
1	DC Input	1	Mini-USB	Un-Shielded	1.0 m	N/A
2	Audio	1	Mini-Jack	Un-Shielded	1.0 m	Volume Control on the Wire

TEST SETUP

The EUT is a CDMA phone and-is tested as a standalone configuration. Communications Test Set is used to link the device under test.

Page 8 of 23

SETUP DIAGRAM FOR TESTS

Page 9 of 23

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIP	MENT LIST		
Description	Manufacturer	Model	Asset	Cal Due
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	08/04/10
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/14/10
Antenna, Horn, 18 GHz	ETS	3117	C01022	07/29/10
Antenna, Horn, 18 GHz	EMCO	3115	C00945	07/29/10
Dipole	Speag	D900V2	NA	11/16/11
Highpass Filter, 1.5 GHz	Micro-Tronics	HPM13193	N02689`	CNR
Highpass Filter, 2.7 GHz	Micro-Tronics	HPM13194	N02687	CNR
Signal Generator	R & S	SMP04	C00953	02/16/11
Communication Test Set	R & S	CMU 200	C01131	02/27/11
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	08/24/10

Page 10 of 23

7. LIMITS AND RESULTS

7.1. RADIATED OUTPUT POWER

LIMITS

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(b) & RSS133 § 6.4 Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 2.2.17.

RESULTS

Page 11 of 23

CELL OUTPUT POWER (ERP)

			uency Subs e Certificatio				
ompany	:	KYOCERA W	IRELESS				
roject #:		10U13193					
ate:		5/5/2010					
est Engi	ineer:	MENGISTU M	EKURIA				
onfigura	ation:	STAND-ALON	E EUT				
ode:		ТХ, СДМА СЕ	LL BAND				
	g: Sunol T122		amber N-type , 6ft SMA Cab	•	•		• •
eceivin	g: Sunol T122 ion: Dipole S/ SA reading	N: 00022117 Ant. Pol.	, 6ft SMA Cab Path Loss	le (SN # 2 ERP	08947003 Limit) Warehouse Margin	• •
eceiving ubstitut f	g: Sunol T122 ion: Dipole S/	N: 00022117	, 6ft SMA Cab	le (SN # 2	08947003) Warehouse	
eceiving ubstitut f	g: Sunol T122 ion: Dipole S/ SA reading	N: 00022117 Ant. Pol.	, 6ft SMA Cab Path Loss	le (SN # 2 ERP	08947003 Limit) Warehouse Margin	
eceiving ubstitut f MHz	g: Sunol T122 ion: Dipole S/ SA reading (dBm)	N: 00022117 Ant. Pol. (H/V)	, 6ft SMA Cab Path Loss (dBm)	le (SN # 2 ERP (dBm)	08947003 Limit (dBm)) Warehouse Margin (dB)	
eceiving ubstitut f MHz 824.70 824.70	g: Sunol T122 ion: Dipole S/ SA reading (dBm) -5.6 -18.1	N: 00022117 Ant. Pol. (H/V) V H	, 6ft SMA Cab Path Loss (dBm) 34.8 30.5	le (SN # 2 ERP (dBm) 29.2 12.5	08947003 Limit (dBm) 38.5 38.5) Warehouse Margin (dB) -9.3 -26.0	
eceiving ubstitut f MHz 824.70 824.70 836.52	g: Sunol T122 ion: Dipole S/ SA reading (dBm) -5.6 -18.1 -5.3	N: 00022117 Ant. Pol. (H/V) V H	, 6ft SMA Cab Path Loss (dBm) 34.8 30.5 33.1	le (SN # 2 ERP (dBm) 29.2 12.5 27.8	08947003 Limit (dBm) 38.5 38.5 38.5) Warehouse Margin (dB) -9.3 -26.0 -10.6	
eceiving ubstitut f MHz 824.70 824.70	g: Sunol T122 ion: Dipole S/ SA reading (dBm) -5.6 -18.1	N: 00022117 Ant. Pol. (H/V) V H	, 6ft SMA Cab Path Loss (dBm) 34.8 30.5	le (SN # 2 ERP (dBm) 29.2 12.5	08947003 Limit (dBm) 38.5 38.5) Warehouse Margin (dB) -9.3 -26.0	
eceiving ubstitut f MHz 824.70 824.70 836.52	g: Sunol T122 ion: Dipole S/ SA reading (dBm) -5.6 -18.1 -5.3	N: 00022117 Ant. Pol. (H/V) V H	, 6ft SMA Cab Path Loss (dBm) 34.8 30.5 33.1	le (SN # 2 ERP (dBm) 29.2 12.5 27.8	08947003 Limit (dBm) 38.5 38.5 38.5) Warehouse Margin (dB) -9.3 -26.0 -10.6	

Page 12 of 23

PCS OUTPUT POWER (EIRP)

			uency Funda e Certificatior				
		Compliant	e eentineutier	1 001 1100	oonamb		
Company	:	KYOCERA W	IRELESS				
Project #:	:	10U13193					
Date:		5/4/2010					
Test Engi	ineer:	MENGISTU M	EKURIA				
Configura	ation:	STAND-ALON	E EUT				
Mode:		ТХ, CDMA PC	S BAND				
Substitut	g: Horn T73, an ion: Horn T72 S	Substitution,	6ft SMA Cable		-		Neder
Receiving	g: Horn T73, an	Substitution,		(2089470 EIRP (dBm)	03) Wareh Limit (dBm)	Delta (dB)	Notes
Receiving Substituti f GHz	g: Horn T73, an ion: Horn T72 S SA reading (dBm)	Substitution, Ant. Pol. (H/∨)	6ft SMA Cable Path Loss (dBm)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Receiving Substituti f GHz 1.851	g: Horn T73, an ion: Horn T72 S SA reading (dBm) -20.1	Substitution, Ant. Pol. (H/∨) V	6ft SMA Cable Path Loss (dBm) 40.4	EIRP (dBm) 20.3	Limit (dBm) 33.0	Delta (dB) -12.7	Notes
Receiving Substituti f GHz	g: Horn T73, an ion: Horn T72 S SA reading (dBm)	Substitution, Ant. Pol. (H/∨)	6ft SMA Cable Path Loss (dBm)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Receiving Substituti f GHz 1.851	g: Horn T73, an ion: Horn T72 S SA reading (dBm) -20.1	Substitution, Ant. Pol. (H/∨) V	6ft SMA Cable Path Loss (dBm) 40.4	EIRP (dBm) 20.3	Limit (dBm) 33.0	Delta (dB) -12.7	Notes
Receiving Substituti GHz 1.851 1.851	g: Horn T73, an ion: Horn T72 \$ SA reading (dBm) -20.1 -13.1	Substitution, Ant. Pol. (H/V) V H	6ft SMA Cable Path Loss (dBm) 40.4 39.7	EIRP (dBm) 20.3 26.6	Limit (dBm) 33.0 33.0	Delta (dB) -12.7 -6.4	Notes
Receiving Substituti GHz 1.851 1.851 1.880 1.880	g: Horn T73, an ion: Horn T72 S SA reading (dBm) -20.1 -13.1 -23.4 -14.0	Substitution, Ant. Pol. (H/V) V H V H	6ft SMA Cable Path Loss (dBm) 40.4 39.7 39.9 40.1	EIRP (dBm) 20.3 26.6 16.5 26.1	Limit (dBm) 33.0 33.0 33.0 33.0	Delta (dB) -12.7 -6.4 -16.5 -6.9	Notes
Receiving Substituti GHz 1.851 1.851 1.880	g: Horn T73, an ion: Horn T72 \$ SA reading (dBm) -20.1 -13.1 -23.4	Substitution, Ant. Pol. (H/V) V H V	6ft SMA Cable Path Loss (dBm) 40.4 39.7 39.9	EIRP (dBm) 20.3 26.6 16.5	Limit (dBm) 33.0 33.0 33.0	Delta (dB) -12.7 -6.4 -16.5	Notes

Page 13 of 23

7.2. FIELD STRENGTH OF SPURIOUS RADIATION

LIMIT

§22.917 (e) and §24.238 (a), RSS-132 § 4.5.1, & RSS-133 § 6.5.1 (a) (i) & (b): Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 3.2.12 & FCC 22.917 (b), FCC 24.238 (b), & FCC 27.53 (g)(1)(2)(3).

RESULTS

Page 14 of 23

CELL SPURIOUS & HARMONIC (ERP)

Company Project # Date: Test Eng Configur Mode:	f: gineer: ration:	KYOCERA W 10U13193 5/4/2010 MENGISTU M STAND-ALOI TX, CDMA CI	IEKURIA NE EUT							
	Chambe	r	Pre-amplifer			Filter			Li	mit
5	5m Chamber A 🚽		T144 8449B			Filter 1			FCC PART 22	
f	SA reading	Ant. Pol.	Distance	Path Loss	Preamp	Filter	ERP	Limit	Delta	Notes
GHz	(dBm)	(H/∨)	(m)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
.ow Chai 1.649	nmnel (824.7 MH -22.4	z) H	3.0	36.6	38.2	1.0	-23.0	-13.0	-10.0	
2.474	-22.4 -46.3	H	3.0	40.0	37.5	1.0	-23.0	-13.0	-29.8	
3.299	45.0	H	3.0	43.9	37.1	1.0	-37.2	-13.0	-24.2	
.124	-51.6	Н	3.0	46.2	36.5	1.0	-40.9	-13.0	-27.9	
.948	-65.0	H	3.0	48.6	36.3	1.0	-51.7	-13.0	-38.7	
1.649 2.474	-27.4 -50.3	V	3.0 3.0	36.8 41.7	38.2 37.5	1.0 1.0	-27.7 -45.0	-13.0 -13.0	-14.7 -32.0	
3.299	-50.3 -41.3	v	3.0	41.7	37.5	1.0	-45.0	-13.0	-32.0 -20.5	
.1299	48.8	V	3.0	44.0	36.5	1.0	-33.5	-13.0	-20.5	
.948	-62.9	v	3.0	48.1	36.3	1.0	-50.1	-13.0	-37.1	
	nel (836.52 MHz)								
.673	-21.1	, Н	3.0	36.8	38.1	1.0	-21.4	-13.0	-8.4	
2.510	-40.8	Н	3.0	40.1	37.5	1.0	-37.1	-13.0	-24.1	
3.346	41.7	H	3.0	44.0	37.1	1.0	-33.8	-13.0	-20.8	
.183	44.9	H	3.0	46.4	36.5	1.0	-34.1	-13.0	-21.1	
5.019 5.856	-53.2 -58.0	H	3.0 3.0	48.8 50.5	36.3 36.3	1.0 1.0	-39.6 -42.9	-13.0 -13.0	-26.6 -29.9	
5.692	-56.0	п Н	3.0	50.5 51.9	36.4	1.0	42.9	-13.0	-29.9 -35.6	
.529	-65.6	H	3.0	53.1	36.6	1.0	48.1	-13.0	-35.1	
3.365	-62.9	Н	3.0	54.1	36.8	1.0	-44.5	-13.0	-31.5	
.202	-58.5	Н	3.0	55.2	37.0	1.0	-39.3	-13.0	-26.3	
1.673	-24.3	V	3.0	37.1	38.1	1.0	-24.3	-13.0	-11.3	
2.510 3.346	-45.0 -38.2	V	3.0 3.0	41.8 44.1	37.5 37.1	1.0 1.0	-39.6	-13.0 -13.0	-26.6 -17.2	
	-30.2	v	3.0	44.1	36.5	1.0	-30.2	-13.0	-17.2	
5.019	48.5	v	3.0	48.3	36.3	1.0	-35.5	-13.0	-22.5	
5.856	-54.9	v	3.0	49.7	36.3	1.0	-40.5	-13.0	-27.5	
6.692	-64.7	V	3.0	50.9	36.4	1.0	-49.2	-13.0	-36.2	
.529	-62.1	<u>v</u>	3.0	52.0	36.6	1.0	45.7	-13.0	-32.7	
3.365).202	-60.3 -57.6	V V	3.0 3.0	53.1 54.2	36.8 37.0	1.0 1.0	-43.0 -39.4	-13.0 -13.0	-30.0 -26.4	
.202	-51.0	v	5.0	J4.L	51.0	1.0	-33.4	-13.0	-20.4	
	el (848.3 MHz)									
.697	-28.3	H	3.0	37.0	38.1	1.0	-28.4	-13.0	-15.4	
2.545	48.6	H	3.0	40.3	37.5	1.0	44.7	-13.0	-31.7	
3.393 1.242	-48.7 -56.1	H	3.0 3.0	44.1 46.5	37.1 36.5	1.0 1.0	-40.6 -45.0	-13.0 -13.0	-27.6 -32.0	
.242 5.090	-56.1	H H	3.0	46.5	36.3 36.3	1.0	49.5	-13.0 -13.0	-32.0 -36.5	
1.697	-31.0	v	3.0	37.4	38.1	1.0	-30.8	-13.0	-17.8	
2.545	-48.4	V	3.0	42.0	37.5	1.0	42.9	-13.0	-29.9	
3.393	-45.1	V	3.0	44.2	37.1	1.0	-36.9	-13.0	-23.9	
.242	-51.8	V	3.0	46.2	36.5	1.0	41.0	-13.0	-28.0	
	-59.8 -63.0	V	3.0	48.5	36.3	1.0	46.6	-13.0 13.0	-33.6	
5.090 5.938		v	3.0	49.8	36.3	1.0	-48.5	-13.0	-35.5	

Page 15 of 23

PCS Spurious & Harmonic (EIRP)

Compan Project# Date: Test Eng Configui Mode:	#: gineer: ration:	KYOCERA M 10U13193 5/4/2010 MENGISTU M STAND-ALOM TX, CDMA P(IEKURIA NE EUT	-							
	Chambe	r	Pre-amplifer			Filter			Limit		
5	5m Chamber A 🗸		T144 8449B		•	Filter 1			FCC PAR	ART 24 🗸	
f	SA reading			Path Loss	•	Filter	EIRP	Limit	Delta	Notes	
GHz	(dBm) nnel (1851.25 MH	(H/V) (H/V)	(m)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)		
3.703	47.1	V	3.0	44.9	36.8	1.0	-38.0	-13.0	-25.0		
5.554	41.2	V	3.0	49.3	36.3	1.0	-27.2	-13.0	-14.2		
7.405	-59.8	v	3.0	51.8	36.6	1.0	43.6	-13.0	-30.6		
9.256 11.108	-50.0 -62.5	v V	3.0	54.2 56.3	37.0 36.9	1.0	-31.8 -42.0	-13.0 -13.0	-18.8 -29.0		
12.959	-53.2	v	3.0	58.2	36.0	1.0	-30.1	-13.0	-17.1		
14.810	-52.1	٧	3.0	60.1	34.8	1.0	-25.9	-13.0	-12.9		
3.703	48.9	Н	3.0	45.0	36.8	1.0	-39.7	-13.0	-26.7		
5.554	42.9	H	3.0	49.9	36.3	1.0	-28.3	-13.0	-15.3		
7.405 9.256	-64.6 -55.7	H	3.0	52.9 55.3	36.6 37.0	1.0	-47.2 -36.5	-13.0 -13.0	-34.2 -23.5		
11.108	-67.8		3.0	55.9	36.9	1.0	-30.5	-13.0	-34.9		
12.959	-59.6	Н	3.0	57.2	36.0	1.0	-37.4	-13.0	-24.4		
14.810	-60.4	Н	3.0	60.4	34.8	1.0	-33.8	-13.0	-20.8		
Mid Chan	inel (1880.00 MH	-)									
3.760	47.6	2) V	3.0	45.1	36.8	1.0	-38.3	-13.0	-25.3		
5.640	41.0	v	3.0	49.4	36.3	1.0	-26.9	-13.0	-13.9		
7.520	-59.1	٧	3.0	52.0	36.6	1.0	42.7	-13.0	-29.7		
9.400	-51.2	V	3.0	54.4	37.0	1.0	-32.9	-13.0	-19.9		
11.280 13.160	-64.2 -53.4	V	3.0 3.0	56.5 58.4	36.8 35.9	1.0 1.0	-43.6 -29.9	-13.0 -13.0	-30.6 -16.9		
15.040	-54.3	v	3.0	60.1	34.7	1.0	-27.8	-13.0	-14.8		
3.760	49.5	H	3.0	45.2	36.8	1.0	40.1	-13.0	-27.1		
5.640	41.5	Н	3.0	50.1	36.3	1.0	-26.7	-13.0	-13.7		
7.520	-65.9	H	3.0	53.1	36.6	1.0	-48.4	-13.0	-35.4		
9.400 11.280	-58.4 -65.8	H	3.0 3.0	55.4 55.8	37.0 36.8	1.0 1.0	-39.0 -45.8	-13.0 -13.0	-26.0 -32.8		
13.160	-61.9	H	3.0	57.6	35.9	1.0	-43.8	-13.0	-32.0		
15.040	-63.2	H	3.0	60.7	34.7	1.0	-36.3	-13.0	-23.3		
	1 (4000 75 19							ļ			
Hi Chann 3.818	el (1908.75 MHz) _43.6	v	3.0	45.2	36.7	1.0	-34.1	-13.0	-21.1		
5.726	40.6	v	3.0	49.5	36.3	1.0	-34.1	-13.0	-21.1		
7.635	-60.7	v	3.0	52.1	36.6	1.0	-44.2	-13.0	-31.2		
9.544	-51.3	V	3.0	54.6	37.1	1.0	-32.8	-13.0	-19.8		
11.453	-63.5	<u>v</u>	3.0	56.7	36.8	1.0	42.7	-13.0	-29.7		
13.361 15.270	-55.8 -59.4	v	3.0	58.6 59.5	35.8 34.8	1.0 1.0	-32.0 -33.7	-13.0 -13.0	-19.0 -20.7		
3.818	-59.4 -45.6	H	3.0	59.5 45.3	34.0 36.7	1.0	-35.7	-13.0	-20.7 -23.0		
5.726	-46.7	H	3.0	50.2	36.3	1.0	-31.8	-13.0	-18.8		
7.635	-65.0	Н	3.0	53.2	36.6	1.0	47.4	-13.0	-34.4		
9.544	-57.4	H	3.0	55.6	37.1	1.0	-37.9	-13.0	-24.9		
11.453	-66.5	H	3.0	55.7 57.9	36.8	1.0	-46.5 40.1	-13.0	-33.5		
13.361 15.270	-63.2 -65.8	H H	3.0 3.0	57.9 60.1	35.8 34.8	1.0	-40.1 -39.6	-13.0 -13.0	-27.1 -26.6		
	-										
Note: No Rev. 03.03	other emissions	were detect	ed greater thai	n -40 dBm to t	he limit						

Page 16 of 23

COMPLIANCE CERTIFICATION SERVICES FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.