

FCC 47 CFR Parts 1 & 2 Published RF Exposure KDB Procedures IEEE Std 1528-2013

SAR EVALUATION REPORT

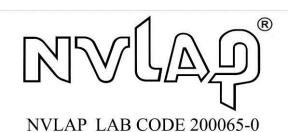
For

Tri-Band 1xRTT CDMA with Bluetooth

Model: S3150 FCC ID: V65S3150

Report Number: 13U16201-6

Issue Date: 10/23/2013


Prepared for

Kyocera Communications 8611 Balboa Avenue, San Diego, CA 92126

Prepared by

UL Verification Services Inc. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/23/2013	Initial Issue	

Table of Contents

1.	At	Attestation of Test Results5					
2.	Те	est Methodology	6				
3.	Fa	acilities and Accreditation	6				
4.	Ca	alibration and Uncertainty	7				
	4.1.	Measuring Instrument Calibration	7				
	4.2.	Measurement Uncertainty	7				
5.	Me	easurement System Description and Setup	8				
6.	SA	AR Measurement Procedure	9				
(6.1.	Normal SAR Measurement Procedure	g				
(6.2.	Volume Scan Procedures	11				
7.	De	evice Under Test	12				
	7.1.	General Information	12				
	7.2.	Wireless Technologies	12				
	7.3.	Output Power Tune-up Tolerance	12				
	7.4.	Simultaneous Transmission Condition	12				
8.	RF	F Exposure Conditions	13				
ě	8.1.	Head Exposure Conditions	13				
ć	8.2.	Body-worn Accessory Exposure Conditions	13				
9.	RF	F Output Power Measurement	14				
;	9.1.	CDMA	14				
;	9.2.	Bluetooth	14				
10		Tissue Dielectric Properties	15				
	10.1.	. Composition of Ingredients for the Tissue Material Used in the SAR Tests	16				
	10.2.	Tissue Dielectric Parameter Check Results	17				
11	. ;	System Performance Check	19				
	11.1.	. System Performance Check Measurement Conditions	19				
	11.2.	. Reference SAR Values for System Performance Check	19				
	11.3.	System Performance Check Results	20				
12	. ;	SAR Test Results	21				
	12.1.	. CDMA BC0	21				
	12	2.1.1. Head Exposure Conditions	21				

Page 3 of 33

1 00 ID. V	0000	100			
12.1	.2.	Body-worn Accessory	22		
12.2.	CL	DMA BC1	23		
12.2	.1.	Head Exposure Conditions	23		
12.2	.2.	Body-worn Accessory	24		
12.3.	CL	DMA BC10	25		
12.3	.1.	Head Exposure Conditions	25		
12.3	.2.	Body-worn Accessory	26		
12.4.	Bl	uetooth	27		
12.4	.1.	Standalone SAR Test Exclusion Considerations	27		
12.4	.2.	Estimated SAR	27		
12.5.	SA	AR Measurement Variability	28		
12.5	.1.	The Highest Measured SAR Configuration in Each Frequency Band	28		
12.5	.2.	Repeated Measurement Results	28		
13. Si	mult	aneous Transmission SAR Analysis	29		
13.1.	Sı	m of the SAR for CDMA BC0 & BT	30		
13.2.	Sı	m of the SAR for CDMA BC1 & BT	31		
13.3.	Su	m of the SAR for CDMA BC10 & BT	32		
14. Ap	open	dixesdixes	33		
14.1.	Ph	otos and Antenna Locations	33		
14.2.	Sy	stem Performance Check Plots	33		
14.3.	Hi	Highest SAR Test Plots			
14.4.	Ca	nlibration Certificate for E-Field Probe EX3DV4 – SN 3749	33		
14.5.	Ca	libration Certificate for D835V2 – SN 4d002	33		
146	Ca	alibration Certificate for D1900V2 – SN 5d043	33		

1. Attestation of Test Results

Applicant	Kyocera Communications		
DUT description	Tri-Band 1xRTT CDMA with Bluetooth		
Model	S3150		
Test device is	An identical prototype		
Device category	Mobile		
Exposure category	General Population/Uncontrolled Exposure		
Date tested	10/07/2013 – 10/15/2013		
The highest	RF exposure condition	Licensed	
reported SAR values	Head	<mark>1.286</mark> W/kg	
	Body-worn Accessory	1.257 W/kg	
Applicable	FCC 47 CFR Parts 1 & 2		
Standards	Published RF Exposure KDB Procedures, and TCB workshop updates		
	IEEE Std 1528-2003 and IEEE Std 1528a-2005		
Test Results	Pass		

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:

Bobby Bayani WiSE Engineer

UL Verification Services Inc.

Prepared By:

Roy Chen

WiSE Laboratory Technician UL Verification Services Inc.

2. Test Methodology

The tests documented in this report were performed in accordance with FCC 47 CFR Parts 1 & 2, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures, and TCB workshop updates:

- 447498 D01 General RF Exposure Guidance v05r01
- o 648474 D04 Handset SAR v01r01
- 941225 D01 SAR test for 3G devices v02
- 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01
- o 865664 D02 SAR Reporting v01r01
- o 690783 D01 SAR Listings on Grants v01r02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

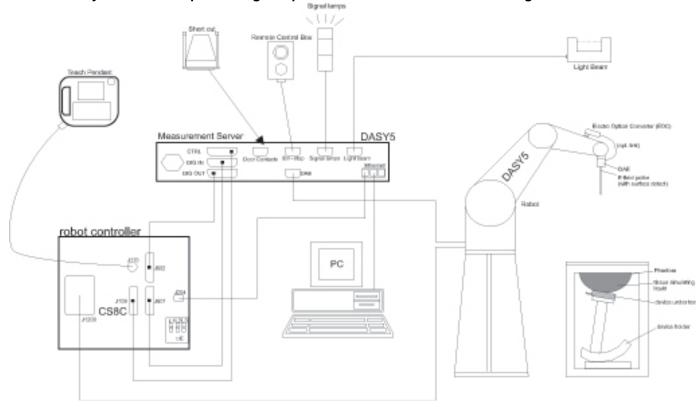
Tissue Dielectric Properties

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40001647	7/11/2014
Dielectronic Probe kit	SPEAG	DAK-3.5	1082	9/10/2014
Thermometer	Control Company	4242	122529162	9/19/2014

System Performance Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	HP	8665B	3546A00784	5/7/2014
Power Meter	HP	437B	3125U12345	3/26/2014
Power Sensor	HP	8481A	1926A16917	8/28/2014
Power Meter	Agilent	N1912A	MY50001018	8/23/21014
Power Sensor	Agilent	E9323A	US40411556	8/9/2014
Amplifier	Sorensen	XT 20-3	1318A00529	N/A
Directional coupler	Werlatone	C8060-102	2711	N/A
DC Power Supply	Ametek	XT 20-3	1318A00530	N/A
E-Field Probe	SPEAG	EX3DV4	3749	1/15/2014
Data Acquisition Electronics	SPEAG	DAE4	1239	4/9/2014
System Validation Dipole	SPEAG	D835V2	4d002	10/24/2014
System Validation Dipole	SPEAG	D1900V2	5d043	11/6/2014

Others


Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMU200	106301	7/3/2014

4.2. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports submitted for equipment approval.

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

			≤3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3-4$ GHz: ≤ 4 mm $4-5$ GHz: ≤ 3 mm $5-6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	1 st two points closest	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6.2. Volume Scan Procedures

Step 1: Repeat Step 1-4 in Section 6.1

Step 2: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7. Device Under Test

7.1. General Information

Operating Configuration(s)	Held to head,
	Body-worn (Voice call)
Device dimensions	Overall (Length x Width): 115 mm x 54 mm
	Overall – Keyboard Out (Length x Width): 115 mm x 84 mm
	Overall Diagonal: 120 mm
	Display Diagonal: 63 mm
Accessory	⊠ Headset
Battery Options	
	☐ Extended (large capacity)

7.2. Wireless Technologies

Wireless Technology and Frequency Bands	CDMA: BC 0, BC 1, BC 10 Bluetooth: 2.4 GHz.	
Mode	CDMA2000 - \(\sum 1xRTT \) (Voice & Data) - \(\sum 1xEVDO \) Rel. 0 - \(\sum 1xEVDO \) Rev. A - \(\sum 1xAdvanced \) Bluetooth Ver. 2.1 + EDR	
Duty Cycle	CDMA: 100%	

7.3. Output Power Tune-up Tolerance

Upper limit (dB): 0.7 ~ -0.7		RF Output F	Power (dBm)
RF Air interface	Mode	Target	Max. tune-up tolerance limit
CDMA BC0	1xRTT	24.8	25.5
CDMA BC1	1xRTT	24.5	25.2
CDMA BC10	1xRTT	24.5	25.2

Upper limit (dB): 2.0 ~ -2.0	RF Output Power (dBm)					
RF Air interface	Target	Max. tune-up tolerance limit				
Bluetooth	0.5	2.5				

7.4. Simultaneous Transmission Condition

RF Exposure Condition	Capable Transmit Configurations
Body-worn Accessory	1. CDMA BC0 + BT
	2. CDMA BC1 + BT
	3. CDMA BC10 + BT

8. RF Exposure Conditions

Refer to Appendix for "Antenna Locations and Separation Distances" for the specific details of the antenna-toantenna and antenna-to-edge(s) distances.

For WWAN

Head Exposure Conditions 8.1.

Test Configurations	SAR Required	Note
Left Touch	Yes	
Left Tilt (15°)	Yes	
Right Touch	Yes	
Right Tilt (15°)	Yes	
Left Touch – Keyboard Out	Yes	
Left Tilt – Keyboard Out (15°)	Yes	
Right Touch – Keyboard Out	Yes	
Right Tilt – Keyboard Out (15°)	Yes	

Body-worn Accessory Exposure Conditions 8.2.

Test Configurations	Antenna-to- edge/surface	SAR Required	Note
Rear	2mm	Yes	
Front	9.5mm	Yes	
Rear - Keyboard Out	2mm	Yes	
Front – Keyboard Out	0mm	Yes	

FAX: (510) 661-0888

9. RF Output Power Measurement

9.1. CDMA

1xRTT Measured Results

Band	Mode	Ch	Freq. (MHz)	Avg Pwr (dBm)
	RC1 SO55	1013	824.70	24.2
	(Loopback)	384	836.52	25.1
	(Еоорьаск)	777	848.31	25.1
	RC3 SO55	1013	824.70	25.1
BC 0	(Loopback)	384	836.52	25.1
	(соорьаск)	777	848.31	25.0
	RC3 SO32	1013	824.70	25.1
	(+F-SCH)	384	836.52	25.1
	(11-5511)	777	848.31	25.0
	RC1 SO55	25	1851.25	24.7
	(Loopback)	600	1880.00	24.6
	(Еоорьаск)	1175	1908.75	24.7
	RC3 SO55	25	1851.25	24.7
BC 1	(Loopback)	600	1880.00	24.6
	(Еоорьаск)	1175	1908.75	24.7
	RC3 SO32	25	1851.25	24.7
	(+F-SCH)	600	1880.00	24.6
	(+1 -3011)	1175	1908.75	24.7
	RC1 SO55	476	817.9	24.9
	(Loopback)	580	820.5	24.9
	(соорьаск)	684	823.1	25.0
Ι Γ	RC3 SO55	476	817.9	24.8
BC 10	(Loopback)	580	820.5	25.0
L	(LOOPDOOK)	684	823.1	25.0
	RC3 SO32	476	817.9	24.8
	(+F-SCH)	580	820.5	24.9
	(11-0011)	684	823.1	25.0

9.2. Bluetooth

Maximum tune-up tolerance limit is 2.5 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

Refer to Section 11.4. Standalone SAR Test Exclusion Considerations

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ead
raiget Frequency (IVII IZ)	$\varepsilon_{\rm r}$	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

Target Frequency (MHz)	Н	ead	Body			
raiget Frequency (MH2)	$\varepsilon_{\rm r}$	σ (S/m)	ε_{r}	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5800	35.3	5.27	48.2	6.00		

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	4	50	83	35	9.	15	19	000	2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

10.2. Tissue Dielectric Parameter Check Results

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm\,2^{\circ}\text{C}$ of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 – 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

SAR Lah A

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Dady 025	e'	54.4000	Relative Permittivity (ε_r):	54.40	55.20	-1.45	5
	B00y 835	e"	21.8200	Conductivity (σ):	1.01	0.97	4.44	5
10/7/2012	Pody 920	e'	54.4900	Relative Permittivity (ε_r):	54.49	55.28	-1.42	5
10/7/2013 E E 10/10/2013 E E E 10/10/2013 E E E E E E E E E E E E E E E E E E E	B00y 620	e"	21.8400	Conductivity (σ):	1.00	0.97	2.82	5
	Pody 950	e'	54.2600	Relative Permittivity (ε_r):	54.26	55.16	-1.63	5
	Body 830	e"	21.7700	Conductivity (σ):	1.03	55.20 -1.45 5 0.97 4.44 5 55.28 -1.42 5 0.97 2.82 5	5	
	Hood 935	e'	40.4900	Relative Permittivity (ε_r):	40.49	41.50	-2.43	5
	Head 655	e"	19.4200	Conductivity (σ):	0.90	0.90	0.18	5
10/7/2013	Head 820	e'	40.6500	Relative Permittivity (ε_r):	40.65	41.60	-2.29	5
10/1/2013	Fleau 620	e"	19.4500	Conductivity (σ):	0.89	0.90	-1.30	5
Body 850 Head 835 10/7/2013 Head 820 Head 850 Body 1900 Body 1910 Head 1900 Head 1910 Head 1910 Head 835 10/10/2013 Head 820 Head 850 Head 850 Head 1900	Hood 850	e'	40.3000	Relative Permittivity (ε_r):	40.30	41.50	-2.89	5
	Head 650	e"	19.4100	Conductivity (σ):	0.92	0.92	0.26	5
	Pody 1000	e'	53.3000	Relative Permittivity (ε_r):	53.30	53.30	55.20 -1.45 5 0.97 4.44 5 55.28 -1.42 5 0.97 2.82 5 55.16 -1.63 5 0.99 4.23 5 41.50 -2.43 5 0.90 0.18 5 41.60 -2.29 5 0.90 -1.30 5 41.50 -2.89 5 0.92 0.26 5 53.30 0.00 5 1.52 3.98 5 53.30 0.32 5 1.52 0.36 5 53.30 -0.08 5 1.52 0.36 5 53.30 -0.08 5 1.52 4.66 5 40.00 -2.20 5 1.40 3.08 5 40.00 -1.65 5 1.40 3.70 5 41.50 -1.42 <td>5</td>	5
10/7/2013 Body 1850	Body 1900	e"	14.9600	Conductivity (σ):	1.58	1.52	3.98	5
	Rody 1850	e'	53.4700	Relative Permittivity (ε_r):	53.47	53.30	0.32	5
	Body 1830	e"	14.8300	Conductivity (σ):	1.53	1.52	0.36	5
	Rody 1010	e'	53.2600	Relative Permittivity (ε_r):	53.26	53.30	-0.08	5
	Body 1910	e"	14.9800	Conductivity (σ):	1.59	1.52	4.66	5
	Hood 1000	e'	39.1200	Relative Permittivity (ε_r):	39.12	40.00	-2.20	5
	Tieau 1900	e"	13.6600	Conductivity (σ):	1.44	1.40	3.08	5
10/7/2013	Head 1850	e'	39.3400	Relative Permittivity (ε_r):	39.34	40.00	-1.65	5
10/1/2013	10/7/2013 Body 820 Body 850 Head 835 10/7/2013 Head 820 Head 850 Body 1900 Body 1900 Body 1910 Head 1900 Head 1910 Head 1910 Head 835 10/10/2013 Head 820 Head 850 Head 850 Head 1900	e"	13.5300	Conductivity (σ):	1.39	1.40	-0.59	5
	Head 1010	e'	39.0700	Relative Permittivity (ε_r):	39.07	40.00	-2.33	5
	Body 850 Head 835 Head 820 Head 850 Body 1900 D/7/2013 Body 1900 Body 1910 Head 1900 Head 1900 Head 1910 Head 835 Head 850 Head 850 Head 850 Head 850 Head 850 Head 1900 Head 1900 Head 1900 Head 1900 Head 1900 Head 1900	e"	13.6700	Conductivity (σ):	1.45	1.40	3.70	5
	Head 835	e'	40.9100	Relative Permittivity (ε_r):	40.91	41.50	-1.42	5
	Head 000	e"	19.5800	Conductivity (σ):	0.91	0.90	1.01	5
10/10/2013	Head 820	e'	41.1200	Relative Permittivity (ε_r):	41.12	41.60	-1.16	5
10/10/2013	11040 020	e"	19.6100	Conductivity (σ):	0.89	0.90	-0.48	5
	Head 850	e'	40.7200	Relative Permittivity (ε_r):	40.72	41.50	-1.88	5
	11044 000	e"	19.5500	Conductivity (σ):	0.92	0.92	0.98	5
	Head 1900	e'	38.6300	Relative Permittivity (ε_r):	38.63	40.00	-3.42	
	11044 1300	e"	13.4700	Conductivity (σ):	1.42	1.40	1.65	
10/7/2013	Head 1850	e'	38.8400	Relative Permittivity (ε_r):	38.84	40.00	-2.90	5
	11000 1000	e"	13.3400	Conductivity (σ):	1.37	1.40	-1.98	
	Head 1910	e'	38.5800	Relative Permittivity (ε_r):	38.58		-3.55	
	11000 1010	e"	13.4900	Conductivity (σ):	1.43	1.40	2.33	5

Tissue Dielectric Parameter Check Results (Continued)

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Pody 925	e'	53.2300	Relative Permittivity (ε_r):	53.23	55.20	-3.57	5
	B00y 835	e"	21.7800	Conductivity (σ):	1.01	0.97	4.25	5
10/11/2012	Rody 920	e'	53.3900	Relative Permittivity (ε_r):	53.39	55.28	-3.41	5
Body 835 10/11/2013 Body 820 Body 850 Body 190 10/11/2013 Body 185 Body 191 Body 835 10/14/2013 Body 820 Body 850 Body 190	Body 620	e"	21.8000	Conductivity (σ):	0.99	0.97	2.63	5
	Rody 950	e'	53.0700	Relative Permittivity (ε_r):	53.07	55.16	-3.78	5
10/11/2013	Body 650	e"	21.6900	Conductivity (σ):	1.03	0.99	3.85	5
	Body 1900	e'	51.2400	Relative Permittivity (ε_r):	51.24	53.30	-3.86	5
	Body 1900	e"	14.4400	Conductivity (σ):	1.53	1.52	0.36	5
10/11/2012	Body 1950	e'	51.4100	Relative Permittivity (ε_r):	51.41	53.30	-3.55	5
10/11/2013	Body 1630	e"	14.3400	Conductivity (σ):	1.48	1.52	-2.95	5
	Body 1910	e'	51.1900	Relative Permittivity (ε_r):	51.19	53.30	-3.96	5
		e"	14.4300	Conductivity (σ):	1.53	1.52	0.82	5
	Rody 935	e'	53.2800	Relative Permittivity (ε_r):	53.28	55.20	-3.48	5
	Body 633	e"	21.7200	Conductivity (σ):	1.01	0.97	3.96	5
10/14/2012	Rody 920	e'	53.4400	Relative Permittivity (ε_r):	53.44	55.28	-3.32	5
10/14/2013	Body 620	e"	21.7500	Conductivity (σ):	0.99	0.97	2.40	5
	Rody 950	e'	53.0800	Relative Permittivity (ε_r):	53.08	55.16	-3.77	5
	Body 830	e"	21.6300	Conductivity (σ):	1.02	0.99	3.56	5
	Pody 1000	e'	51.4100	Relative Permittivity (ε_r):	51.41	53.30	-3.55	5
	Body 1900	e"	14.8800	Conductivity (σ):	1.57	1.52	3.42	5
10/11/2012	Pody 1950	e'	51.5900	Relative Permittivity (ε_r):	51.59	53.30	-3.21	5
10/14/2013	Body 1850	e"	14.7600	Conductivity (σ):	1.52	1.52	-0.11	5
	Rody 1010	e'	51.3800	Relative Permittivity (ε_r):	51.38	53.30	-3.60	5
	Body 1910	e"	14.9200	Conductivity (σ):	1.58	1.52	4.25	5

11. System Performance Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm ± 0.5 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm ± 0.5 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Target SAR Values (mW/g)			
System Dipole	Serial No.	Cal. Date	Freq. (MHZ)	1g/10g	Head	Body	
D835V2	4d002	10/24/2012	835	1g	9.58	9.48	
D635V2				10g	6.28	6.26	
D1000\/2	5d043	11/6/2012	1000	1g	39.9	40.9	
D1900V2			1900	10g	20.9	21.6	

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

11.3. System Performance Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Lab A

	System	Dipole	т.		M	easured Resu	ults	Torget	Dolto	Fat /700***	Diet								
Date Tested	Type Serial #		T.S Liqu		Area Scan	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Est./Zoom Ratio	Plot No.								
10/7/2013	835 MHz	4d002	Head	1g	1.04	1.01	10.1	9.58	5.43	2.88									
10/1/2013	000 WII IZ	40002	ricad	10g	0.703	0.662	6.6	6.28	5.41										
10/7/2013	835 MHz	4d002	Body	1g	1.05	1.01	10.1	9.48	6.54	3.81	1, 2								
10/7/2013	033 WII 12	40002	Dody	10g	0.702	0.662	6.6	6.26	5.75		1, 2								
10/7/2013	1900 MHz	5d043	Head	1g	4.26	4.19	41.9	39.90	5.01	1.64	3, 4								
10/1/2013	1900 WII 12	34043	Head	10g	2.240	2.17	21.7	20.90	3.83		5, 4								
10/7/2013	1900 MHz	5d043	Body	1g	4.38	4.31	43.1	40.9	5.38	1.60									
10/7/2013	1900 WII 12	50045	50045	30043	50045	3u043	3u043	Ju043	30043	30043	Douy	10g	2.210	2.230	22.3	21.6	3.24		
10/10/2013	835 MHz	z 4d002	Head	1g	1.02	0.991	9.9	9.58	3.44	2.84									
10/10/2013			Heau	10g	0.684	0.648	6.5	6.28	3.18										
10/10/2013	1900 MHz	5d043	Head	1g	4.08	4.05	40.5	39.90	1.50	0.74									
10/10/2013	1900 101112	30043	пеац	10g	2.150	2.10	21.0	20.90	0.48										
10/11/2013	835 MHz	4d002	Body	1g	1.02	0.997	10.0	9.48	5.17	2.25									
10/11/2013	633 WII 12	40002	Воцу	10g	0.687	0.658	6.6	6.26	5.11										
10/11/2013	1900 MHz	5d043	Body	1g	4.10	4.11	41.1	40.9	0.49	-0.24									
10/11/2013	1900 WII 12	34043	Dody	10g	2.060	2.110	21.1	21.6	-2.31										
10/14/2013	835 MHz	4d002	Body	1g	1.00	0.970	9.7	9.48	2.32	3.00									
10/14/2013	UUU IVII IZ	40002	Douy	10g	0.670	0.637	6.4	6.26	1.76										
10/14/2013	1900 MHz	5d043	Body	1g	4.13	4.05	40.5	40.9	-0.98	1.94									
10/14/2013	1 300 IVII IZ	Ju043	Dody	10g	2.070	2.080	20.8	21.6	-3.70										

12. SAR Test Results

12.1. CDMA BC0

12.1.1. Head Exposure Conditions

Head Exposure Conditions (Voice mode)

				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
1 -44	4DTT	1013	824.70	25.5	25.1	0.903	0.990	1	
Left Touch	1xRTT (RC3 SO55)	384	836.52	25.5	25.1	0.835	0.916		
100011	(1100 0000)	777	848.31	25.5	25.0	0.810	0.909		
Left Tilt	4×DTT	1013	824.70	25.5	25.1				1
(15°)	1xRTT (RC3 SO55)	384	836.52	25.5	25.1	0.670	0.735		
(13)	(1100 0000)	777	848.31	25.5	25.0				1
Dialet	4DTT	1013	824.70	25.5	25.1	0.886	0.971		
Right Touch	1xRTT (RC3 SO55)	384	836.52	25.5	25.1	0.842	0.923		
rodon	(1100 0000)	777	848.31	25.5	25.0	0.751	0.843		
Dialet Tilt	4. DTT	1013	824.70	25.5	25.1				1
Right Tilt 1xRT (15°) (RC3 So	1XR11 (RC3 SO55)	384	836.52	25.5	25.1	0.642	0.704		
(13)	(1100 0000)	777	848.31	25.5	25.0				1

Head Exposure Conditions - Keyboard Out (Voice mode)

				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
Left	1xRTT	1013	824.70	25.5	25.1				1
Touch	(RC3 SO55)	384	836.52	25.5	25.1	0.558	0.612		
100011	(1100 0000)	777	848.31	25.5	25.0				1
Left Tilt	1xRTT	1013	824.70	25.5	25.1				1
(15°)	(RC3 SO55)	384	836.52	25.5	25.1	0.389	0.427		
(10)	(1100 0000)	777	848.31	25.5	25.0				1
Diaht	1xRTT	1013	824.70	25.5	25.1				1
Right Touch	(RC3 SO55)	384	836.52	25.5	25.1	0.447	0.490		
100011	(1100 0000)	777	848.31	25.5	25.0				1
Dight Tilt	1vDTT	1013	824.70	25.5	25.1				1
Right Tilt (15°)	1xRTT (RC3 SO55)	384	836.52	25.5	25.1	0.367	0.402		
(13)	(1100 0000)	777	848.31	25.5	25.0				1

Note(s):

^{1.} Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

^{• ≤ 0.8} W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

^{• ≤ 0.6} W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

 $[\]cdot$ ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

12.1.2. **Body-worn Accessory**

Body-worn Accessory (Voice mode)

		Dist.			Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			1013	824.70	25.5	25.1	1.120	1.228	2	
Rear	1xRTT	15	1013	824.70	25.5	25.1	0.849	0.931		2
Real	(RC3 SO32)	15	384	836.52	25.5	25.1	0.901	0.988		
			777	848.31	25.5	25.0	0.583	0.654		
	4 DTT		1013	824.70	25.5	25.1				1
Front	1xRTT (RC3 SO32)	15	384	836.52	25.5	25.1	0.648	0.711		
	(1100 0002)		777	848.31	25.5	25.0				1

Body-worn Accessory - Keyboard Out (Voice mode)

		Dist.			Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	4DTT		1013	824.70	25.5	25.1	0.878	0.963		
Rear	1xRTT (RC3 SO32)	15	384	836.52	25.5	25.1	0.754	0.827		
	(RC3 SO32)		777	848.31	25.5	25.0	0.500	0.561		
	4DTT		1013	824.70	25.5	25.1				1
Front	1xRTT (RC3 SO32)	15	384	836.52	25.5	25.1	0.601	0.659		
	(1100 0002)		777	848.31	25.5	25.0				1

Note(s):

- Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 2. With headset attached. According to KDB 648474 Section 2.3, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

12.2. CDMA BC1

12.2.1. Head Exposure Conditions

Head Exposure Conditions (Voice mode)

				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
1.04	4×DTT	25	1851.25	25.2	24.7	0.863	0.968		
Left Touch	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	0.816	0.937		
100011	(1100 0000)	1175	1908.75	25.2	24.7	0.926	1.039		
Left Tile	4DTT	25	1851.25	25.2	24.7				1
Left Tilt (15°)	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	0.410	0.471		
(13)	(1100 0000)	1175	1908.75	25.2	24.7				1
Diaht	4×DTT	25	1851.25	25.2	24.7	1.070	1.201		
Right Touch	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	1.090	1.251		
100011	(1100 0000)	1175	1908.75	25.2	24.7	1.060	1.189		
Diaht Tilt	4×DTT	25	1851.25	25.2	24.7				1
Right Tilt (15°)	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	0.422	0.485		
(10)	(1100 0000)	1175	1908.75	25.2	24.7				1

Head Exposure Conditions - Keyboard Out (Voice mode)

				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
1 -64	4DTT	25	1851.25	25.2	24.7	0.754	0.846		
Left Touch	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	0.876	1.006		
100011	(1100 0000)	1175	1908.75	25.2	24.7	0.940	1.055		
Left Tilt	4×DTT	25	1851.25	25.2	24.7				1
(15°)	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	0.149	0.171		
(10)	(1100 0000)	1175	1908.75	25.2	24.7				1
Dimba	4DTT	25	1851.25	25.2	24.7	0.996	1.118		
Right Touch	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	1.120	1.286	3	
100011	(1100 0000)	1175	1908.75	25.2	24.7	1.110	1.245		
Diaht Tilt	4×DTT	25	1851.25	25.2	24.7				1
Right Tilt (15°)	1xRTT (RC3 SO55)	600	1880.00	25.2	24.6	0.180	0.207		
(10)	(1100 0000)	1175	1908.75	25.2	24.7				1

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

 $[\]cdot$ \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz

^{• ≤ 0.6} W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

^{• ≤ 0.4} W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

12.2.2. Body-worn Accessory

Body-worn Accessory (Voice mode)

		Dist.				(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	1xRTT		25	1851.25	25.2	24.7	0.866	0.972		
Rear	(RC3 SO32)	15	600	1880.00	25.2	24.6	0.895	1.028		
	(1100 0002)		1175	1908.75	25.2	24.7	0.847	0.950		
	1vDTT		25	1851.25	25.2	24.7				1
Front	1xRTT (RC3 SO32)	15	600	1880.00	25.2	24.6	0.570	0.654		
	(1100 0002)		1175	1908.75	25.2	24.7				1

Body-worn Accessory - Keyboard Out (Voice mode)

		Dist.			Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	4DTT		25	1851.25	25.2	24.7				1
Rear	1xRTT (RC3 SO32)	15	600	1880.00	25.2	24.6	0.667	0.766		
(RC3 SO32)		1175	1908.75	25.2	24.7				1	
			25	1851.25	25.2	24.7	0.918	1.030		
Front	1xRTT	15	600	1880.00	25.2	24.6	1.070	1.229		
1 10111	(RC3 SO32)	'5	1175	1908.75	25.2	24.7	1.120	1.257	4	
			1175	1908.75	25.2	24.7	1.040	1.167		2

Note(s):

- 1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 2. With headset attached. According to KDB 648474 Section 2.3, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

12.3. CDMA BC10

12.3.1. Head Exposure Conditions

Head Exposure Conditions (Voice mode)

Toda Exposare Cortainor		(* 5.55 11.55	10)						
				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
1.044	4×DTT	476	817.9	25.2	24.8				1
Left Touch	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.754	0.790	5	
Todon	(1100 0000)	684	823.1	25.2	25.0				1
Left Tilt	4×DTT	476	817.9	25.2	24.8				1
(15°)	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.532	0.557		
(10)	(1100 0000)	684	823.1	25.2	25.0				1
Dialet	4×DTT	476	817.9	25.2	24.8				1
Right Touch	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.747	0.782		
Todon	(1100 0000)	684	823.1	25.2	25.0				1
Diaht Tilt	4×DTT	476	817.9	25.2	24.8				1
Right Tilt (15°)	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.563	0.590		
(13)	(1100 0000)	684	823.1	25.2	25.0				1

Head Exposure Conditions – Keyboard Out (Voice mode)

				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
Loft	1vDTT	476	817.9	25.2	24.8				1
Left Touch	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.491	0.514		
Todon	(1100 0000)	684	823.1	25.2	25.0				1
L oft Tilt	4DTT	476	817.9	25.2	24.8				1
Left Tilt (15°)	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.317	0.332		
(13)	(1100 0000)	684	823.1	25.2	25.0				1
Dialet	4DTT	476	817.9	25.2	24.8				1
Right Touch	1xRTT (RC3 SO55)	580	820.5	25.2	25.0	0.414	0.434		
Todon	(1100 0000)	684	823.1	25.2	25.0				1
Diaht Tilt	4.DTT	476	817.9	25.2	24.8				1
Right Tilt 1xRT (15°) (RC3 SC	(RC3 SO55)	580	820.5	25.2	25.0	0.365	0.382		
(10)	(1.00 000)	684	823.1	25.2	25.0				1

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

^{• ≤ 0.8} W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

^{• ≤ 0.6} W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

 $[\]cdot$ ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

12.3.2. **Body-worn Accessory**

Body-worn Accessory (Voice mode)

		Dist.			Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	4DTT		476	817.9	25.2	24.8	1.020	1.118		
Rear	1xRTT (RC3 SO32)	15	580	820.5	25.2	24.9	1.030	1.104		
	(RC3 SO32)		684	823.1	25.2	25.0	1.120	1.173	6	
	4. DTT		476	817.9	25.2	24.8				1
Front	1xRTT (RC3 SO32)	15	580	820.5	25.2	24.9	0.672	0.720		
	(1100 0002)		684	823.1	25.2	25.0				1

Body-worn Accessory – Keyboard Out (Voice mode)

		Dist.				(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	4vDTT		476	817.9	25.2	24.8	0.792	0.868		
Rear	1xRTT (RC3 SO32)	15	580	820.5	25.2	24.9	0.786	0.842		
	(1100 0002)		684	823.1	25.2	25.0	0.811	0.849		
	4vDTT		476	817.9	25.2	24.8				1
Front	1xRTT (RC3 SO32)	15	580	820.5	25.2	24.9	0.583	0.625		
	(1100 0002)		684	823.1	25.2	25.0				1

Note(s):

- 1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- With headset attached. According to KDB 648474 Section 2.3, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

12.4. Bluetooth

12.4.1. Standalone SAR Test Exclusion Considerations

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Body-worn Accessory Exposure Conditions

Max. tune-up tolerance limit		Min. test separation distance (mm)	Frequency	Result	
(dBm)	(mW)	diotarios (mm)	(GHz)		
2.5	2	10	2.480	0.3	

Conclusion:

The computed value is < 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

12.4.2. Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Estimated SAR Result for Body-worn Accessory Conditions:

Test Configuration	Max. tune-up tolerance limit (mW)	Min. test separation distance (mm)	Frequency (GHz)	Estimated 1-g SAR (W/kg)
Rear/Front	2	10	2.480	0.042

This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Report No.: 13U16201-6 Issue Date: 10/23/2013

FCC ID: V65S3150

12.5. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-a SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

12.5.1. The Highest Measured SAR Configuration in Each Frequency Band

Frequency Band (MHz)	Air Interface	Head (W/kg)	Body-worn Accessory (W/kg)	
835	CDMA BC0	0.903	1.120	
	CDMA BC10	0.754	1.120	
1900	CDMA BC1	1.120	1.120	

12.5.2. **Repeated Measurement Results**

Head Exposure Condition

					Meas. SAR (W/kg)		Largest to	
Frequency ba	nd	Test Position	Mode	Ch #.	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio
1900 MHz		Right Touch (KB)	1xRTT (RC3 SO55)	600	1880.00	1.120	1.090	1.03

Body-worn Accessory Exposure Condition

					Freq. (MHz)	Meas. SAR (W/kg)		Largest to
	Frequency band	Test Position	Mode	Ch #.		Original	Repeated	Smallest SAR Ratio
ĺ	835MHz	Rear	1xRTT (RC3 SO32)	1013	824.70	1.120	1.100	1.02

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

13. **Simultaneous Transmission SAR Analysis**

KDB 447498 D01 General RF Exposure Guidance v05, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-q SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

A new threshold of 0.04 is also introduced in the draft KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

$$(SAR_1 + SAR_2)^{1.5}/Ri < 0.04$$

13.1. Sum of the SAR for CDMA BC0 & BT

RF Exposure	Test	Simultaneous Trar	smission Scenario	∑ 1-g SAR	SPLSR (Yes/ No)
conditions	Position	CDMA BC0	Bluetooth	(mW/g)	
Body-worn	Rear	1.228	0.042	1.270	No
Accessory	Front	0.711	0.042	0.753	No
Body-worn	Rear	0.963	0.042	1.005	No
Accessory (Keyboard Out)	Front	0.659	0.042	0.701	No

SAR to Peak Location Separation Ratio (SPLSR)
As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

13.2. Sum of the SAR for CDMA BC1 & BT

RF Exposure	Test	Simultaneous Trar	smission Scenario	∑ 1-g SAR	SPLSR (Yes/ No)
conditions	Position	CDMA BC1	Bluetooth	(mW/g)	
Body-worn	Rear	1.028	0.042	1.070	No
Accessory	Front	0.654	0.042	0.696	No
Body-worn	Rear	0.766	0.042	0.808	No
Accessory (Keyboard Out)	Front	1.257	0.042	1.299	No

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

13.3. Sum of the SAR for CDMA BC10 & BT

RF Exposure	Test	Simultaneous Trar	nsmission Scenario	∑ 1-g SAR	SPLSR (Yes/ No)
conditions	Position	CDMA BC10	Bluetooth	(mW/g)	
Body-worn Accessory	Rear	1.173	0.042	1.215	No
	Front	0.720	0.042	0.762	No
Body-worn Accessory (Keyboard	Rear	0.868	0.042	0.910	No
Accessory (Keyboard Out)	Front	0.625	0.042	0.667	No

14. Appendixes

Refer to separated files for the following appendixes.

- 14.1. Photos and Antenna Locations
- 14.2. System Performance Check Plots
- 14.3. Highest SAR Test Plots
- 14.4. Calibration Certificate for E-Field Probe EX3DV4 SN 3749
- 14.5. Calibration Certificate for D835V2 SN 4d002
- 14.6. Calibration Certificate for D1900V2 SN 5d043

END OF REPORT