

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

Hearing Aid Compatibility (HAC) T-Coil

FCC 47 CFR Part 20.19

Test Report

For

Kyocera Corporation c/o Kyocera Communications, Inc.

Product:	Dual-Band CDMA Mobile Phone
Model:	S3015

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

TABLE OF CONTENTS

1	S	UMMARY OF TESTING	. 4
2	Е	EQUIPMENT UNDER TEST INFORMATION5	
3	Т	EST CONDITIONS	. 6
	3.1 3.2 3.3 3.4 3.5 3.6	Test Facilities Ambient Conditions RF characteristics of the test site Ambient Noise of the test site Test Signal, Frequencies and Output Power EUT Operating Conditions	. 6 . 6 . 6 . 7
4	D	ESCRIPTION OF TEST EQUIPMENT	. 8
	4.1 4.2 4.3 4.4 4.5	Test Equipment Used T-Coil Measurement System Audio Magnetic Probe Audio Magnetic Measuring Instrument (AMMI) Audio Magnetic Calibration Coil (AMCC)	. 9 10 10
5	S	YSTEM VALIDATION & CALIBRATION	
	5.1 5.2 5.3	Input Channel Calibration Probe Calibration Reference Input Level	12
6	D	ESCRIPTION OF TEST PROCEDURE	14
	6.1 6.2 6.3	Test Positions Audio Signals Scan Procedures	15
7	D	ESCRIPTION OF TEST PROCEDURE	18
8	T	-COIL REQUIREMENTS AND CATEGORY	19
	8.1 8.2 8.3 8.4	RF Emissions Axial Field Intensity Signal Quality Frequency Response	19 19
9	Τ·	-COIL TEST RESULTS	21
	9.1 9.2	Field Strength and Signal Quality	
10)	Appendix A1: Ambient Noise Plots, 800 MHz	25
11		Appendix A2: Ambient Noise Plots, 1900 MHz	26
12	2	Appendix B: System Calibration Results	
13		Appendix C: ABM and SNR Test Results/Plots	
14	ŀ	Appendix D: Probe Calibration Certificate	
15	5	Appendix E: Photo Test Setup	27

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

ATTESTATION

The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested.

The test equipment used was suitable for the tests performed and within manufacturer's published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Product:	Dual-Band CDMA Mobile Phone with Bluetooth
Model #:	S3015
FCC ID:	V65S3015
Tested in accordance with:	FCC 47 CFR Part 20.19
	ANSI C63.19-2007
Test Requested by:	Kyocera Communications, Inc.
	8611 Balboa Avenue
	San Diego CA 92121 USA
Test performed by:	Comptest Services LLC
Date of Test:	June 28 – July 8, 2011

Responsible Engineer

Benjamin Nguyen

Benjamin Nguyen Test Engineer Reviewed and approved by:

Tammy To Quality Manager

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

SUMMARY OF TESTING

1

	ANSI C63.19 (2007) Section 6 T-coil			
Mode	Test	Test Results	T-Rating	Verdict
	Min. Axial Field Strength, dB A/m	-0.31		Pass
CDMA 800-	Min. Radial Field Strength, dB A/m	- 9.69		Pass
BC10	Min. Signal Quality (ABM1/ABM2), dB	44.39	4	Pass
	Frequency Response @ Axial position			Pass
	Min. Axial Field Strength, dB A/m	-0.57		Pass
CDMA	Min. Radial Field Strength, dB A/m	-10.14		Pass
800-BC0	Min. Signal Quality (ABM1/ABM2), dB	44.21	4	Pass
	Frequency Response @ Axial position			Pass
	Min. Axial Field Strength, dB A/m	-0.69		Pass
CDMA	Min. Radial Field Strength, dB A/m	- 9.31		Pass
1900	Min. Signal Quality (ABM1/ABM2), dB	43.72	4	Pass
	Frequency Response @ Axial position			Pass
	Overall T-Rating:		T4	
	M-Rating*:		M4	
	HAC Category Rating:		M4, T4	

* M-rating obtained from HAC RF report.

2 EQUIPMENT UNDER TEST INFORMATION

Product:	Dual-Band CDMA Mobile Phone with Bluetooth			
FCC ID:	V65S3015	V65S3015		
Model Number:	S3015			
EUT Serial Number:	268435457816722939			
Туре:	[] Identical Prototype,	[X] Pre-Production, [] Production	
Device Category:	Portable			
RF Exposure Environment:	General Population / Uncontrolled			
Antenna:	Internal Detachable: No		No	
External Input:	Audio/Digital Data			
Quantity:	Quantity production is p	blanned		
Mode:	CDMA 1x	CDMA 1x	CDN	/IA 1x
Band:	BC-10 BC-0 BC-1		C-1	
TX Frequency (MHz):	817.9 - 823.1	824.7 - 848.3	1850	-1910
Rated RF Conducted Output Power (dBm)	24.5	24.5	24	4.5

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

3 TEST CONDITIONS

3.1 Test Facilities

The test sites and measurement facilities used to collect data are located at 8611 Balboa Avenue, San Diego, CA 92123, USA

3.2 Ambient Conditions

All tests were performed under the following environmental conditions:

Ambient Temperature:	23 ± 2 Degrees C
Relative Humidity (RH):	0% <rh 80%<="" <="" td=""></rh>
Atmospheric Pressure:	101.3kPa + 10 to –5 kPa

3.3 RF characteristics of the test site

All HAC measurements were performed inside a shielded room that provide isolation from external EM fields, with the RF ambient at least 20 dB below the intended measurement limits.

3.4 Ambient Noise of the test site

All HAC measurements were performed inside a shielded room that provide isolation from external EM fields, with the RF ambient at least 20 dB below the intended measurement limits. The test site's ambient magnetic level were determined and found to be at least 10dB below the measurement data ABM2, unless a very low level of AMB2. Measurement of the ambient level was performed for each probe orientation and results are shown in Appendix B.

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

3.5 Test Signal, Frequencies and Output Power

The device supports CDMA2000 in 1X (Phase I, Protocol revision 6) mode. CDMA2000 1X includes TIA/EIA-95B as a subset and was approved for publishing in July 1999. It provides voice and data capabilities within a standard 1.25 MHz CDMA channel. This RF bandwidth is identical to the legacy IS-95 B system standard.

Maximum average conducted powers were measured to ensure worst case power configuration was tested:

	CONFIGURATION (Full Rate)		CONDUCTED POWER (dBm)								
			CDMA 800-BC10		CDMA 800- BC0		CDMA 1900				
			Ch 476	Ch 580	Ch 684	Ch 1013	Ch 384	Ch 777	Ch 25	Ch 600	Ch 1175
	SO3	RC1	24.45	24.48	24.52	24.35	24.43	24.43	23.88	24.09	24.12
		RC3	24.50	24.49	24.60	24.44	24.44	24.44	23.90	24.12	24.16
	SO17	RC2	24.35	24.44	24.55	24.20	24.33	24.40	23.89	24.02	24.10
		RC54	24.39	24.38	24.47	24.33	24.41	24.39	23.85	24.09	24.08

In all operating modes, the phone was set to rate maximum RF power level and the measurements were performed on low, mid and high channels.

The measurement system measures power drift during HAC testing by comparing E/H-field in the same location at the beginning and at the end of measurement. These records were used to monitor stability of power output during tests. Conducted RF power measurements were also performed before and after each HAC measurements to confirm the output power.

During tests, the EUT was put in in-call mode and controlled by a CDMA simulator to generate the required signal and power:

Protocol:	6 (IS-2000)
Radio Configuration:	3
Power Control:	All Up Bits
Service Option:	3
Vocoder:	8K Enhanced (low)
Data Rate:	Full

3.6 EUT Operating Conditions

The EUT was tested with the follow configurations and conditions, if applicable:

- **X** Fully charged standard battery as supplied with the handset
- Closed configurations at ear use position¹
 - Both retracted and extended antenna positions
- **X** Back-light always ON
- X LCD Contrast High
 - Simultaneous transmission with Bluetooth transmitter ON²
- **X** Receiver volume setting at maximum
- X Microphone muted

Note

1: This device has only one configuration for ear usage

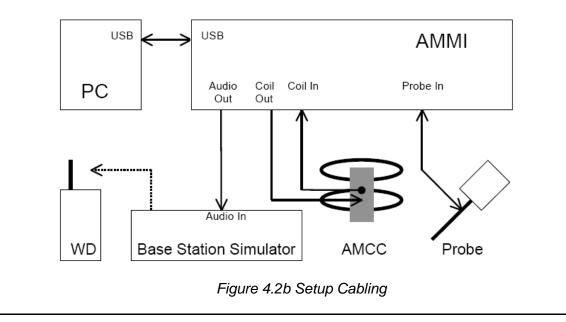
2: The Bluetooth transmitter was not enable during tests, since the intended use of the CDMA transmitter does not include support simultaneous operation when held to ear.

4 DESCRIPTION OF TEST EQUIPMENT

4.1 Test Equipment Used

Below is a list of the calibrated equipment used for the measurements. The calibration certificates of Probe and Helmholtz Coil are attached in Appendix A.

Description	Manufacturer	Model Number	Serial Number	Cal Due Date	
Power Meter	Giga-tronics	8541C	1831306	07/16/11	
Radio Communication Tester	Rohde & Schwarz	CMU200	101328	05/11/12	
Data Acquisition	Speag	DAE4	527	07/09/11	
Audio Band Magnetic Probe	Speag	AM1DV2	1045	09/06/11	
Audio Band Magnetic Measuring Instrument	Speag	AMMI	1035	N/A	
Helmholtz Coil	Speag	AMCC	1001	N/A	
Test Arch	Speag	HAC	1015	N/A	


Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

4.2 T-Coil Measurement System

The measurements were performed with Dasy4 automated near-field scanning system comprised of high precision robot, robot controller, computer, Magnetic probe, probe alignment sensor, non-conductive phone positioner, Test Arch and software extension. Figure 5.2 show the setup and cabling. The overall expanded uncertainty (K=2) of the measurement system is $\pm 12.3\%$. The measurement uncertainty budget is given in section 6.

Figure 4.2a T-Coil setup with Helmholtz Coil

© 2011 Comptest Services LLC Page 9 of 27 HAC T-coil Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

4.3 Audio Magnetic Probe				
Model:	Iodel: AM1D			
Application:	 Active single sensor probe for both axial and radial measurement scans 			
Construction:	 Fully RF shielded 			
	 Rounded tip of 6 mm diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides 			
	 Compatible with DAE, with adapted probe cup 			
Frequency± 0.5dB of ideal differentiator from 100 Hz to 10 kHz				
Response:				
Linearity:	< 0.1 dB from 5 dB below limitation to 16 dB above noise level			
Dynamic Range:	 Max 21 dB A/m @ 1 kHz, Noise level typ. –70 dB A/m @ 1kHz, ABM2 typ. –60 dB A/m 			
Sensitivity: • Typ24 dBV / A./m @ 1kHz at probe output				
RF Shielding:	 Immunity to AM (1 kHz, 80%) modulation RF signal 			

4.4 Audio Magnetic Measuring Instrument (AMMI)					
Model:	Model: • AMMI				
Application:AMMI is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals and a USB interface.					
Connection:	 Front connectors Audio Out - audio signal to the base station simulator Coil Out - test and calibration signal to the AMCC Coil In - monitor signal from the AMCC BNO connector Probe In - probe signal 				

4.5 Audio Magnetic Calibration Coil (AMCC)					
Model:	AMCC				
Application:	The Audio Magnetic Calibration coil is a Helmholtz Coil designed according to ANSI C63.19-2006 section D.9, for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted to approximately 50 Ohm by a series resistor, and a shunt resistor of 10 Ohm allows monitoring the current with a scale of 1:10.				
Connection:	Coil InCoil Monitor				

5 SYSTEM VALIDATION & CALIBRATION

At the beginning of the HAC T-coil measurement, a 3-phase calibration was performed per Speag instruction to ensure accurate measurement of the voltages and ABM field. Reference input level was also validated and calibrated per C63.19.

5.1 Input Channel Calibration

Phase 1: The AMMI audio output was switched off, and a 200 mV_pp symmetric rectangular signal of 1 kHz was generated and internally connected directly to both channels of the sampling unit (coil in, probe in).

Phase 2: The AMMI audio output was off, and a 20 mV_pp symmetric 100 Hz signal was internally connected.

The signals during phases 1 and 2 were available at the output on the rear panel of the AMMI. The output must however not be loaded in order not to influence the calibration. After the first two phases, the two input channels were both calibrated for absolute measurements of voltages. The resulting factors were displayed above the multimeter window.

After phases 1 and 2, the input channels were calibrated to measure exact voltages.

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

5.2 Probe Calibration

Phase 3: a multisine signal covering each third-octave band from 50 Hz to 5 kHz was generated and applied to both audio outputs. The probe was positioned in the center of the AMCC (user point "coil center") and aligned in the z-direction, the field orientation of the AMCC. The Coil In channel was measuring the voltage over the AMCC internal shunt, which was proportional to the magnetic field in the AMCC. At the same time, the probe in channel samples the amplified signal picked up by the probe coil. The ratio of the two voltages – in each third-octave filter – leads to the calibration factor of the probe over the frequency band of interest for the spectral representation.

The Coil signal is scaled in dBV, and the Probe signal is normalized to show dBV at a frequency of 1 kHz. The sensitivity is the ratio at 1 kHz. The frequency response of the probe (subject to an integrator) can be calculated from the difference of the two curves.

The calibration result using a AM1DV2 probe is shown in Appendix B. The internal calibration factors of the coil and probe channel are listed. The graphics represent the values (applying the calibration factors from the previous steps) for the probe and coil channel in dB V for each third-octave filter from 100 Hz to 5 kHz. These values are interconnected with a blue line for the probe and a green line for the coil channel.

The probe sensitivity in V / (A/m) at 1 kHz is calculated from the values in the chart. -20 dBV in the coil channel corresponds approx. to 1 A/m. The lines are typically horizontal. Deviations around 160 Hz typically result from power line interference, and the slight decay at the higher frequency is a result of the channel frequency response.

Calibration Factors	Measured Value
Probe Sensitivity, V/(A/m)	0.0655
Probe calibration factor, V	1.1292
Coil calibration factor, V	2.3517

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

5.3 Reference Input Level

ANSI C63.19 requires the use of reference input level of –18dBm0 that correlate to a normal speech input level for CDMA air interface. In order to create the correct level the CMU200 audio codec and the AMMI output were calibrated.

5.3.1 CMU200 Audio Codec Calibration

To determine the correct input level, the Encoder/Decorder of the CMU200 base station simulator was calibrated for measured full-scale input voltage level. The CMU200 0dBm0 input reference was determined utilizing the build-in functions of "Decoder Cal" and "Encoder Cal".

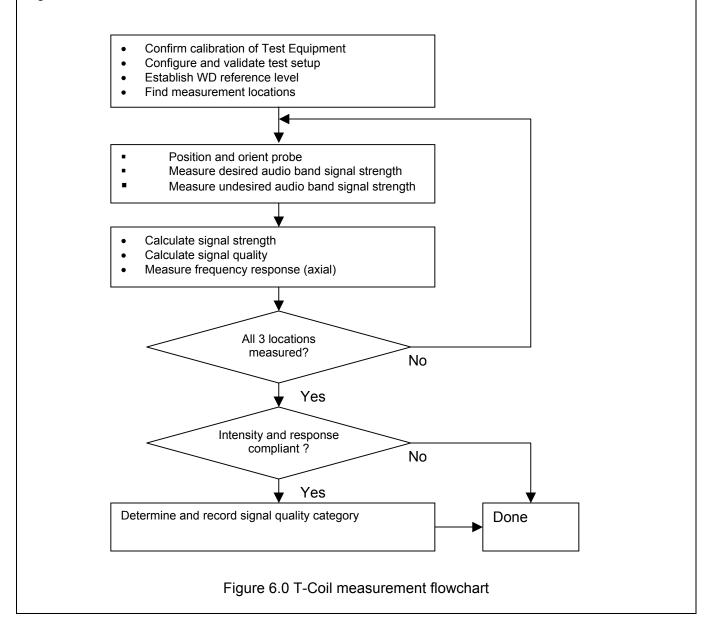
CMU200 S/N	Modulation	Ref. I/P Level	Target Level	
101328	CDMA	-18dBm0	-20.49	

Table 5.3a CMU200 Target Level

5.3.2 AMMI Signal Verification

Verification of AMMI output level was performed within 24 hours of the compliance measurement. The measured results are shown in Table 5.3b

Date	Signal	Measured AMMI Output (dBm0)	Target Reference Input (dBm0)	Delta (dB)
	1KHz	-20.51	-20.49	-0.02
6/28/2011	48k_voice_1kHz	-20.47	-20.48	0.01
	48k_voice_300_3000	-20.49	-20.49	0
	1KHz	-20.5	-20.49	-0.01
7/8/2011	48k_voice_1kHz	-20.49	-20.48	-0.01
	48k_voice_300_3000	-20.49	-20.49	0


Table 5.3b Measured Output Level

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

6 DESCRIPTION OF TEST PROCEDURE

The device was positioned and setup according to ANSI C63.19-2006. Figure 6.0 shows the T-Coil Signal measurement flowchart:

6.1 Test Positions

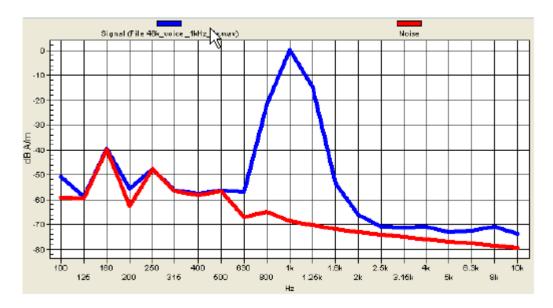
The device was placed on a non-conductive phone positioner under the Test Arch. The acoustic output of the EUT was aligned with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame. Please refer to Appendix E for the test setup photos.

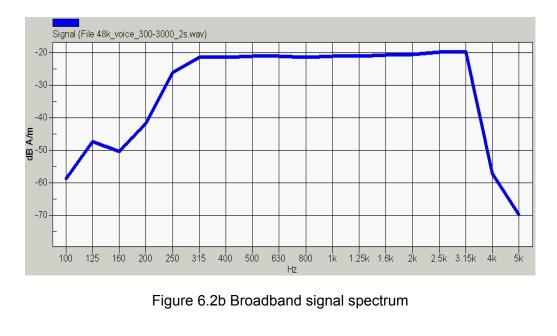
6.2 Audio Signals

During tests signal was fed to the EUT via communication Test set. Proper gain setting was used in software to ensure correct signal level fed to communication test set speech input.

The following audio signals were pre-defined by DASY4 and used for calibration and measurements:

48k_voice_1kHz_1 s (duration 1 s): This signal is voice like and has been processed to have a narrow bandwidth mainly within the 1 kHz third-octave band and an even shorter duration of 1 second for faster measurement. This signal passes through a large variety of codecs and permits a direct amplitude and signal quality measurement (S/N) without considerable bandwidth compensation. Its spectrum is shown in a practical measurement in Figure 6.2a.

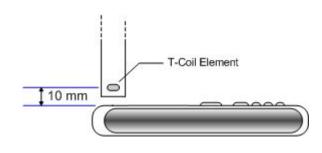



Figure 6.2a 1.0 kHz Voice signal spectrum

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

Multisine signal 50 Hz – 5 kHz (duration 10 s): Signal with carrier centered in each third-octave band, as used during the calibration. Suited for frequency response measurements. Peak to RMS ratio: 11.1 dB.

48k_voice_300-3000 (duration 2 s): The signal is voice like and has been processed to have a duration of 2 seconds for fast measurement. At the same time, it has a flat spectrum across all third-octave band filters between 300 Hz to 3 kHz and is vanishing at the beginning and end in order to allow longer measurement sequences without transients. It has bandwidth sufficient for frequency response measurements. The spectrum is shown in a practical measurement in fig. 6.2b. The measurement window length of this signal must be set to a multiple of 2 s in order to integrate over the full voice sample. Peak to RMS ratio: 21.6 dB.



Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

6.3 Scan Procedures

6.3.1 Signal Strength and SNR

- a) A 50mm x 50mm (10mm step) coarse axial scan was performed to search for the "optimal points" and spatial distribution of ABM1.
- b) Base on the coarse scan results, a 16mm x 16mm (4mm step) point scan in axial, a 24mmx16mm (4mm step) point scan in radial_L, and a 16mmx24mm (4mm step) point scan in radial-T coil orientation were performed for both ABM1and ABM2.

6.3.2 Frequency Response

Base on the coarse axial scan results, a point axial scan was performed.

7 DESCRIPTION OF TEST PROCEDURE

Table 7.1 shows the uncertainty budget for HAC Audio Band Magnetic Field (AMB) assessment according to ANSI C63.19-2006. The budget is valid for the DASY4 system and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be smaller.

Uncertainty Description	Uncert. Value (± %)	Prob. Dist.	Div.	C _i (ABM1)	C _i (ABM2)	Stand. Uncert (ABM1) (±%)	Stand. Uncert (ABM2) (±%)
PROBE SENSITIVITY							
Reference level	3.0	N	1.0	1	1	3.0	3.0
AMCC geometry	0.4	R	1.7	1	1	0.2	0.2
AMCC current	0.6	R	1.7	1	1	0.4	0.4
Probe positioning during calibration	0.1	R	1.7	1	1	0.1	0.1
Noise contribution	0.7	R	1.7	0.0143	1	0	0.4
Frequency slope	5.9	R	1.7	1	1	0.3	3.5
PROBE SYSTEM							
Repeatability / Drift	1.0	R	1.7	1	1	0.6	0.6
Linearity / Dynamic range	0.6	R	1.7	1	1	0.4	0.4
Acoustic noise	1.0	R	1.7	0.1	1	0.1	0.6
Probe angle	2.3	R	1.7	1	1	1.4	1.4
Spectral processing	0.9	R	1.7	1	1	0.5	0.5
Integration time	0.6	Ν	1.0	1	5	0.6	3.0
Field distribution	0.2	R	1.7	1	1	0.1	0.1
TEST SIGNAL							
Reference signal spectral response	0.6	R	1.7	0	1	0	0.4
POSITIONING							
Probe positioning	1.9	R	1.7	1	1	1.1	1.1
Phantom thickness	0.9	R	1.7	1	1	0.5	0.5
DUT positioning	1.9	R	1.7	1	1	1.1	1.1
EXTERNAL CONTRIBUTIONS							
RF interference	0	R	1.7	1	1	0	0
Test signal variation	2.0	R	1.7	1	1	1.2	1.2
	OMBINE		RTAI	NTY			
	ombined					4.1	6.1
Extended Standard Uncertainty (k=2) [%]:					8.1	12.3	

Table 7.1 Worst-Case uncertainty budget for HAC ABM assessment

© 2011 Comptest Services LLC Page 18 of 27 HAC T-coil Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

8 T-COIL REQUIREMENTS AND CATEGORY

8.1 RF Emissions

EUT has to fulfill RF emission requirements at the axial measurement location.

8.2 Axial Field Intensity

Table 8.2 shows the minimum limits for ABM1 field intensity:

Component	ABN1 Magnetic Field dB(A/m)	Condition	
Axial (z)	≥-18	1 kHz, in 1/3 octave band filter	
Radial (x, y)	≥-18		

Table 8.2 ABM1 Intensity Requirements

8.3 Signal Quality

Table 8.3 provides the signal quality requirement for the intended T-Coil signal from a Wireless Device. The worst Signal Quality of the axial and radial components of the magnetic field was used to determine the T-Coil category.

Category	Signal Quality (Signal+Noise to Noise) [dB]			
T1	0 to 10			
T2	10 to 20			
Т3	20 to 30			
T4	> 30			
AWF=0				

Table 8.3 T-coil Signal Quality Categories

8.4 Frequency Response

The frequency response of the axial component must follow the frequency curve specified in ANSI C63.19-2007 section 7.3.2, over the frequency range 300-3000 Hz (Figure 8.4).

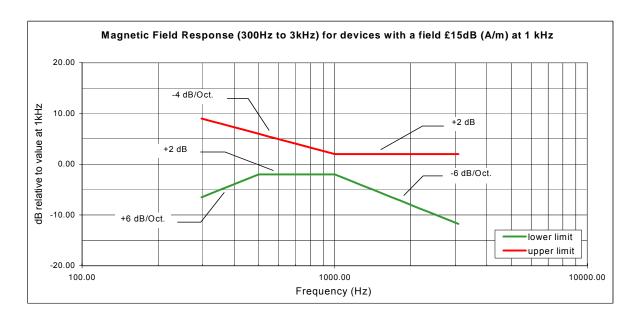
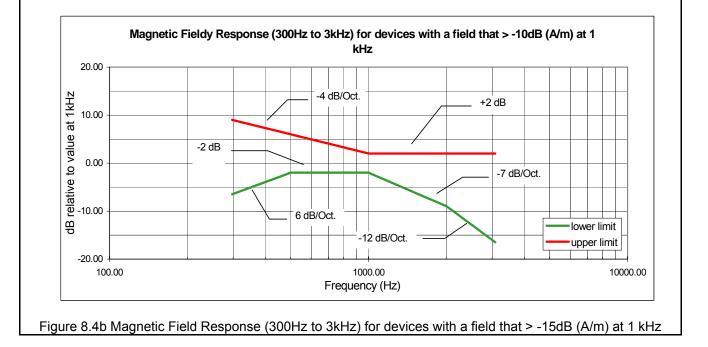



Figure 8.4a Magnetic Field Response (300Hz to 3kHz) for devices with a field ≤15dB (A/m) at 1 kHz

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

9 T-COIL TEST RESULTS

9.1 Field Strength and Signal Quality

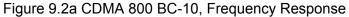
ANSI C63.19 (2007) Section 6 T-coil Field Strength and Signal Quality							
					aanty		
Band	Ch.	Probe	Ambient Noise	ABM1	ABM2	ABM1/ABM2	T-
		Position	dB A/m	dB A/m	dB A/m	dB	Rating
		Axial (z)	-55.01	0.06	-51.17	51.23	4
	476	Radial_L (x)	-58.55	-9.69	-54.08	44.39	4
		Radial_T (y)	-58.59	-7.42	-56.72	49.30	4
CDMA 800-		Axial (z)	-55.01	-0.11	-51.33	51.22	4
BC10	580	Radial_L (x)	-58.55	-9.11	-53.36	44.25	4
2010		Radial_T (y)	-58.59	-8.53	-57.09	48.56	4
		Axial (z)	-55.01	-0.31	-51.47	51.16	4
	684	Radial_L (x)	-58.55	-8.97	-53.38	44.41	4
		Radial_T (y)	-58.59	-8.23	-57.16	48.93	4
101		Axial (z)	-54.5	-0.47	-51.68	51.21	4
	1013	Radial_L (x)	-55.29	-10.14	-54.45	44.31	4
		Radial_T (y)	-57.67	-7.83	-56.64	48.81	4
CDMA		Axial (z)	-54.5	0.09	-51.20	51.29	4
800- BC0	384	Radial_L (x)	-55.29	-9.03	-53.71	44.68	4
BCU		Radial_T (y)	-57.67	-8.01	-56.63	48.62	4
		Axial (z)	-54.5	-0.57	-51.42	50.85	4
	777	Radial_L (x)	-55.29	-8.83	-53.04	44.21	4
		Radial_T (y)	-57.67	-7.94	-56.67	48.73	4
		Axial (z)	-54.88	-0.29	-50.99	50.70	4
	25	Radial L (x)	-58.3	-9.23	-44.90	43.98	4
		Radial_T (y)	-58.41	-7.81	-56.50	48.69	4
		Axial (z)	-54.88	-0.27	-50.37	50.34	4
CDMA	600	Radial L (x)	-58.3	-8.47	-52.21	43.74	4
1900		Radial T (y)	-58.41	-8.24	-56.79	48.55	4
-		Axial (z)	-54.88	-0.69	-51.05	50.36	4
	1175	Radial_L (x)	-58.3	-9.31	-53.03	43.72	4
		Radial T (y)	-58.41	-7.59	-48.83	48.99	4

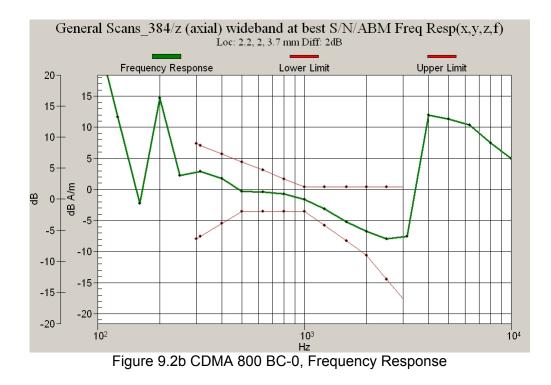
• Bold Number = worst case at each frequency band

• Data plots are showed in Appendix D

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0


9.2 Frequency Response


ANSI C63.19 (2007) Section 6 T-coil Frequency Response					
Mode Probe Position Signal Type Result					
CDMA 800 BC-10	Axial	Voice	Pass		
CDMA 800 BC-0 Axial Voice Pass					
CDMA 1900 Axial Voice Pass					


Figure 9.2 show the worst-case frequency response of the axial component of the magnetic field.

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

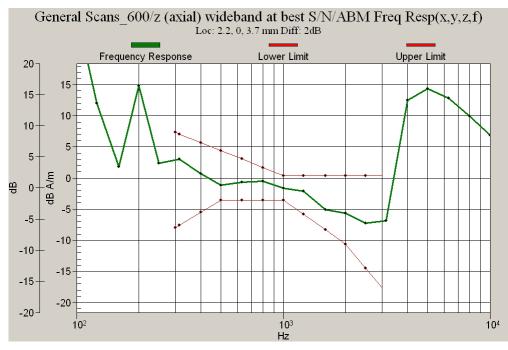


Figure 9.2c CDMA 1900, Frequency Response



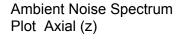
Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

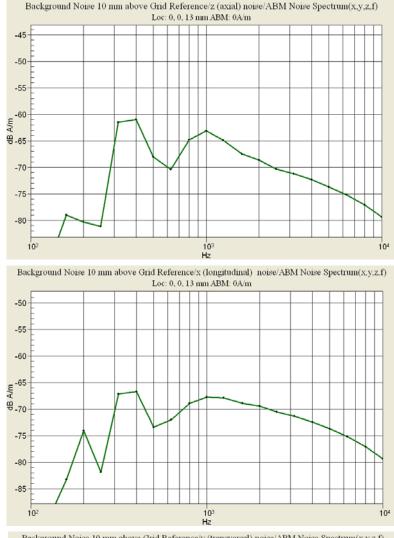
10 APPENDIX A1: AMBIENT NOISE PLOTS, 800 MHZ

Ambient Noise Spectrum Plot: Radial Longitudinal (x)

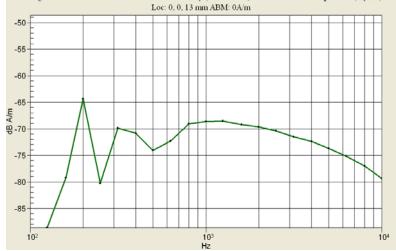
Background Noise 10 mm above Grid Reference/x (longitudinal) noise/ABM Noise Spectrum(x,y,z,f) Loc: 0, 0, 13 mm ABM: 0A/m

 $Background \ Noise \ 10 \ mm \ above \ Grid \ Reference/y \ (transversal) \ noise/ABM \ Noise \ Spectrum(x,y,z,f)$



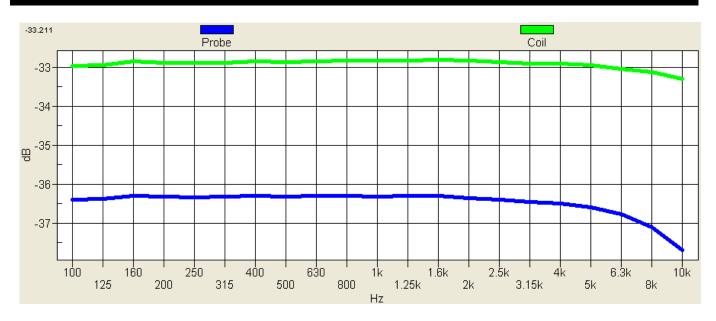

Ambient Noise Spectrum Plot: Radial Transversal (y)

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0


11 APPENDIX A2: AMBIENT NOISE PLOTS, 1900 MHZ

Ambient Noise Spectrum Plot Radial_Longitudinal (x)

Background Noise 10 mm above Grid Reference/y (transversal) noise/ABM Noise Spectrum(x,y,z,f)



Ambient Noise Spectrum Plot Radial_Transversal (y)

Applicant:	Kyocera
FCC ID:	V65S3015
Report #:	CT-S3015-0611-R0

12 APPENDIX B: SYSTEM CALIBRATION RESULTS

13 APPENDIX C: ABM AND SNR TEST RESULTS/PLOTS

(See attachment)

14 APPENDIX D: PROBE CALIBRATION CERTIFICATE

(See attachment)

15 APPENDIX E: PHOTO TEST SETUP

(See attachment)