

Applicant	Kyocera
FCC ID:	V65S2150A1
Report #:	CT-S2150-9D-0113-R0

EXHIBIT 9 APPENDIX D: SAR DIPOLE CALIBRATION CERTIFICATE

Total pages including cover page = 17

467 # 5d016

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Kyocera USA

Certificate No: D835V2-467_Sep12

Object	D835V2 - SN: 46	7	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	September 12, 2	012	
This calibration certificate docum The measurements and the unce	nents the traceability to nati ertainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar	its of measurements (SI). Ind are part of the certificate.
		y facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
alibration Equipment used (M& rimary Standards ower meter EPM-442A	TE critical for calibration)	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451)	
alibration Equipment used (M& rimary Standards ower meter EPM-442A lower sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451)	Scheduled Calibration Oct-12 Oct-12
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A deference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530)	Scheduled Calibration Oct-12 Oct-12 Apr-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Scheduled Calibration Oct-12 Oct-12 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. 0 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. ø
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the . nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.58 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.33 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.1 Ω - 1.1 jΩ		
Return Loss	- 33.0 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.4 Ω + 0.5 jΩ		
Return Loss	- 24.5 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.365 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

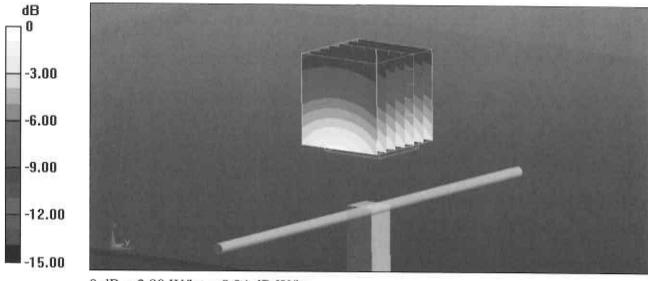
Manufactured by	SPEAG	
Manufactured on	August 27, 2002	

DASY5 Validation Report for Head TSL

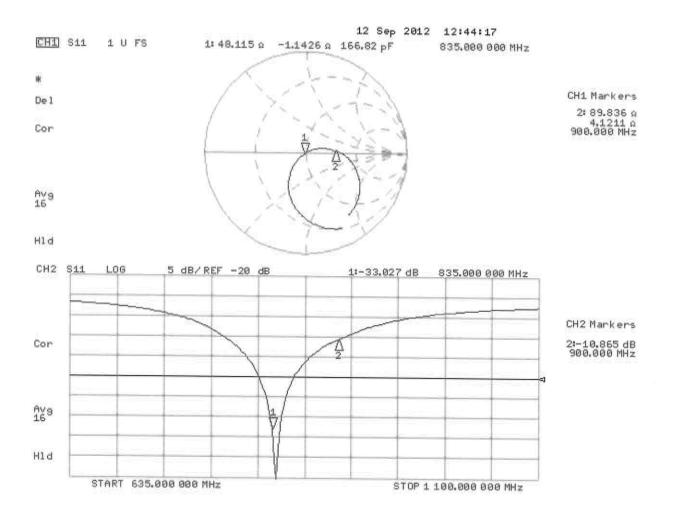
Date: 12.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 467


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.9 mho/m; ϵ_r = 41; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.500 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.552 mW/g SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.57 mW/g Maximum value of SAR (measured) = 2.80 W/kg

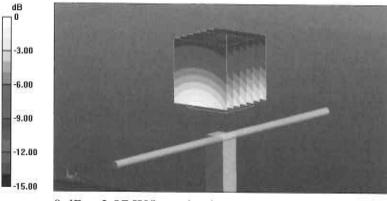
0 dB = 2.80 W/kg = 8.94 dB W/kg

DASY5 Validation Report for Body TSL

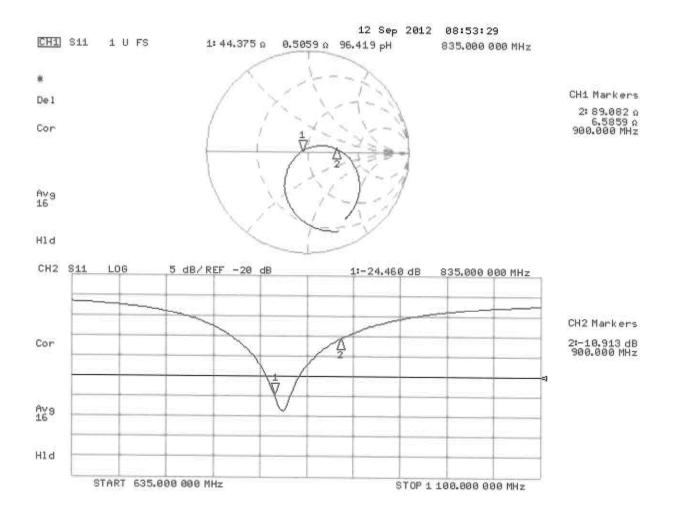
Date: 12.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 467


Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 1 mho/m; ϵ_r = 53.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.564 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.600 mW/g SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 9.16 dB W/kg

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

C

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Kyocera USA

Certificate No: D1900V2-5d016_Sep12

CALIBRATION C	ERTIFICATE		
Object	D1900V2 - SN: 50	016	
Calibration procedure(s)	QA CAL-05.v8 Calibration proced	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	September 14, 20)12	
The measurements and the uncer	rtainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an y facility: environment temperature (22 ± 3)°(d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
ower sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
eference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
ype-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
leference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	f-11-
Approved by:	Katja Pokovic	Technical Manager	2014
			Issued: September 14, 2012

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

31	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.79 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

3	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	$52.5 \pm 6 \%$	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.48 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.2 Ω + 4.5 jΩ	
Return Loss	- 25.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω + 4.7 jΩ	
Return Loss	- 24.6 dB	_

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

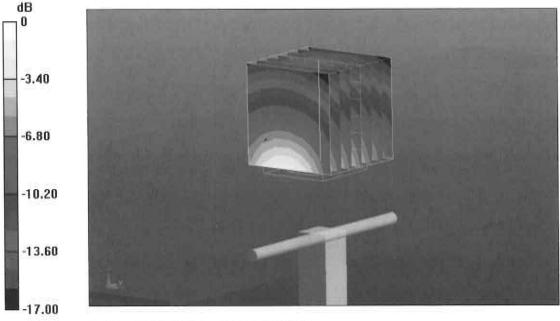
Manufactured by	SPEAG
Manufactured on	June 04, 2002

DASY5 Validation Report for Head TSL

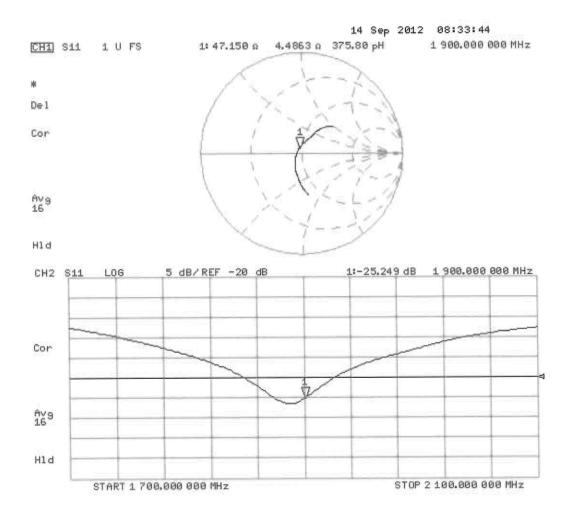
Date: 14.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d016


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.37 mho/m; ϵ_r = 40.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.784 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.342 mW/g SAR(1 g) = 9.79 mW/g; SAR(10 g) = 5.19 mW/g Maximum value of SAR (measured) = 12.0 W/kg

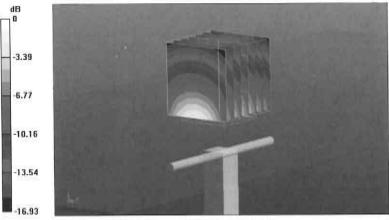
0 dB = 12.0 W/kg = 21.58 dB W/kg

DASY5 Validation Report for Body TSL

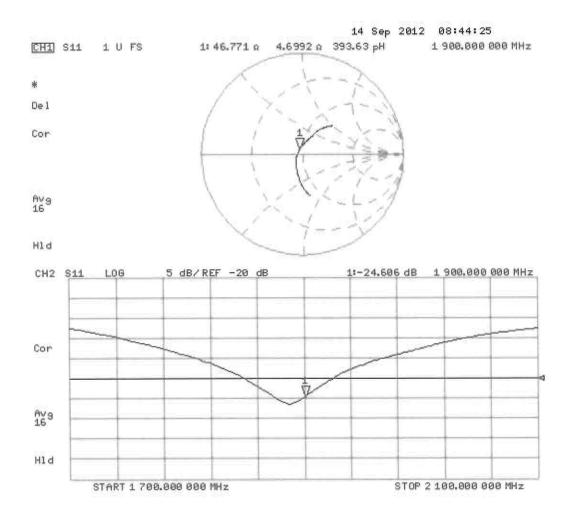
Date: 14.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d016


Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.784 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.122 mW/g SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.48 mW/g Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 22.28 dB W/kg

