

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

C2PC RF Emissions Test Report

FCC Part 15.247

For

Kyocera Corporation c/o Kyocera Communication Inc.

Product:	CDMA Cellular Phone
Model:	S2150

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

TABLE OF CONTENTS

1	SUMMARY OF TESTING	4
2	EQUIPMENT UNDER TEST INFORMATION	4
3	TEST FACILITIES	5
4	TEST SETUP	5
	PEAK OUTPUT POWER	6
-	20 DB BANDWIDTH	.13
	CARRIER FREQUENCY SEPARATION	.19
	NUMBER OF HOPPING FREQUENCIES	.21
9	TIME OF OCCUPANCY (DWELL TIME) .1 Test Configuration .2 Results: Dwell Time	.23
1	BANDEDGE 0.1 Test Configuration 0.2 Results: Bandedge	.25
1	SPURIOUS RF CONDUCTED EMISSIONS 1.1 Test Configuration 1.2 Results: Conducted Spurious Emissions	.32
	AC POWER LINE CONDUCTED EMISSIONS 2.1 Test Configuration & Results	
	RADIATED EMISSIONS 3.1 Test Configuration & Results	
14	TEST EQUIPMENT	.36

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

ATTESTATION

The tested device complies with the requirements in respect of all parameters subject to the test.

The test results and statements relate only to the items tested.

The test equipment used was suitable for the tests performed and within manufacturer's published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Product:	CDMA Cellular Phone with Bluetooth + EDR 2.1
Model #:	S2150
FCC ID:	V65S2150
Tested in accordance with:	FCC Part 15.247
Test performed by:	Comptest Services LLC
Test Requested by:	KYOCERA Corporation
	C/o KYOCERA Communication Inc
	9520 Towne Centre Drive
	San Diego, CA 92121
Date of Test:	November 12 – November 15, 2012

Responsible Engineer

Benjamin Nguyen

Benjamin Nguyen Test Engineer Reviewed and approved by:

Tammy To Quality Manager

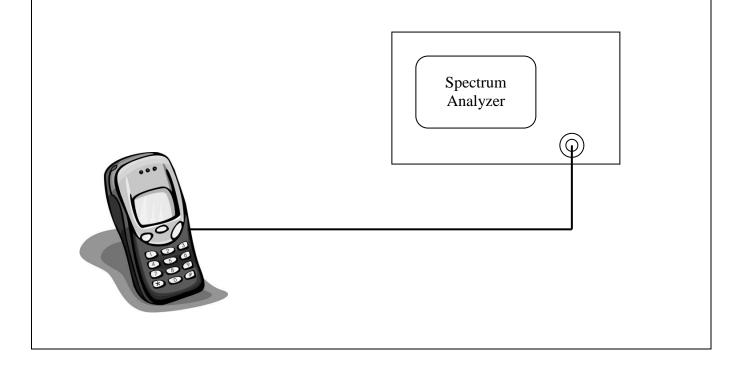
Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

1 SUMMARY OF TESTING

Section #	Rule Part	Test Description	Verdict
4	FCC § 15.247 b1, IC RSS-210 §A8.4 (2)	Peak Output Power	Pass
5	FCC § 15.247 a1, IC RSS-210 §6.2.2(o) a1	20 dB Bandwidth	Pass
6	FCC § 15.247 a1, IC RSS-210 §A8.1(2)	Carrier Frequency Separation	Pass
7	FCC § 15.247 a1 iii, IC RSS-210 §A8.1 (4)	Number of Hopping Frequencies	Pass
8	FCC § 15.247 a1 iii, § 15.247 f, IC RSS-210 §A8.1 (4)	Time of Occupancy	Pass
9	FCC § 15.247 d, IC RSS-210 §A8.5	Band-edge Compliance of Conducted Emissions	Pass
10	FCC § 15.247 d, IC RSS-210 §A8.5	Spurious RF Conducted Emissions	Pass
11	FCC § 15.107 § 15.207, IC RSS-210 §6.6	AC Power Line Conducted Emissions	Pass
12	FCC § 15.109, § 15.209, IC RSS-210 §A2.9(2)	Spurious Radiated Emissions	Pass

2 EQUIPMENT UNDER TEST INFORMATION

EUT Serial Number:	268435457816729384
Туре:	[] Prototype, [X] Pre-Production, [] Production
Equipment Category:	Portable
TX Frequency (MHz):	2402 to 2480
Channel Numbers:	79
Channel Spacing (MHz):	1
Bluetooth version:	□ 1.1 □ 1.2 □ 2.0 ⊠ 2.1 + EDR
Modulation:	Frequency Hopping Spread Spectrum (FHSS), Class 2
Max. Output Power (dBm)	2.90 dBm
Antenna:	Internal
Antenna Gain (dBi):	-1.0 (Peak)


Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

3 TEST FACILITIES

The test sites and measurement facilities used to collect data are located at 8611 Balboa Avenue, San Diego, CA 92123, USA

4 TEST SETUP

The Bluetooth RF output of the equipment under test (EUT) was connected to the input of the spectrum analyzer through a RF cable with a specialized RF connector. The amplitude of the spectrum analyzer is corrected for the cable insertion loss and any other applicable losses. A fully charged battery was used as power supply voltage.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

5 PEAK OUTPUT POWER

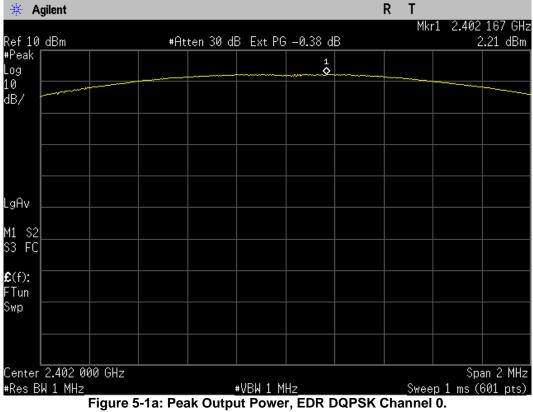
5.1 Test Configuration

FCC: § 15.247 b1

IC: RSS-210 §A8.4 (2)

The Bluetooth transmitter was enabled at low, mid and high channels of separately to investigate the peak output power for each channel.

Frequencies of Interest: Spectrum was investigated from 2400 MHz – 2483.5 MHz.


Limits: < 1 watt (for systems with at least 75 hopping channels)

igure	Channel	Modulation	Results
5-1		Basic Rate	2.31 dBm
5-1a	0	EDR DQPSK	2.21 dBm
5-1b		EDR D8PSK	1.34 dBm
5-2		Basic Rate	2.30 dBm
5-2a	39	EDR DQPSK	2.25 dBm
5-2b		EDR D8PSK	1.38 dBm
5-3		Basic Rate	2.90 dBm
5-3a	78	EDR DQPSK	2.83 dBm
5-3b		EDR D8PSK	2.01 dBm

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent				RT	
Ref 10 dBm	#Atten 30) dB Ext PG –0.	38 dB	Mkr1	2.402 147 GHz 2.31 dBm
#Peak					2.01 0.01
Log			<u> </u>		
dB/					
LgAv					
м1 s2					
S3 FC					
£(f):					
FTun					
Swp					
Center 2.402 000 GHz				¢	Span 2 MHz
#Res BW 1 MHz Figu	re 5-1: Peak Ou	<u>#VBW 1 MHz</u> Itput Power B	asic Rate		1 ms (601 pts)_

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

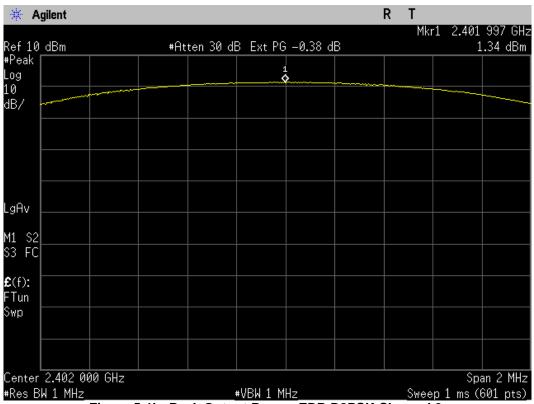


Figure 5-1b: Peak Output Power, EDR D8PSK Channel 0.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent			R	Т	
Ref 10 dBm	#Atten 30 dB	Ext PG -0.38	dB	Mkr1 2.441 2	130 GH: .30 dBm
ŧPeak _og					
.0 IB/					
.gAv					
11 S2					
C(f):					
ζwp					
Center 2.441 000 GHz					in 2 MH;
*Res BW 1 MHz	Figure 5-2: Peak 0	VBW 1 MHz	Oh ann al CC	_Sweep 1 ms (6	601 pts)

Figure 5-2: Peak Output Power, Channel 39.

🔆 Agilent		RT
Ref 10 dBm	∗Atten 30 dB Ext PG −0.38 dB	Mkr1 2.441 157 GHz 2.25 dBm
#Peak Log		
10 dB/		
LgAv		
M1 S2		
\$3 FC		
£(f): FTun		
Swp		
Center 2.441 000 GHz		Span 2 MHz
#Res BW 1 MHz	<u>#VBW 1 MHz</u> eak Output Power, EDR DQP	Sweep 1 ms (601 pts)_

Figure 5-2a: Peak Output Power, EDR DQPSK Channel 39.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent				RT	
Ref 10 dBm	#Atten 30	dB Ext PG -0.3	8 dB	Mkr1	2.441 057 GHz 1.38 dBm
#Peak Log					
10 dB/					
LgAv					
M1 S2					
S3 FC					
£(f): FTun					
Swp					
Center 2.441 000 GHz #Res BW 1 MHz		#VBW 1 MHz		Sween	Span 2 MHz 1 ms (601 pts)_
	5-2b: Peak Out	put Power, EDF	R D8PSK (Channel 3	9.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent						R	Т		
Ref 10 dBm	#Ati	ten 30 df	3 Ext PG	i -0.38 d	В		Mkr1		120 GHz 2.90 dBm
#Peak Log									
10 dB/								~~~ <u>~</u> ~~~	
LgAv									
M1 S2									
S3 FC									
£(f): FTun									
Swp						+			
Center 2.480 000 GHz								Sn	an 2 MHz
#Res BW 1 MHz	_		⊭VBW 1 M	Hz			Sweep		601 pts)_
F	igure 5-3	3: Peak	Output	Power,	Channe	el 78.			

🔆 Agilent			RT	
Ref 10 dBm	#Atten 30 dB Ext PG	-0.38 dB	Mkr1 (2.480 140 GHz 2.83 dBm
#Peak Log		1 \$		
10 dB/				
LgAv				
M1 S2				
S3 FC				
£(f): FTun				
Swp				
Center 2.480 000 GHz				Span 2 MHz
#Res BW 1 MHz	<u>#VBW 1_MH</u> -3a: Peak Output Power.			ms (601 pts)_

Figure 5-3a: Peak Output Power, EDR DQPSK Channel 78.

© 2012 Comptest Services LLC Page 11 of 36 **Bluetooth Report** This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent			RT	a 100 000 ou
Ref 10 dBm	#Atten 30 dB E	Ext PG −0.38 dB	Mkr1	2.480 000 GH 2.01 dBm
Peak og				
0 B/				
βΑν				
1 \$2				
3 FC				
(f): Tun				
qw				
enter 2.480 000 GH				Span 2 MH
Res BW 1 MHz	<u>#WB</u> e 5-3b: Peak Output P	W 1 MHz		ms (601 pts

Figure 5-3b: Peak Output Power, EDR D8PSK Channel 78.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

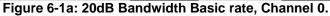
6 20 DB BANDWIDTH

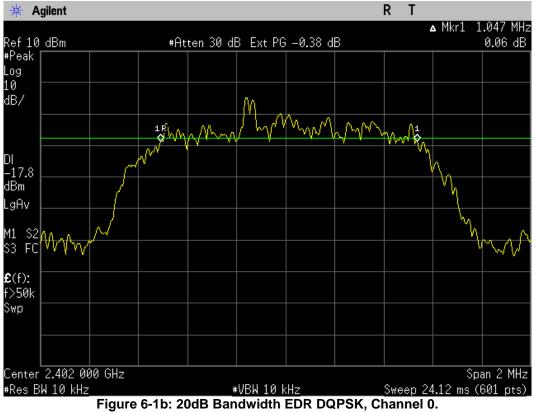
6.1 Test Configuration

FCC: § 15.247 a1

IC: RSS-210 §6.2.2(o) a1

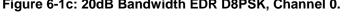
The Bluetooth transmitter was enabled at low, mid, high channels and at each supporting modulation scheme separately to investigate the 20dB-bandwidth for each channel. Delta marker on the spectrum analyzer was moved from the center frequency until –20dBc to measure the 20dB-bandwidth.


Frequencies of Interest: Spectrum was investigated from 2402 MHz – 2480 MHz.

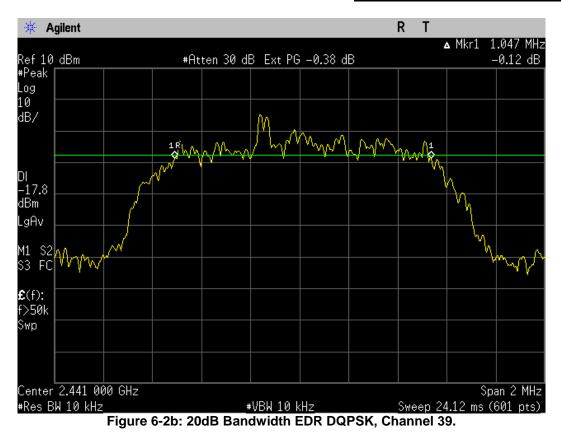

6.2 20dB Bandwidth Plots and Results			
Figure	Channel	Modulation	Results
6-1a		Basic Rate	627 kHz
6-1b	0	EDR DQPSK	1.05 MHz
6-2c		EDR D8PSK	1.03 MHz
6-2a		Basic Rate	623 kHz
6-2b	39	EDR DQPSK	1.05 MHz
6-2c		EDR D8PSK	1.04 MHz
6-3a		Basic Rate	627 kHz
6-3b	78	EDR DQPSK	1.04 MHz
6-3c		EDR D8PSK	1.04 MHz

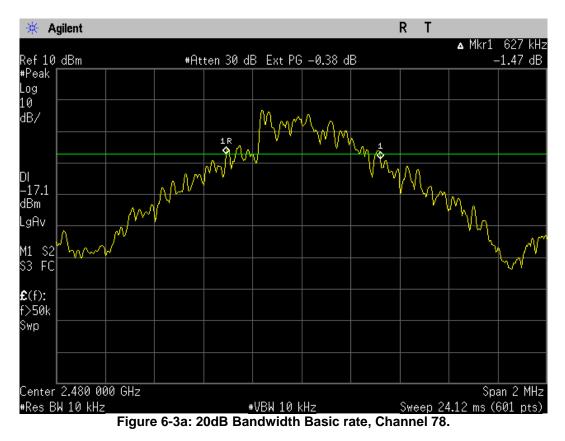
Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

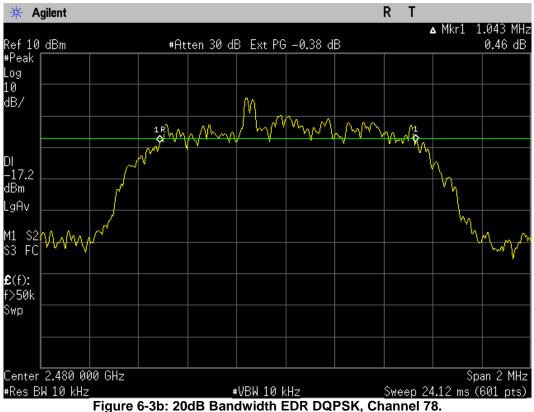




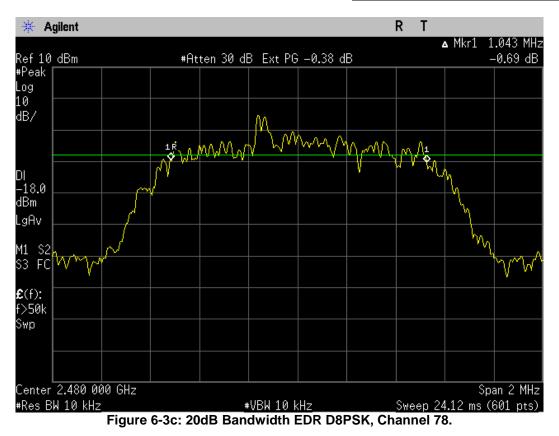
Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0




Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0



Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0



© 2012 Comptest Services LLC Page 17 of 36 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

CARRIER FREQUENCY SEPARATION

7.1 Test Configuration

FCC: § 15.247 a1

IC: RSS-210 §A8.1(2)

The Bluetooth transmitter was set in hopping mode to investigate the carrier frequency separation between mid-channel and its adjacent channels. The carrier frequency separation is independent of modulation and packet length (DH1, DH3, etc.).

Limits:

7

a) \geq 25 kHz or 20 dB Bandwidth, whichever is greater

b) For FH systems operating in 2400-2483.5MHz and with output power less than 125mW the carrier frequency separation should be greater than 25kHz or 2/3 of 20dB Bandwidth.

7.2 Resu	Ilts: Carrier Freque	ency	
Figure	Frequency Separation	Limits > 2/3 of 20 dB Bandwidth	Result
7	1000 kHz	700 kHz (2/3)*1.05 MHz = 700 kHz	Pass

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

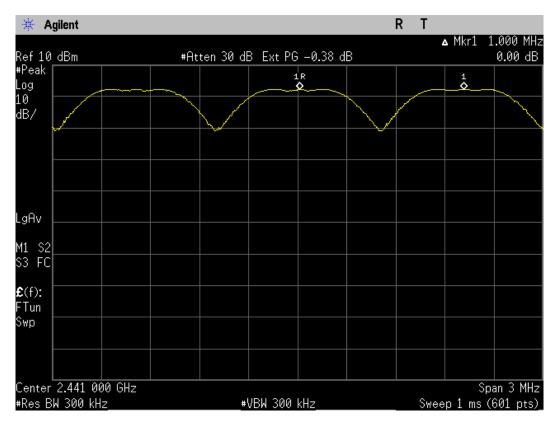


Figure 7: Carrier Frequency Separation between channels 38, 39 (mid-channel) & 40.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

8 NUMBER OF HOPPING FREQUENCIES

8.1 Test Configuration

FCC: § 15.247 a1 iii

IC: RSS-210 §A8.1 (4)

The Bluetooth transmitter was set in hopping mode to investigate the number of hopping frequencies. The number of frequency hopping is independent of modulation and packet length (DH1, DH3, etc.).

Limits:

At least 15 non-overlapping channels

8.2 Results: Number of Hopping Frequencies				
Figure Channel Plot Description Results				
8a	Hopping	Number of Hopping Frequencies (Channels 0-39)	79	
8b	порріпу	Number of Hopping Frequencies (Channels 39-78)	(Channels 0-78)	
Comments: Pass				

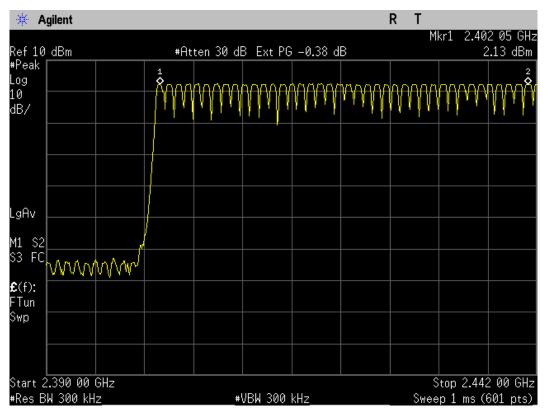


Figure 8a: Number of Hopping Frequencies (Channels 0-39).

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

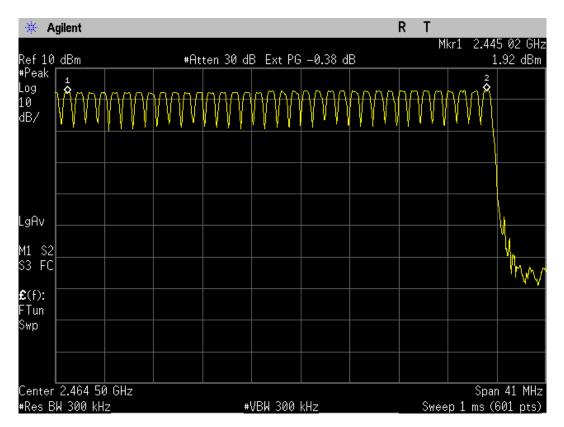


Figure 8b: Number of Hopping Frequencies (Channels 39-78).

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

9 TIME OF OCCUPANCY (DWELL TIME)

9.1 Test Configuration

FCC: § 15.247 a1 iii, § 15.247 f

IC: RSS-210 §A8.1 (4)

The Bluetooth transmitter was set in hopping mode to capture one of the transmissions of mid-channel. Mid-channel (CH 39) was measured here.

Comments:

The dwell time is independent of modulation and packet length (DH1, DH3, etc.).

According to the Bluetooth Core Specification v1.1, we have 1600 hops in a second for a one slot packet type. One frequency hop lasts 625 μ s; this increment is called a time slot. In a period of 31.6 seconds, the time of occupancy for any given channel is calculated as follows:

Duration of one transmission*(1600 hops/sec)/(No. of time-slots)/(79 channels)*31.6 sec

For a DH1 (1 time-slot) packet type, ideally the duration of one transmission is 625 μ s. Therefore, the dwell time is given by:

 $625 \ \mu s^{1}600/s/(1 \ time-slot)/79^{3}1.6 \ s= 0.4 \ s.$

Spectrum Analyzer Parameters:

The measurement is conducted with zero span centered at mid-channel (2441 MHz) with sweep time sufficient enough to capture one transmission (in this case, \geq 625 µs).

Limits:

 \leq 0.4 s (in a period of 31.6 s)

9.2 Results: Dwell Time				
Figure	Channel	Results		
9	Hopping	0.243s		
Comments: PASS				

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent				RΤ		
ef 10 dBm	#Atter	30 dB Ext PG -	0.38 dB		▲ Mkr1	380 µ 0.17 dB
Peak og	1R					
0 B/	*** ***	*****				
gAv	4					
1 \$2						
3 FS MMMMMMMMMMMM	hall		MANA	MMMMM	hupphhillips	the way the
(f): Tun						
Center 2.463 000 GHz						pan 0 Hz
es BW 3 MHz		#VBW 3 MHz			ep1ms(601 pts)

Figure 9: Duration of one transmission (Channel 39).

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

10 BANDEDGE

10.1 Test Configuration

FCC:	§ 15.247 d

IC: RSS-210 §A8.5

The Bluetooth RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low and high channels of Bluetooth transmitter were enabled separately to investigate the band-edge compliance of conducted emissions. To ensure the band-edge compliance when the channels are hopping, measurements were also conducted at low and high channels in this mode. A fully charged battery was used as supply voltage

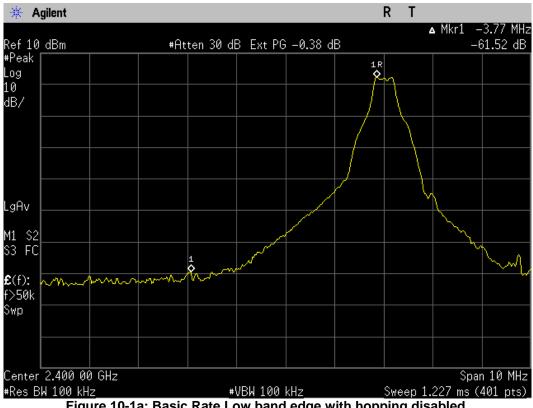
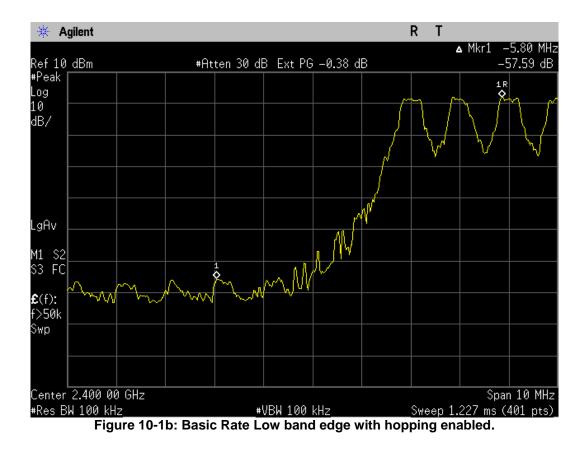
Frequencies of Interest: Spectrum was investigated from 2400 MHz – 2483.5 MHz.

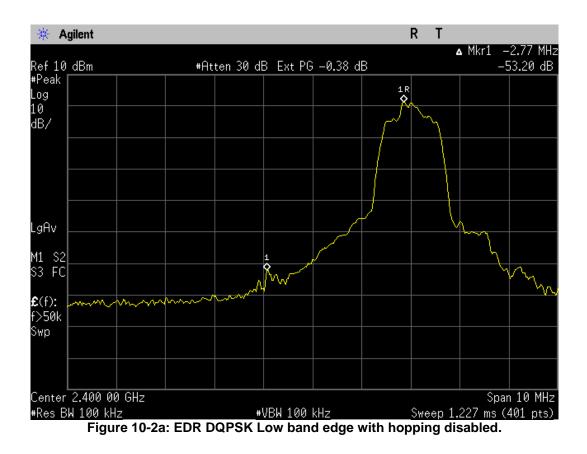
Limits: \leq -20 dBc

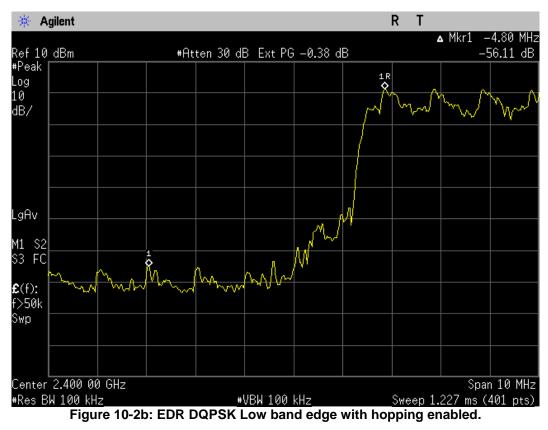
In any 100kHz band, the highest radio frequency power outside the band (2400-2483.5 MHz) is measured to be at least 20 dB below the desired power of intentional radiator within the band.

10.2 Results: Bandedge					
Figure	Channel/Edge	Modulation	Plot Description	Results	
10-1a		Basic Rate	Hopping disabled	-61.52 dBc	
10-1b		Dasic Rate	Hopping enabled	-57.59 dBc	
10-2a	0 Low Pond Edge	EDR DQPSK	Hopping disabled	-53.20 dBc	
10-2b	0 Low Band Edge	EDR DQP3K	Hopping enabled	-56.11 dBc	
10-3a			Hopping disabled	-59.66 dBc	
10-3b		EDR D8PSK	Hopping enabled	-55.91 dBc	
10-4a		Basic Rate	Hopping disabled	-57.05 dBc	
10-4b	78 High Band Edge	Dasic Rale	Hopping enabled	-56.87 dBc	
10-5a			Hopping disabled	-60.36 dBc	
10-5b		EDR DQPSK	Hopping enabled	-56.82 dBc	
10-6a		EDR D8PSK	Hopping disabled	-59.56 dBc	
10-6b		EDR DOPSK	Hopping enabled	-56.20 dBc	

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

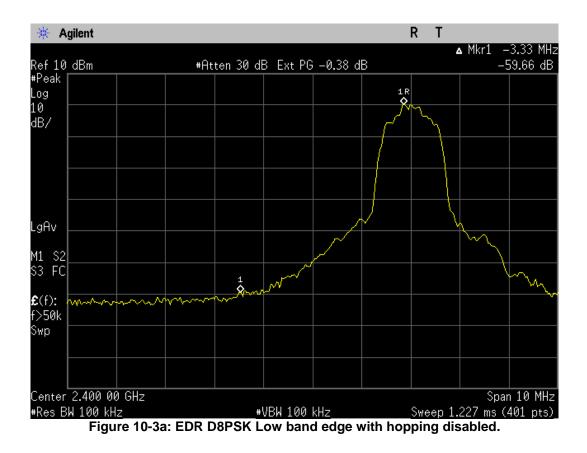



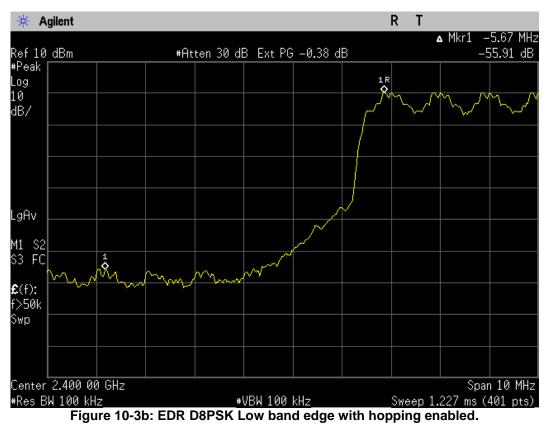

Figure 10-1a: Basic Rate Low band edge with hopping disabled.



© 2012 Comptest Services LLC Page 26 of 36 **Bluetooth Report** This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0





© 2012 Comptest Services LLC Page 27 of 36 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

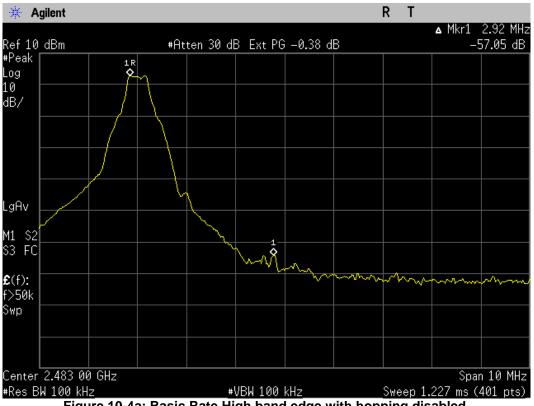
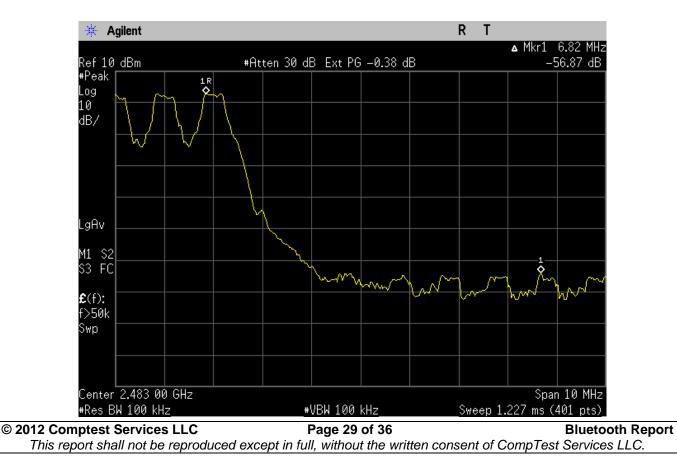
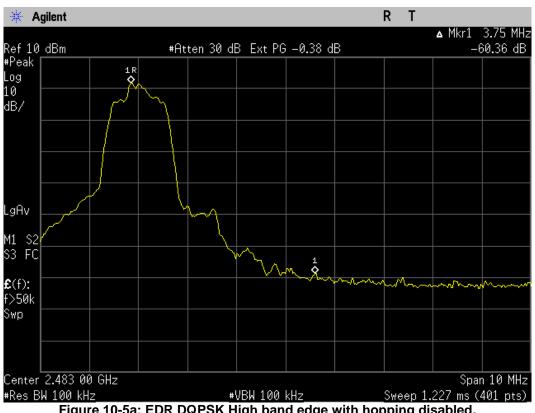
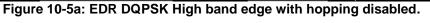
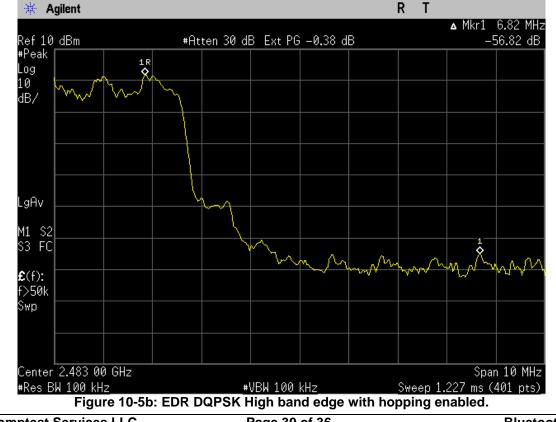




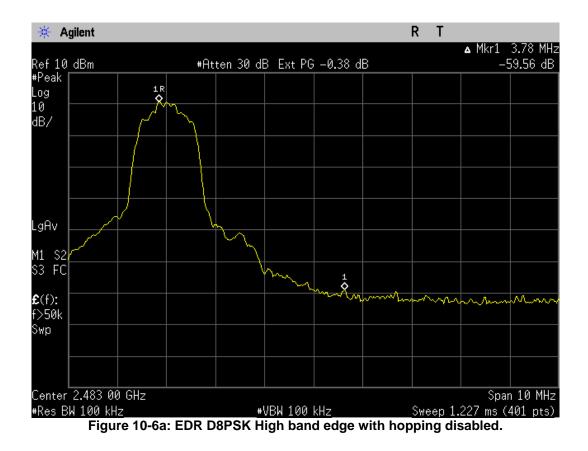
Figure 10-4a: Basic Rate High band edge with hopping disabled.

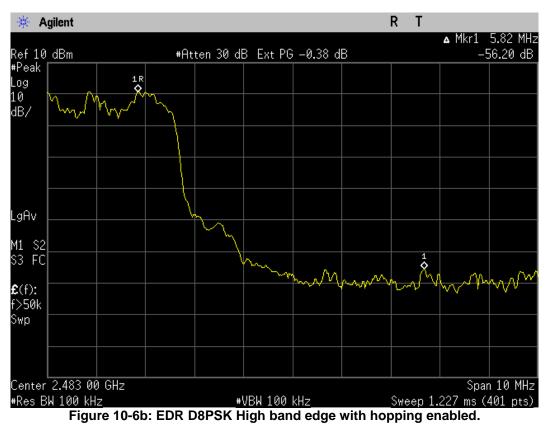




Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

Figure 10-4b: Basic Rate	High band edge wi	ith hopping enabled.
I Iguic IV The Duble Rule	ingn bund cage m	an nopping chasica.





© 2012 Comptest Services LLC Page 30 of 36 **Bluetooth Report** This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

11 SPURIOUS RF CONDUCTED EMISSIONS

11.1 Test Configuration

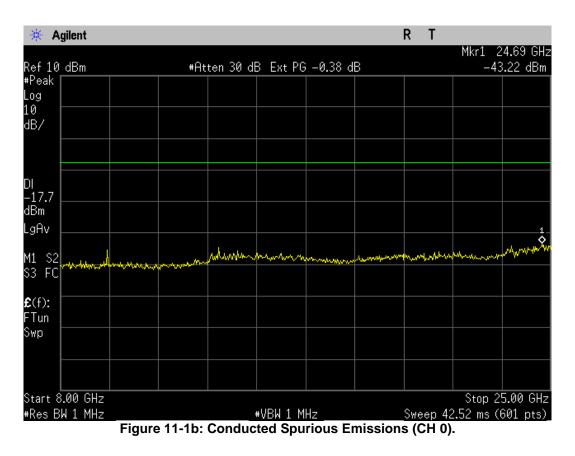
FCC: § 15.247 d IC: RSS-210 §A8.5

The Bluetooth RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low, mid and high channels of Bluetooth transmitter were enabled separately and the frequency spectrum was investigated for any spurious emissions. A fully charged battery was used as supply voltage.

Frequencies of Interest: Spectrum was investigated from 9kHz – 25 GHz.

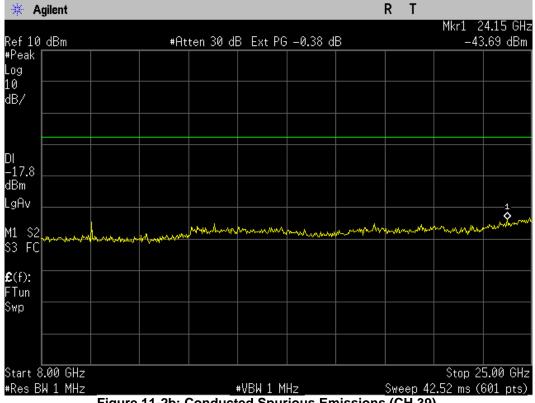
Limits: <-20 dBc

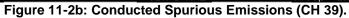
11.2 R	11.2 Results: Conducted Spurious Emissions				
Figure	Figure Channel Plot Description				
11-1a	0	Conducted spurious emissions, 9kHz to 8GHz	-45.53 dBc		
11-1b	0	Conducted spurious emissions, 8GHz to 25GHz	-45.55 dBC		
11-2a	39	Conducted spurious emissions, 9kHz to 8GHz	-45.99 dBc		
11-2b		Conducted spurious emissions, 8GHz to 25GHz	-45.99 060		
11-3a	78	Conducted spurious emissions, 9kHz to 8GHz	-45.38 dBc		
11-3b	10	Conducted spurious emissions, 8GHz to 25GHz	-40.00 UDC		


Comments:

Spurious RF Conducted Emission testing was performed on the modulation that has the highest conducted power in comparison with the other modulation.

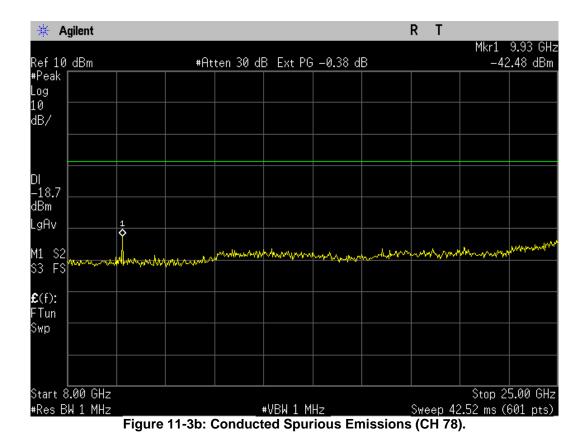
Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0


🔆 🔆 🔆	gilent							RT		
Ref 10	dBm		#At	ten 30 di	3 Ext PG	-0.38 d	B			'.055 GHz 3.04 dBm
#Peak Log										
10				1						
dB/										
DI -17.7										
dBm										
LgAv M1 S2					Murranten	toleta una la	hate underheiden.		1	anther after a the adarts
S3 FC	wanne	19Mil market Market	mbrow	Ω _{φαλ} γατ.∨		of the college	1977 - S S S S S S S			
£ (f): FTun										
Ѕพр										
Start 9								~		.000 GHz
#Kes Bl	√1 MHz	Figure	11-1a:		ŧVBW 1_M ted Spu		mission		8.36 ms (1	001 pts)_



Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent			RT	
				Mkr1 7.200 GHz
Ref 10 dBm #Peak	#Htten 30 c	1B Ext PG -0.38	dB	-48.13 dBm
Log 10				
dB/				
DI I I				
-17.8				
dBm				
LgAv				
				1
M1 S2		A.A.A.		
S3 FC mm/m/mm/m	mary more many and the marked		and the stand the stand of the stand	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
£ (f):				
FTun				
Swp				
Start 9 kHz				Stop 8.000 GHz
#Res BW 1 MHz		#VBW 1 MHz		3.36 ms (601 pts)_
Fig	ure 11-2a: Conduc	ted Spurious E	missions (CH 39).



Applicant:	Kyocera
FCC ID:	V65S2150
Report #:	CT-S2150-15C-1112-R0

🔆 Agilent				RT	
			00 ID		Mkr1 7.493 GH
Ref 10 dBm	#Htten 30 dt	B Ext PG −0.	38 dB		-48.07 dBm
#Peak					
_0g					
HB/					
) -18.7					
3Bm					
_gAv					
44 65					1
41 S2 S3 FC	have and the show	man the second and the second s	n an an an an an an an an		warman man man and had an
53 FC	hand a hard the second of the second s		and the second se		
N (0).					
E(f): Tun					
οwp					
Start 9 kHz					Stop 8.000 GH:
ŧRes BW 1 MHz		⊧VBW 1 MHz _		Sweep 13	3.36 ms (601 pts)
Fiar	ure 11-3a: Conduct	ed Spurious			

rigule i l-sa. Conducted Sp unous Ennssions (CH 70).

Applicant:	Kyocera	
FCC ID:	V65S2150	
Report #:	CT-S2150-15C-1112-R0	

12 AC POWER LINE CONDUCTED EMISSIONS

12.1 Test Configuration & Results

FCC: § 15.107 § 15.207

IC: RSS-210 §6.6

See separate report

13 RADIATED EMISSIONS

13.1 Test Configuration & Results

FCC: § 15.109 § 15.209

IC: RSS-210 §A2.9 (2)

See separate report

14 TEST EQUIPMENT

The test equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

Description	Manufacturer	Model No.	Serial No.	Cal Due Date
Spectrum Analyzer	Agilent	E4440A	MY44303130	12/14/12