

Applicant	Kyocera
	V65S2150
Report #:	CT-S2150-9D-1012-R0

EXHIBIT 9 APPENDIX D: SAR DIPOLE CALIBRATION CERTIFICATE

Total pages including cover page = 25

5d016

220

467

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 42, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

S

Ctient

Kyocera USA

Certificate No: D835V2-467_Sep12

Object	D835V2 - SN: 46	7	
Calibration procedure(s)	OA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	September 12, 2	012	
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°0	nd are part of the certificate.
alibration Equipment used (M&			
hinaan. Staadarda	LID#		
	170.00 mg	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01461)	Oct-12
ower meter EPM-442A ower sensor HP 8481A	GB37480704 US37292783	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01451)	Oct-12
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Aftenuator	GB37480704 US37292783 SN: 5058 (20k)	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530)	Oct-12 Oct-12 Apr-13
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination	GB37480704 U\$37292783 SN: 5058 (20k) SN: 5047.2 / 06327	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533)	Oct-12 Oct-12 Apr-13 Apr-13
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	GB37480704 US37292783 SN: 5058 (20k)	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530)	Oct-12 Oct-12 Apr-13
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13
ower meter EPM-442A ower sensor HP 8481A reference 20 dB Aftenuator ype-N mismatch combination reference Probe ES3DV3 AE4 econdary Standards	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12
ower meter EPM-442A ower sensor HP 8481A deference 20 dB Aftenuator ype-N mismatch combination deference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A	GB37480704 US37292783 SN; 5058 (20k) SN; 5047.2 / 06327 SN; 3205 SN; 601	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check
rimary Standards Tower meter EPM-442A Tower sensor HP 8481A Reference 20 dB Aftenuator Type-N mismatch combination Reference Probe ES3DV3 TAE4 Recondary Standards Tower sensor HP 8481A REF generator R&S SMT-06 Retwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13
ower meter EPM-442A ower sensor HP 8481A deference 20 dB Aftenuator ype-N mismatch combination deference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check; Oct-13 In house check; Oct-13
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Aftenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	GB37480704 US37292783 SN; 5058 (20k) SN; 5047.2 / 06327 SN; 3205 SN; 601 ID # MY41092317 100005 US37390585 S4206	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check; Oct-13 In house check; Oct-13
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06 etwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check; Oct-13 In house check; Oct-13
Tower meter EPM-442A Tower sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 RAE4 Recondary Standards Rower sensor HP 8481A REF generator R&S SMT-06	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	05-Oct-11 (No. 217-01461) 05-Oct-11 (No. 217-01461) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check; Oct-13 In house check; Oct-13

Certificate No: D835V2-467_Sep12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di teratura
Swies Catibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-467_Sep12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	PROPERTY THAN 17 L. THE TOTAL PROPERTY OF TH
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	THE SPECIAL SECTION AND SECTION ASSESSMENT AND SECTION ASSESSMENT
Frequency	835 MHz ± 1 MHz	TOTAL PROGRAMMA A LACTOR TO THE PROGRAMMA AND A TOTAL PROGRAMMA AN

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0±6%	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	. U 14. 4.	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	THE STATE OF THE S
SAR measured	250 mW input power	2.40 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	7-11-7-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-11-20-1
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	TO THE POST OF THE
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.58 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	to The Control of the
SAR measured	250 mW input power	1.62 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.33 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-467_Sep12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	The state of the s
mystatios, ratisferitea to lega point	
Return Loss	33.0 dB
ter and the second seco	Living

Antenna Parameters with Body TSL

	The state of the s
i Impedance, transformed to feed point	$44.4 \Omega + 0.5 i\Omega$
PROBLEM TABLE TO THE PROPERTY OF THE PROPERTY	7777747474
Return Loss	
	- 24.5 dB
The state of the s	A

General Antenna Parameters and Design

	TO PROTECTION OF THE PROTECTIO
Electrical Delay (one direction)	1 005
l	1.365 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

777774444444444444444444444444444444444	The state of the s
Manufactured by	SPEAG
	THE PROPERTY OF THE PROPERTY O
Manufactured on	A
incarated or or	August 27, 2002
	According to the Control of the Cont

Date: 12.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 467

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011;

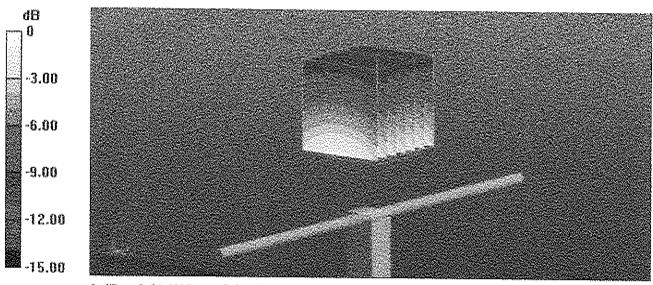
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

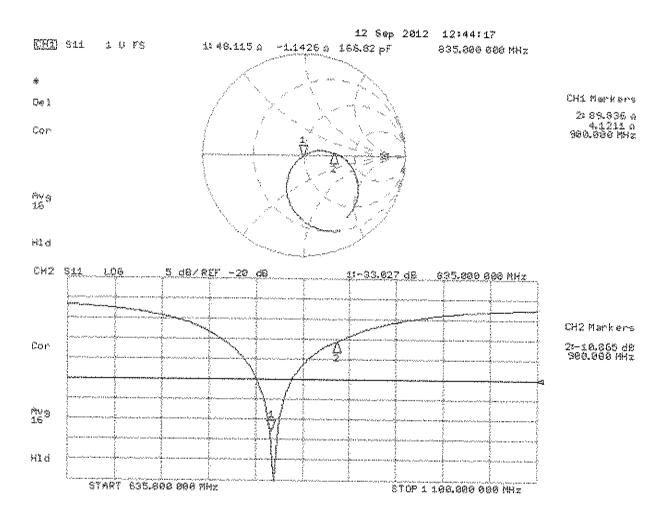
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.500 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.552 mW/g

SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.57 mW/g


Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 8.94 dB W/kg

Certificate No: D835V2-467_Sep12

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 12.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 467

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 53.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011;

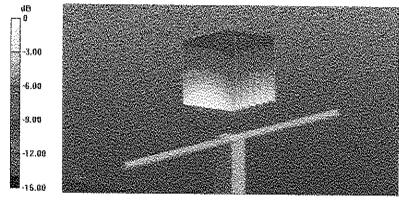
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

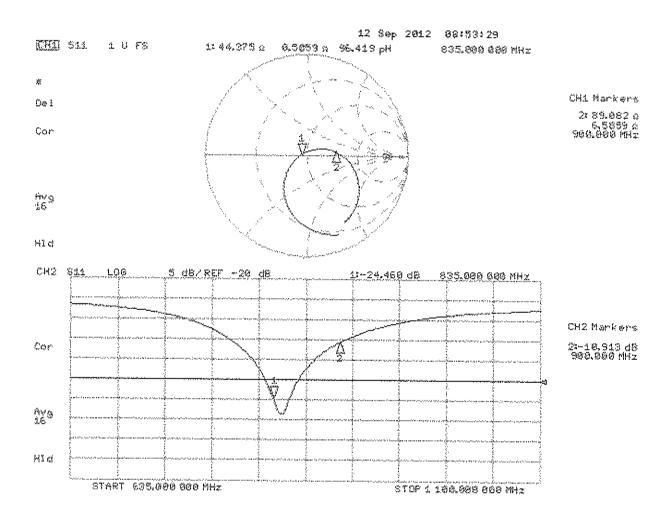
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.564 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.600 mW/g

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g


Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 9.16 dB W/kg

Certificate No: D835V2-467_Sep12

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Kyocera USA

Accreditation No.: SCS 108

C

S

Certificate No: D1800V2-220_Sep11

CALIBRATION CERTIFICATE

Object D1800V2 - SN: 220

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: September 15, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

	1		
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	U\$37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: \$5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205,,,Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check; Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Calibrated by:	Name Dimice Illev	Function Laboratory Technician	Signature
Approved by:	Katja Poković	Technical Manager	and the second
!			

issued: September 15, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-220_Sep11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-220_Sep11 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	7703-0
Phantom	Modular Flat Phantom	PARTICIPATION OF THE PROPERTY OF THE PARTICIPATION
Distance Dipole Center - TSL 10 mm		with Spacer
Zoom Scan Resolution dx, dy, dz = 5 mm		THE CONTRACT OF THE CONTRACT O
Frequency	1800 MHz ± 1 MHz	A CONTRACTOR OF THE PROPERTY O

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1,40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	TV 18 TA T	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
SAR measured	250 mW input power	9.41 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.1 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	APPEAR OF THE PERSON OF THE PERSON IS A SERVE AND A SE
SAR measured	250 mW input power	4.97 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.0 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The state of the s	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22,0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	was a m	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.86 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	THE PROPERTY OF THE AMERICAN AND AND THE PROPERTY OF THE AMERICAN AND AND AND AND AND AND AND AND AND A
SAR measured	250 mW input power	5.25 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW / g ± 16.5 % (k=2)

Certificate No: D1800V2-220_Sep11 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 3.8 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.7 Ω - 3.9 j Ω
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.243 ns	ATC 11107-71-7 ATC 1100-00-00-00-00-00-00-00-00-00-00-00-00	TENTIFICATION TIME TO A TO
	,	1

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 1997

Certificate No: D1800V2-220_Sep11 Page 4 of 8

Date: 15.09,2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 220

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 29.04,2011

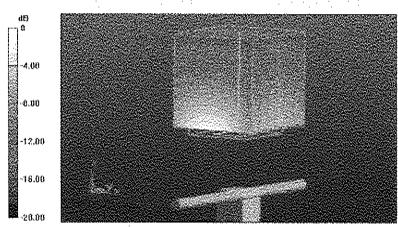
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

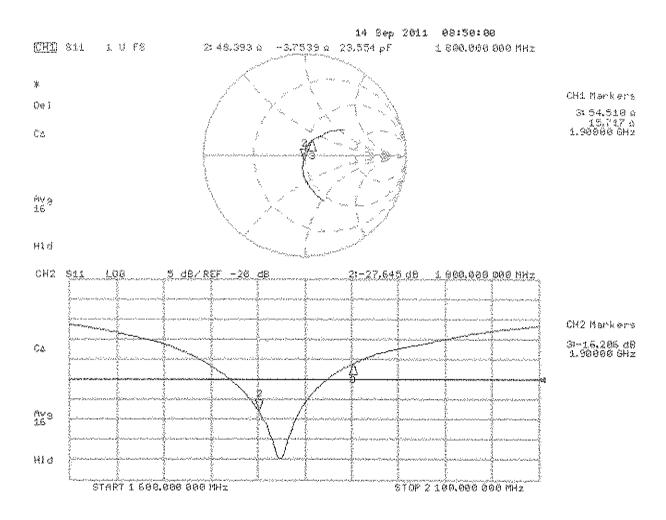
• DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.392 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 16.667 W/kg


SAR(1 g) = 9.41 mW/g; SAR(10 g) = 4.97 mW/g

Maximum value of SAR (measured) = 11.747 mW/g

 $0 \, dB = 11.750 \, mW/g$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.09.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 220

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 29.04.2011

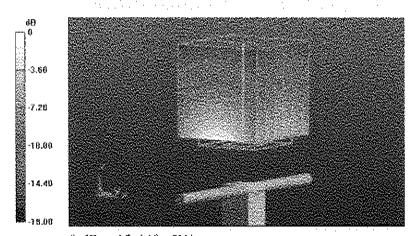
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

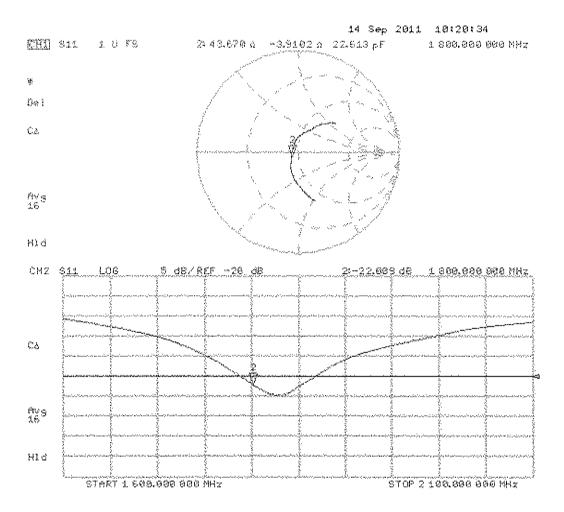
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.304 V/m; Power Drift = -0.0093 dB

Peak SAR (extrapolated) = 17.197 W/kg

SAR(1 g) = 9.86 mW/g; SAR(10 g) = 5.25 mW/g


Maximum value of SAR (measured) = 12.442 mW/g

0 dB = 12.440 mW/g

Certificate No: D1800V2-220_Sep11

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Kyocera USA

Certificate No: D1900V2-5d016_Sep12

Accreditation No.: SCS 108

Object	D1900V2 - SN: 50	d016	
Calibration procedure(s)	QA CAL-05.v8 Calibration proced	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	September 14, 20	01/2	
		onal standards, which realize the physical uni	
		robability are given on the following pages an y facility: environment temperature (22 ± 3)°C	
	F14		
Calibration Equipment used (M&T	TE critical for calibration)		
Calibration Equipment used (M&7	TE critical for calibration)	Cai Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&7 Primary Standards	t	Cat Date (Certificate No.) 05-Oct-11 (No. 217-01451)	Scheduled Calibration Oct-12
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	1D #		
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 U\$37292783	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451)	Oct-12 Oct-12
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 U\$37292783 SN: 5058 (20k)	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530)	Oct-12 Oct-12 Apr-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 U\$37292783 SN: 5058 (20k) SN: 5047.2 / 06327	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533)	Oct-12 Oct-12 Apr-13 Apr-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11)	Oct-12 Oct-12 Apr-13 Apr-13 Dac-12
	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 U\$37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house)	Oct-12 Oct-12 Apr-13 Apr-13 Dac-12 Jun-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dec-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 U\$37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 U\$37390585 \$4206	05-Oct-11 (No. 217-01451) 05-Oct-11 (No. 217-01451) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 30-Dec-11 (No. ES3-3205_Dec11) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	Oct-12 Oct-12 Apr-13 Apr-13 Dac-12 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13

Certificate No: D1900V2-5d016_Sep12 Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multifateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Certificate No: D1900V2-5d016_Sep12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	- MANAGEMENT - MAN
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	40-20AM F1999 184

Head TSL parameters

The following parameters and calculations were applied.

THE FORWARD DATAFFEE OF THE OLD CHARACTER TO THE OL	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	55.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	.e. 20000 FF	19 AT PP 10

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	ALL LAWS AND
SAR measured	250 mW input power	9.79 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SAFt measured	250 mW Input power	5.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

A SAME AND	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	LOCAL ACCOUNT RESPONSABILITY AND STORY
SAR measured	250 mW input power	10.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.1 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.48 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

	AND ADDRESS AND THE CONTRACT OF THE CONTRACT O	A A A MINISTER OF THE STATE OF
	impedance, transformed to feed point	$47.2 \Omega + 4.5 j\Omega$
١	UNIVERSAL CONTROL CONT	NATE OF THE PROPERTY OF THE PR
-	Datum Loca	- 25,2 dB
	Return Loss	LERVINIA PROGRAMMENT AND

Antenna Parameters with Body TSL

ŧ	NAMES OF THE PROPERTY OF THE P	ALLEGATION AND AND AND AND AND AND AND AND AND AN
i	Impedance, transformed to feed point	46.8 Ω + 4.7 jΩ
١		AMPHOREM THE PROPERTY OF THE P
	Return Loss	- 24.6 dB
	100000111	A CONTRACTOR OF THE CONTRACTOR

General Antenna Parameters and Design

		ELIMAN PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERT
	Electrical Delay (one direction)	1.196 ns
1	LICOLITOO, 25 1-27 (ATMOSTER - LOCALIDADE MARIA MA

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

AND	
Manufactured by	SPEAG
A CONTRACTOR OF THE PROPERTY O	The state of the s
Manufactured on	June 04, 2002

Page 4 of 8

Date: 14.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d016

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.37 \text{ mho/m}$; $\epsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;

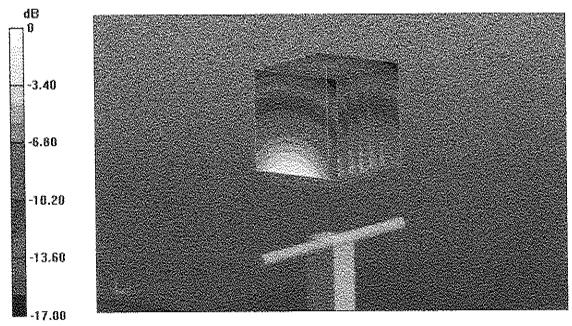
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

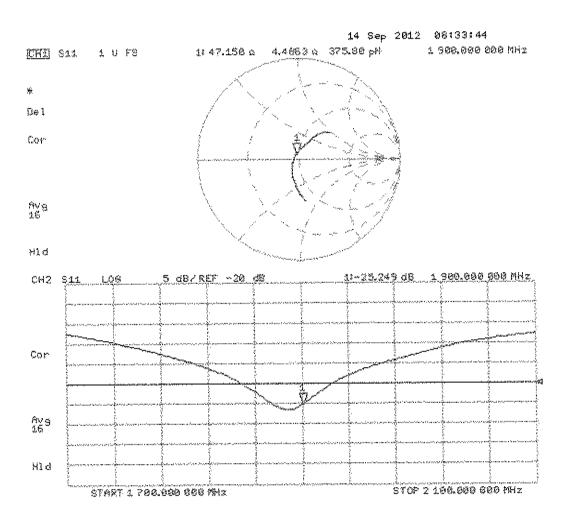
DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.784 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.342 mW/g


SAR(1 g) = 9.79 mW/g; SAR(10 g) = 5.19 mW/g

Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 21.58 dB W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.09.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d016

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;

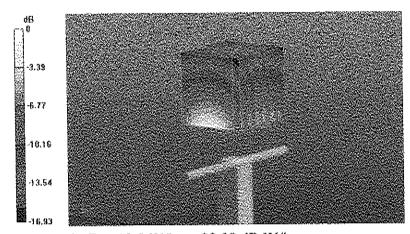
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

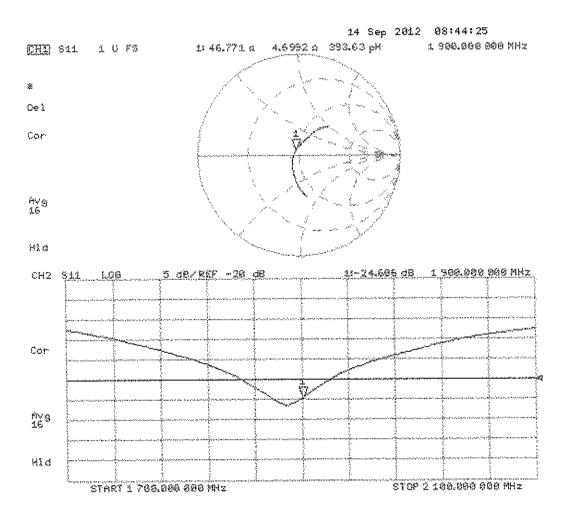
DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.784 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.122 mW/g


SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.48 mW/g

Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 22.28 dB W/kg

impedance Measurement Plot for Body TSL

