

# FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

**FOR** 

TRI BAND CDMA MOBILE PHONE WITH BLUETOOTH FCC MODEL NUMBER: \$2150

FCC ID: V65S2150

**REPORT NUMBER: 12U14613-3** 

**ISSUE DATE: SEPTEMBER 19, 2012** 

Prepared for

KYOCERA COMMUNICATIONS, INC

9520 TOWNE CENTER DRIVE

SAN DIEGO, CA 92121, USA

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888



## **Revision History**

| Rev. | Issue<br>Date | Revisions     | Revised By |
|------|---------------|---------------|------------|
|      | 09/19/12      | Initial Issue | T. LEE     |

# **TABLE OF CONTENTS**

| 1. | AT.         | TESTATION OF TEST RESULTS         | 4  |
|----|-------------|-----------------------------------|----|
| 2. | TE          | ST METHODOLOGY                    | 5  |
| 3. | FA          | CILITIES AND ACCREDITATION        | 5  |
| 4. | CA          | LIBRATION AND UNCERTAINTY         | 5  |
|    | 4.1.        | MEASURING INSTRUMENT CALIBRATION  | 5  |
|    | 4.2.        | SAMPLE CALCULATION                | 5  |
|    | 4.3.        | MEASUREMENT UNCERTAINTY           | 5  |
| 5. | EQ          | UIPMENT UNDER TEST                | 6  |
|    | 5.1.        | DESCRIPTION OF EUT                | 6  |
|    | 5.2.        | DESCRIPTION OF AVAILABLE ANTENNAS | 6  |
|    | 5.3.        | SOFTWARE AND FIRMWARE             | 6  |
|    | 5.4.        | WORST-CASE CONFIGURATION AND MODE | 7  |
|    | 5.5.        | DESCRIPTION OF TEST SETUP         | 7  |
| 6. | TE          | ST AND MEASUREMENT EQUIPMENT      | 9  |
| 7. | RA          | DIATED TEST RESULTS               | 10 |
|    | 7.1.        |                                   |    |
|    | 7.1         |                                   |    |
|    | 7.1<br>7.1  |                                   |    |
|    | 7.1.        | WORST-CASE BELOW 1 GHz            |    |
| 8. | AC          | POWER LINE CONDUCTED EMISSIONS    | 42 |
| ^  | <b>С</b> Г. | TUD DUOTOS                        | 40 |

## 1. ATTESTATION OF TEST RESULTS

COMPANY NAME: KYOCERA COMMUNICATIONS, INC

8611 BALBOA AVENUE SAN DIEGO, CA 92123, U.S.A

**EUT DESCRIPTION:** TRI BAND CDMA MOBILE PHONE WITH BLUETOOTH

MODEL: S2150

**SERIAL NUMBER:** 268435457816728097

**DATE TESTED:** AUGUST 30 - SEPTEMBER 14, 2012

#### **APPLICABLE STANDARDS**

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

TIM LEE STAFF ENGINEER

UL CCS

VIEN TRAN EMC ENGINEER

**UL CCS** 

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <a href="http://www.ccsemc.com">http://www.ccsemc.com</a>.

## 4. CALIBRATION AND UNCERTAINTY

#### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

## 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

#### 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | 3.52 dB     |
| Radiated Disturbance, 30 to 1000 MHz  | 4.94 dB     |

Uncertainty figures are valid to a confidence level of 95%.

## 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is Bluetooth featured Tri Band CDMA Phone that is manufactured by Kyocera Communications, Inc.

## 5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a dipole (internal) antenna, with a maximum gain of -1.0 dBi.

## 5.3. SOFTWARE AND FIRMWARE

The EUT driver software installed in the phone during testing was 0.110CR.

## 5.4. WORST-CASE CONFIGURATION AND MODE

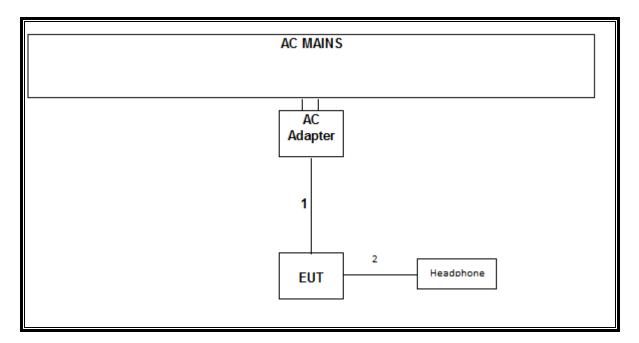
Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

#### 5.5. DESCRIPTION OF TEST SETUP

## **SUPPORT EQUIPMENT**

| Support Equipment List |              |           |               |        |  |  |  |  |  |  |  |
|------------------------|--------------|-----------|---------------|--------|--|--|--|--|--|--|--|
| Description            | Manufacturer | Model     | Serial Number | FCC ID |  |  |  |  |  |  |  |
| AC/DC Adapter          | Kyocera      | SCP-31ADT | 2001          | N/A    |  |  |  |  |  |  |  |
| Headset                | N/A          | N/A       | N/A           | N/A    |  |  |  |  |  |  |  |


#### **I/O CABLES**

|       | I/O CABLE LIST |                    |           |             |        |         |  |  |  |  |  |  |
|-------|----------------|--------------------|-----------|-------------|--------|---------|--|--|--|--|--|--|
| Cable | Port           | # of               | Connector | Cable       | Cable  | Remarks |  |  |  |  |  |  |
| No.   |                | Identical<br>Ports | Туре      | Туре        | Length |         |  |  |  |  |  |  |
|       |                | 1 0113             |           |             |        |         |  |  |  |  |  |  |
| 2     | DC             | 1                  | USB       | Shielded    | 1.5m   | N/A     |  |  |  |  |  |  |
| 3     | Mic            | 1                  | Earphone  | Un-shielded | 1.5m   | N/A     |  |  |  |  |  |  |

#### **TEST SETUP**

The EUT is setup to transmit continuously.

## **SETUP DIAGRAM FOR TESTS**



## 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST            |                        |                  |        |            |  |  |  |  |  |  |  |
|--------------------------------|------------------------|------------------|--------|------------|--|--|--|--|--|--|--|
| Description                    | Manufacturer           | Model            | Asset  | Cal Due    |  |  |  |  |  |  |  |
| Spectrum Analyzer, 26.5 GHz    | Agilent / HP           | E4440A           | C01179 | 2/16/2013  |  |  |  |  |  |  |  |
| Antenna, Bilog, 2 GHz          | Sunol Sciences         | JB1              | C01011 | 3/23/2013  |  |  |  |  |  |  |  |
| Antenna, Horn, 18 GHz          | EMCO                   | 3115             | C00945 | 10/6/2012  |  |  |  |  |  |  |  |
| Preamplifier, 26.5 GHz         | Preamplifier, 26.5 GHz | Agilent / HP     | 8449B  | 11/11/2012 |  |  |  |  |  |  |  |
|                                | Preamplifier, 1300     |                  |        |            |  |  |  |  |  |  |  |
| Preamplifier, 1300 MHz         | MHz                    | Agilent / HP     | 8447D  | 11/11/2012 |  |  |  |  |  |  |  |
| Reject Filter, 2.4-2.5 GHz     | Micro-Tronics          | BRM50702         | N02683 | CNR        |  |  |  |  |  |  |  |
| EMI Test Receiver, 9 kHz-7 GHz | R&S                    | ESCI 7           | T31    | 06/08/2013 |  |  |  |  |  |  |  |
| LISN, 30 MHz                   | FCC                    | LISN-50/250-25-2 | C00626 | 12/13/2012 |  |  |  |  |  |  |  |

## 7. RADIATED TEST RESULTS

## 7.1. LIMITS AND PROCEDURE

## **LIMITS**

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

| Frequency Range (MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit (dBuV/m) at 3 m |
|-----------------------|---------------------------------------|--------------------------------------|
| 30 - 88               | 100                                   | 40                                   |
| 88 - 216              | 150                                   | 43.5                                 |
| 216 - 960             | 200                                   | 46                                   |
| Above 960             | 500                                   | 54                                   |

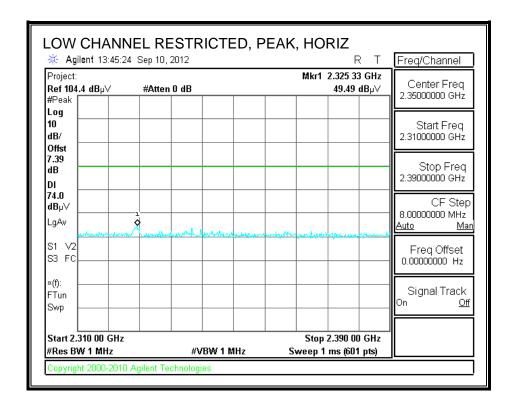
REPORT NO: 12U14613-3 FCC ID: V65S2150

#### **TEST PROCEDURE**

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: September 19, 2012

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

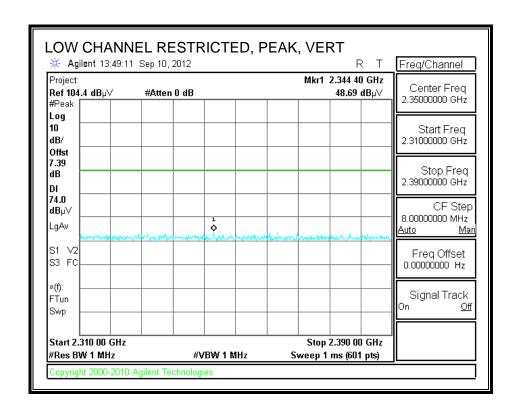
#### 7.1.1. BASIC DATA RATE GFSK MODULATION

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

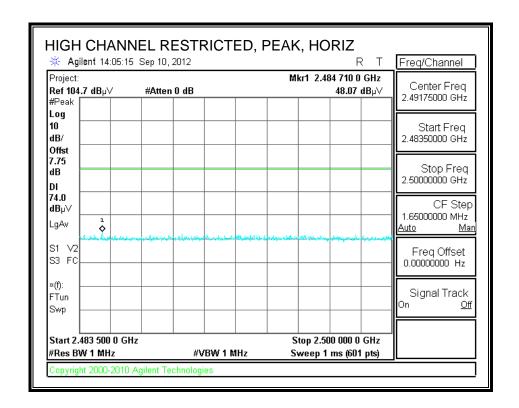


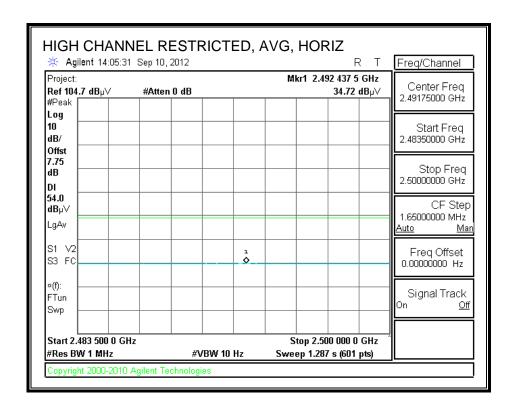
Start 2.310 00 GHz

opyright 2000-2010 Agilent Technologies

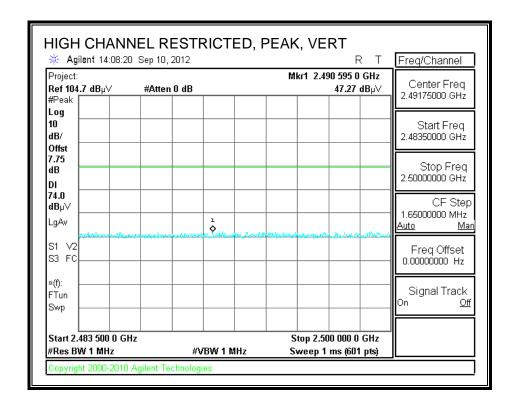

#Res BW 1 MHz

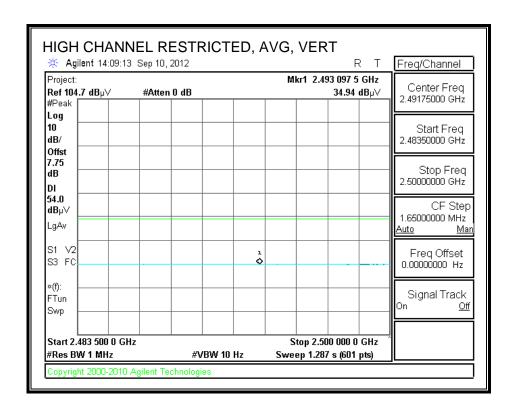
**#VBW 10 Hz** 


Stop 2.390 00 GHz


Sweep 6.238 s (601 pts)

## **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**





## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

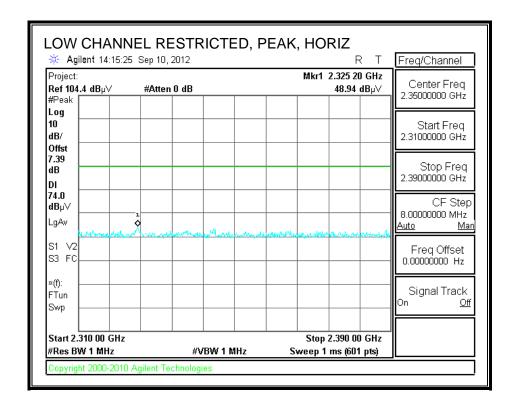
High Frequency Measurement

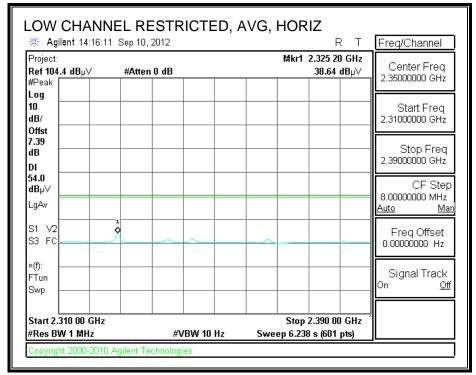
Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tony Date: 09/10/12 Project #: 12U14613 Company: Kyocera 15.247 Test Target:

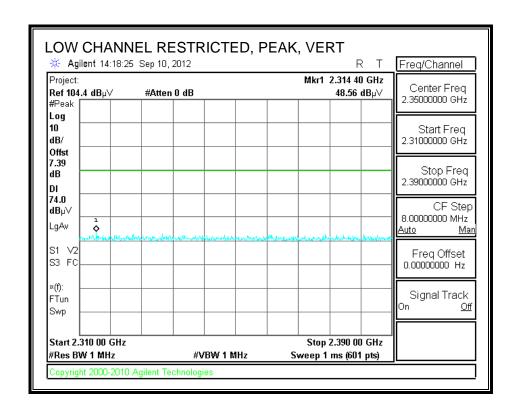
Mode Oper: BT GFSK Tx Continuously

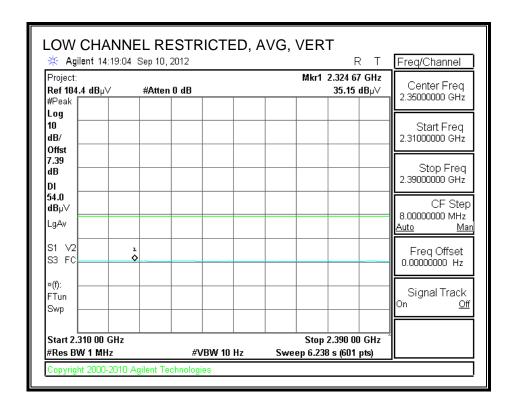
f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter


| f        | Dist     | Read  | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|----------|----------|-------|------|------|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz      | (m)      | dBuV  | dB/m | dB   | dB    | dB     | dΒ   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| ow Char  | nel, 24  | 02MHz |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 4.804    | 3.0      | 42.5  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 48.3   | 74.0   | -25.7  | H         | P      | 103.0    | 321.0       |       |
| 4.804    | 3.0      | 32.6  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 38.4   | 54.0   | -15.6  | H         | A      | 103.0    | 321.0       |       |
| 12.010   | 3.0      | 33.9  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 52.6   | 74.0   | -21.4  | H         | P      | 98.0     | 359.0       |       |
| 12.010   | 3.0      | 21.2  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 40.0   | 54.0   | -14.0  | H         | A      | 98.0     | 359.0       |       |
| 4.804    | 3.0      | 41.3  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 47.1   | 74.0   | -26.9  | V         | P      | 98.0     | 193.0       |       |
| 4.804    | 3.0      | 31.2  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 37.0   | 54.0   | -17.0  | V         | A      | 98.0     | 193.0       |       |
| 12.010   | 3.0      | 33.5  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 52.3   | 74.0   | -21.7  | V         | P      | 187.0    | 72.0        |       |
| 12.010   | 3.0      | 21.2  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 40.0   | 54.0   | -14.0  | V         | A      | 187.0    | 72.0        |       |
| Mid Char | nel, 244 | 1MHz  |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 4.882    | 3.0      | 39.0  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 45.0   | 74.0   | -29.0  | H         | P      | 100.0    | 325.0       |       |
| 4.882    | 3.0      | 28.3  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 34.3   | 54.0   | -19.7  | H         | A      | 100.0    | 325.0       |       |
| 7.323    | 3.0      | 34.4  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 46.7   | 74.0   | -27.3  | H         | P      | 149.0    | 350.0       |       |
| 7.323    | 3.0      | 22.1  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 34.4   | 54.0   | -19.6  | H         | A      | 149.0    | 350.0       |       |
| 12.205   | 3.0      | 32.8  | 39.4 | 12.0 |       | 0.0    | 0.0  | 51.7   | 74.0   | -22.3  | H         | P      | 153.0    | 36.0        |       |
| 12.205   | 3.0      | 20.8  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.7   | 54.0   | -14.3  | H         | A      | 153.0    | 36.0        |       |
| 4.882    | 3.0      | 39.3  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 45.2   | 74.0   | -28.8  | V         | P      | 98.0     | 43.0        |       |
| 4.882    | 3.0      | 29.2  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 35.2   | 54.0   | -18.8  | V         | A      | 98.0     | 43.0        |       |
| 7.323    | 3.0      | 35.1  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 47.4   | 74.0   | -26.6  | V         | P      | 98.0     | 122.0       |       |
| 7.323    | 3.0      | 22.3  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 34.6   | 54.0   | -19.4  | V         | A      | 98.0     | 122.0       |       |
| 12.205   | 3.0      | 32.7  | 39.4 | 12.0 |       | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | V         | P      | 154.0    | 278.0       |       |
| 12.205   | 3.0      | 20.6  | 39.4 | 12.0 |       | 0.0    | 0.0  | 39.5   | 54.0   | -14.5  | V         | A      | 154.0    | 278.0       |       |
| High Cha |          |       |      |      |       |        |      |        |        |        |           |        | •        |             |       |
| 4.960    | 3.0      | 38.1  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 44.2   | 74.0   | -29.8  | H         | P      | 98.0     | 330.0       |       |
| 4.960    | 3.0      | 27.8  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 33.9   | 54.0   | -20.1  | H         | A      | 98.0     | 330.0       |       |
| 7.440    | 3.0      | 35.1  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 47.7   | 74.0   | -26.3  | H         | P      | 161.0    | 178.0       |       |
| 7.440    | 3.0      | 22.3  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 34.8   | 54.0   | -19.2  | H         | A      | 161.0    | 178.0       |       |
| 12.400   | 3.0      | 33.3  | 39.4 | 12.0 |       | 0.0    | 0.0  | 52.3   | 74.0   | -21.7  | H         | P      | 192.0    | 214.0       |       |
| 12.400   | 3.0      | 20.8  | 39.4 | 12.0 |       | 0.0    | 0.0  | 39.8   | 54.0   | -14.2  | H         | A      | 192.0    | 214.0       |       |
| 4.960    | 3.0      | 38.0  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 44.0   | 74.0   | -30.0  | V         | P      | 98.0     | 316.0       |       |
| 4.960    | 3.0      | 27.7  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 33.7   | 54.0   | -20.3  | V         | A      | 98.0     | 316.0       |       |
| 7.440    | 3.0      | 34.4  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 46.9   | 74.0   | -27.1  | v         | P      | 152.0    | 180.0       |       |
| 7.440    | 3.0      | 21.9  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 34.5   | 54.0   | -19.5  | v         | A      | 152.0    | 180.0       |       |
| 12.400   | 3.0      | 32.6  |      | å    | -32.5 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | v         | P      | 183.0    | 155.0       |       |
| 12.400   | 3.0      | 20.6  |      | ۵    | -32.5 | 0.0    | 0.0  |        | 54.0   | -14.4  | v         | A      | 183.0    | 155.0       |       |

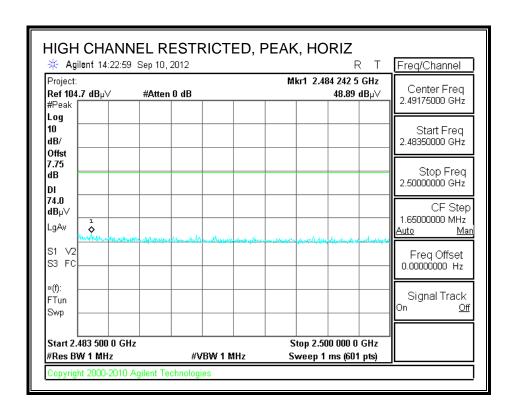

Note: No other emissions were detected above the system noise floor.

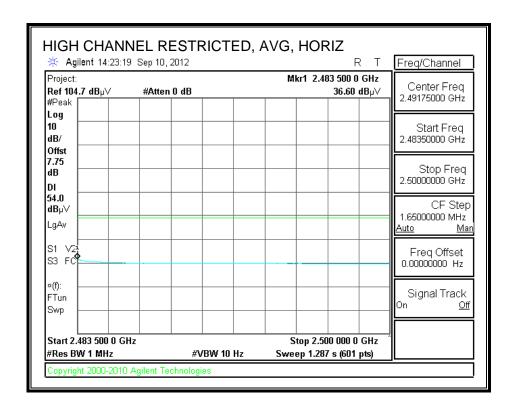
## 7.1.1. ENHANCED DATA RATE QPSK MODULATION


DATE: September 19, 2012

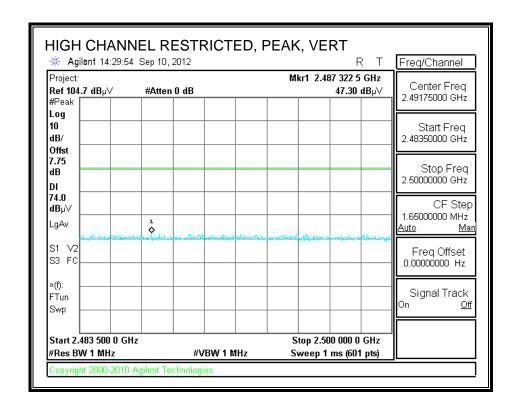

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

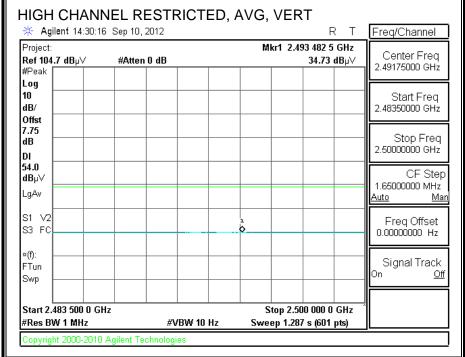






## **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**







## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tony & Kriz Date: Project #: 12u14613 Kyocera Company: 15.247 Test Target:

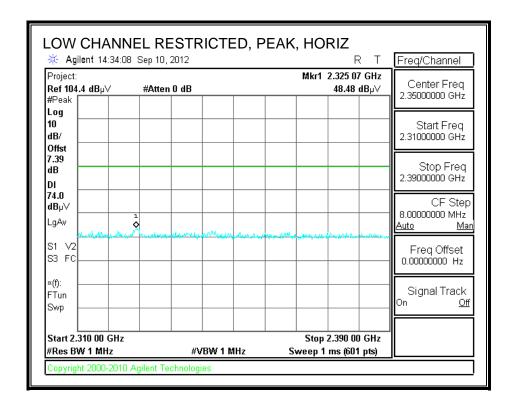
Mode Oper: BT DQPSK Tx Continuously

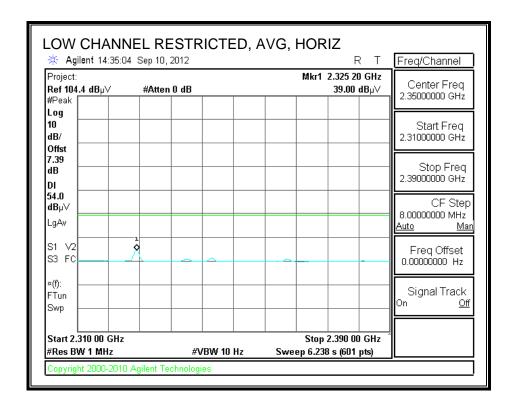
f Measurement Frequency Amp Preamp Gain Average Field Strength Limit 
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field \$trength Limit

 Read
 Analyzer Reading
 Avg
 Average Field \$trength @ 3 m
 Margin vs. Average Limit

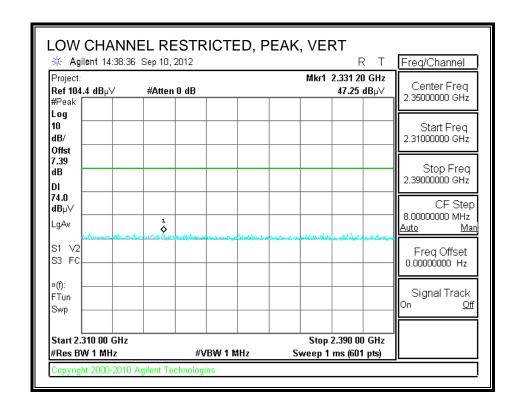
 AF
 Antenna Factor
 Peak
 Calculated Peak Field \$trength
 Margin vs. Peak Limit

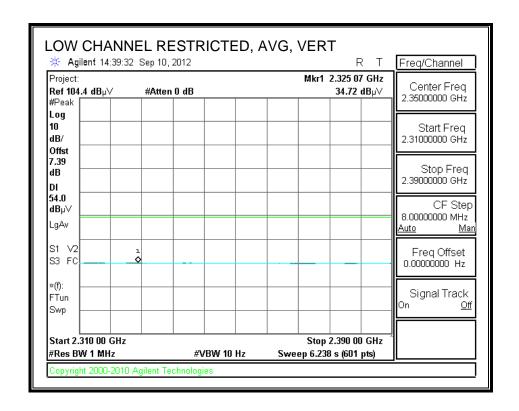
 CL
 Cable Loss
 HPF
 High Pass Filter


| f        | Dist     | Read | AF   | CL   | Amp   | D Corr | Fltr |        |              | _              | Ant. Pol. |        |       | Table Angle | Notes |
|----------|----------|------|------|------|-------|--------|------|--------|--------------|----------------|-----------|--------|-------|-------------|-------|
| GHz      | (m)      | dBuV | dB/m | dΒ   | dB    | dB     | dB   | dBuV/m | dBuV/m       | dB             | V/H       | P/A/QP | cm    | Degree      |       |
| Low Chan |          | ,    |      |      |       |        |      |        |              |                |           |        |       |             |       |
| 4.804    | 3.0      | 39.8 | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 45.6   | 74.0         | -28.4          | H         | P      | 98.0  | 341.0       |       |
| 4.804    | 3.0      | 28.6 | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 34.4   | 54.0         | -19.6          | H         | A      | 98.0  | 341.0       |       |
| 12.010   | 3.0      | 34.0 | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 52.8   | 74.0         | -21.2          | H         | P      | 193.0 | 133.0       |       |
| 12.010   | 3.0      | 21.3 | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 40.0   | 54.0         | -14.0          | H         | A      | 193.0 | 133.0       |       |
| 4.804    | 3.0      | 42.7 | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 48.5   | 74.0         | -25.5          | V         | P      | 129.0 | 41.0        |       |
| 4.804    | 3.0      | 33.9 | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 39.7   | 54.0         | -14.3          | V         | A      | 129.0 | 41.0        |       |
| 12.010   | 3.0      | 33.8 | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 52.6   | 74.0         | -21.4          | V         | A<br>P | 178.0 | 184.0       |       |
| 12.010   | 3.0      | 21.5 | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 40.3   | 54.0         | -13.7          | V         | A      | 178.0 | 184.0       |       |
| Mid Chan | nel, 244 | 1MHz |      |      |       |        |      |        |              |                |           |        |       |             |       |
| 4.882    | 3.0      | 38.7 | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 44.6   | 74.0         | -29.4          | H         | P      | 101.0 | 318.0       |       |
| 4.882    | 3.0      | 28.0 | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 33.9   | 54.0         | -20.1          | H         | A      | 101.0 | 318.0       |       |
| 7.323    | 3.0      | 34.2 | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 46.5   | 74.0         | -27.5          | H         | P      | 135.0 | 98.0        |       |
| 7.323    | 3.0      | 22.1 | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 34.4   | 54.0         | -19.6          | H         | A      | 135.0 | 98.0        |       |
| 12.205   | 3.0      | 32.7 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 51.6   | 74.0         | -22.4          | H         | P      | 150.0 | 357.0       |       |
| 12.205   | 3.0      | 20.7 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.6   | 54.0         | -14.4          | H         | A      | 150.0 | 357.0       |       |
| 4.882    | 3.0      | 39.7 | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 45.6   | 74.0         | -28.4          | V         | P      | 99.0  | 40.0        |       |
| 4.882    | 3.0      | 30.8 | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 36.7   | 54.0         | -17.3          | V         | A      | 99.0  | 40.0        |       |
| 7.323    | 3.0      | 34.8 | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 47.1   | 74.0         | -26.9          | V         | A<br>P | 102.0 | 147.0       |       |
| 7.323    | 3.0      | 22.2 | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 34.5   | 54.0         | -19.5          | V         | A      | 102.0 | 147.0       |       |
| 12.205   | 3.0      | 33.1 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 52.0   | 74.0         | -22.0          | V         | P      | 126.0 | 0.0         |       |
| 12.205   | 3.0      | 20.7 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.6   | 54.0         | -14.4          | V         | A      | 126.0 | 0.0         |       |
| High Cha |          |      |      |      |       |        |      |        |              |                |           |        |       |             |       |
| 4.960    | 3.0      | 36.7 | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 42.8   | 74.0         | -31.2          | H         | P      | 184.0 | 355.0       |       |
| 4.960    | 3.0      | 26.3 | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 32.4   | 54.0         | -21.6          | H         | A      | 184.0 | 355.0       |       |
| 7.440    | 3.0      | 35.0 | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 47.5   | 74.0         | -26.5          | H         | P      | 100.0 | 126.0       |       |
| 7.440    | 3.0      | 22.4 | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 34.9   | 54.0         | -19.1          | H         | A      | 100.0 | 126.0       |       |
| 12.400   | 3.0      | 33.7 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 52.7   | 74.0         | -21.3          | H         | P      | 175.0 | 99.0        |       |
| 12.400   | 3.0      | 20.7 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.7   | 54.0         | -14.3          | H         | A      | 175.0 | 99.0        |       |
| 4.960    | 3.0      | 39.0 | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 45.1   | 74.0         | -28.9          |           | P      | 98.0  | 314.0       |       |
| 4.960    | 3.0      | 29.8 | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 35.9   | 54.0         | -18.1          | V<br>V    | A<br>A | 98.0  | 314.0       |       |
| 7.440    | 3.0      | 34.5 | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 47.0   | 74.0         | -27.0          |           | P      | 139.0 | 26.0        |       |
| 7.440    | 3.0      | 22.3 | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 34.8   | 54.0         | -19.2          | V<br>V    | A      | 139.0 | 26.0        |       |
| 12.400   | 3.0      | 32.2 | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 51.2   | 74.0         | -22.8          | v         | P      | 179.0 | 35.0        |       |
| 12.400   | 3.0      | 20.5 |      | 12.0 |       | 0.0    | 0.0  | 39.5   | 74.0<br>54.0 | -22.6<br>-14.5 | v         | A      | 179.0 | 35.0        |       |

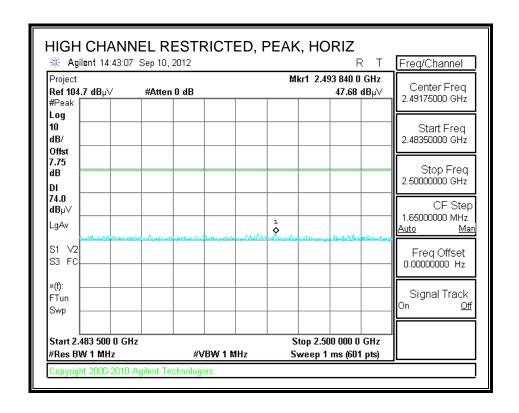

Note: No other emissions were detected above the system noise floor.

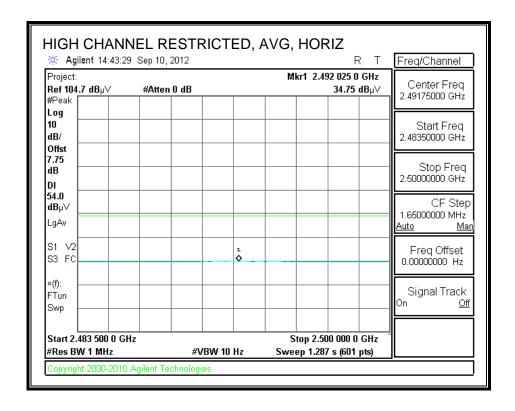
#### 7.1.1. ENHANCED DATA RATE 8PSK MODULATION


DATE: September 19, 2012

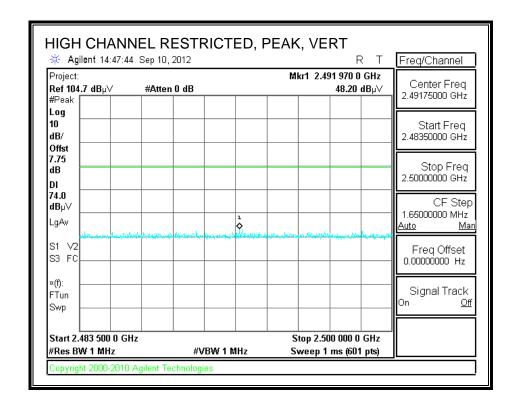

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)







## **RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)**






## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tony & Kris
Date: 09/11/12
Project #: 12u14613
Company: Kyocera
Test Target: 15.247

Mode Oper: BT 8PSK Tx Continuously

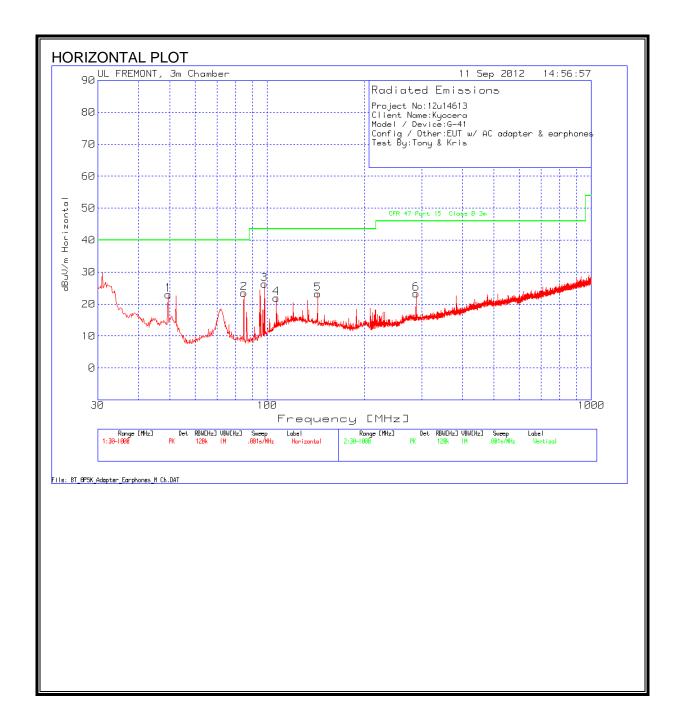
 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

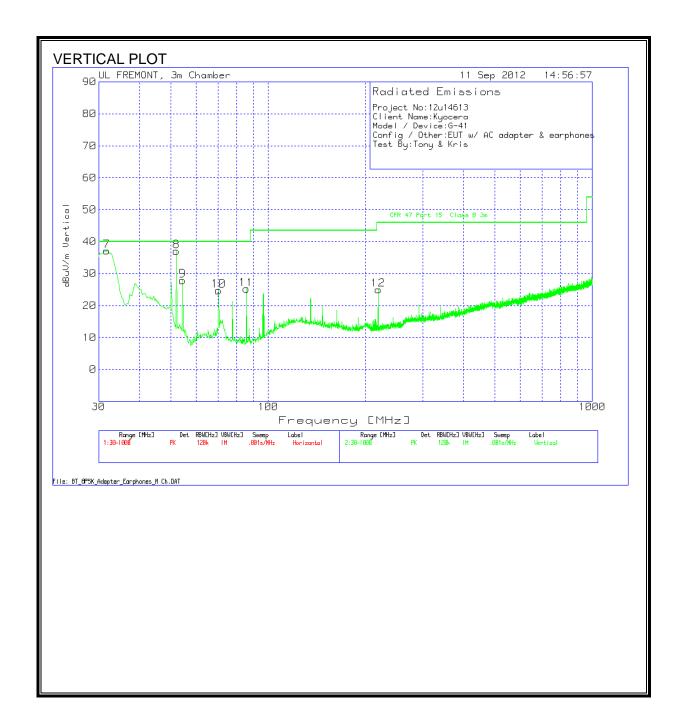
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter


| f        | Dist     | Read  | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|----------|----------|-------|------|------|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz      | (m)      | dBuV  | dB/m | dΒ   | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| ow Char  | nel, 240 | 02MHz |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 4.804    | 3.0      | 41.0  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 46.8   | 74.0   | -27.2  | H         | P      | 101.0    | 321.0       |       |
| 4.804    | 3.0      | 31.8  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 37.7   | 54.0   | -16.3  | H         | A      | 101.0    | 321.0       |       |
| 12.010   | 3.0      | 33.1  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 51.9   | 74.0   | -22.1  | H         | P      | 100.0    | 262.0       |       |
| 12.010   | 3.0      | 21.2  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 40.0   | 54.0   | -14.0  | H         | A      | 100.0    | 262.0       |       |
| 4.804    | 3.0      | 40.2  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 46.0   | 74.0   | -28.0  | V         | P      | 99.0     | 40.0        |       |
| 4.804    | 3.0      | 31.5  | 33.1 | 6.8  | -34.1 | 0.0    | 0.0  | 37.3   | 54.0   | -16.7  | V         | A      | 99.0     | 40.0        |       |
| 12.010   | 3.0      | 33.2  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 52.0   | 74.0   | -22.0  | V         | P      | 142.0    | 205.0       |       |
| 12.010   | 3.0      | 21.3  | 39.4 | 11.9 | -32.5 | 0.0    | 0.0  | 40.1   | 54.0   | -13.9  | v         | A      | 142.0    | 205.0       |       |
| Mid Chan | nel, 244 | 1MHz  |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 4.882    | 3.0      | 38.6  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 44.5   | 74.0   | -29.5  | H         | P      | 98.0     | 318.0       |       |
| 4.882    | 3.0      | 27.7  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 33.6   | 54.0   | -20.4  | H         | A      | 98.0     | 318.0       |       |
| 7.323    | 3.0      | 35.6  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 47.9   | 74.0   | -26.1  | H         | P      | 122.0    | 360.0       |       |
| 7.323    | 3.0      | 22.1  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 34.4   | 54.0   | -19.6  | H         | A      | 122.0    | 360.0       |       |
| 12.205   | 3.0      | 32.8  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 51.7   | 74.0   | -22.3  | H         | P      | 127.0    | 313.0       |       |
| 12.205   | 3.0      | 20.6  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.5   | 54.0   | -14.5  | H         | A      | 127.0    | 313.0       |       |
| 4.882    | 3.0      | 39.1  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 45.0   | 74.0   | -29.0  | V         | P      | 98.0     | 38.0        |       |
| 4.882    | 3.0      | 30.0  | 33.2 | 6.8  | -34.0 | 0.0    | 0.0  | 36.0   | 54.0   | -18.0  | V         | A      | 98.0     | 38.0        |       |
| 7.323    | 3.0      | 34.8  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 47.1   | 74.0   | -26.9  | V         | P      | 107.0    | 128.0       |       |
| 7.323    | 3.0      | 22.3  | 36.3 | 9.1  | -33.1 | 0.0    | 0.0  | 34.6   | 54.0   | -19.4  | V         | A      | 107.0    | 128.0       |       |
| 12.205   | 3.0      | 32.9  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 51.7   | 74.0   | -22.3  | V         | P      | 121.0    | 209.0       |       |
| 12.205   | 3.0      | 20.7  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.6   | 54.0   | -14.4  | V         | A      | 121.0    | 209.0       |       |
| High Cha | nnel, 24 | 80MHz |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 4.960    | 3.0      | 37.9  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 43.9   | 74.0   | -30.1  | H         | P      | 101.0    | 10.0        |       |
| 4.960    | 3.0      | 28.4  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 34.5   | 54.0   | -19.5  | Н         | A      | 101.0    | 10.0        |       |
| 7.440    | 3.0      | 35.0  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 47.6   | 74.0   | -26.4  | H         | P      | 99.0     | 131.0       |       |
| 7.440    | 3.0      | 22.3  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 34.8   | 54.0   | -19.2  | H         | A      | 99.0     | 131.0       |       |
| 12.400   | 3.0      | 33.5  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 52.5   | 74.0   | -21.5  | H         | P      | 119.0    | 228.0       |       |
| 12.400   | 3.0      | 20.7  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 39.7   | 54.0   | -14.3  | H         | A      | 119.0    | 228.0       |       |
| 4.960    | 3.0      | 38.6  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 44.7   | 74.0   | -29.3  | V         | P      | 98.0     | 323.0       |       |
| 4.960    | 3.0      | 29.1  | 33.2 | 6.9  | -34.0 | 0.0    | 0.0  | 35.2   | 54.0   | -18.8  | V         | A      | 98.0     | 323.0       |       |
| 7.440    | 3.0      | 34.7  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 47.3   | 74.0   | -26.7  | V         | P      | 185.0    | 261.0       |       |
| 7.440    | 3.0      | 22.3  | 36.5 | 9.1  | -33.0 | 0.0    | 0.0  | 34.8   | 54.0   | -19.2  | V         | A      | 185.0    | 261.0       |       |
| 12.400   | 3.0      | 33.0  | 39.4 | 12.0 | -32.5 | 0.0    | 0.0  | 52.0   | 74.0   | -22.0  | V         | P      | 180.0    | 131.0       |       |
| 12.400   | 3.0      | 20.9  |      | 12.0 | -32.5 | 0.0    | 0.0  | 39.9   | 54.0   | -14.1  | V         | A      | 180.0    | 131.0       |       |

Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

## 7.1. WORST-CASE BELOW 1 GHz

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



## SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)



## **DATA**

|                   | ocera            |            |                  |                   |        |                           |        |             |          |
|-------------------|------------------|------------|------------------|-------------------|--------|---------------------------|--------|-------------|----------|
| Model / Device:   | :G-41            |            |                  |                   |        |                           |        |             |          |
| Config / Other:F  | EUT w/ AC adapte | r & earphc | ones             |                   |        |                           |        |             |          |
| Test By:Tony & I  | Kris             |            |                  |                   |        |                           |        |             |          |
|                   |                  |            |                  |                   |        |                           |        |             |          |
| Horizontal 30 - 1 | L000MHz          |            |                  |                   |        |                           |        |             |          |
| Test Frequency    | Meter Reading    | Detector   | 25MHz-1GHz Chaml | Antenna T185 (dB) | dBuV/m | CFR 47 Part 15 Class B 3r | Margin | Height [cm] | Polarity |
| 49.5783           | 42.19            | PK         | -27.3            | 8.1               | 22.99  | 40                        | -17.01 | 200         | Horz     |
| 84.8581           | 43.06            | PK         | -27              | 7.4               | 23.46  | 40                        | -16.54 | 300         | Horz     |
| 98.0396           | 43.9             | PK         | -26.9            | 9.3               | 26.3   | 43.5                      | -17.2  | 101         | Horz     |
| 106.7626          | 36.84            | PK         | -26.7            | 11.8              | 21.94  | 43.5                      | -21.56 | 300         | Horz     |
| 143.3993          | 36.82            | PK         | -26.4            | 12.8              | 23.22  | 43.5                      | -20.28 | 200         | Horz     |
| 288.0076          |                  | PK         | -25.2            | 13.3              | 23.32  | 46                        | -22.68 | 101         | Horz     |
| Vertical 30 - 100 | 00MHz            |            |                  |                   |        |                           |        |             |          |
| Test Frequency    | Meter Reading    | Detector   | 25MHz-1GHz Chaml | Antenna T185 (dB) | dBuV/m | CFR 47 Part 15 Class B 3r | Margin | Height [cm] | Polarity |
| 31.7446           | 44.67            | PK         | -27.5            | 20                | 37.17  | 40                        | -2.83  | 100         | Vert     |
| 52.0983           | 57.06            | PK         | -27.3            | 7.3               | 37.06  | 40                        | -2.94  | 100         | Vert     |
| 54.4245           | 48.09            | PK         | -27.2            | 7                 | 27.89  | 40                        | -12.11 | 201         | Vert     |
| 70.3197           | 43.65            | PK         | -27.1            | 8.2               | 24.75  | 40                        | -15.25 | 300         | Vert     |
| 85.6335           | 44.92            | PK         | -27              | 7.3               | 25.22  | 40                        | -14.78 | 100         | Vert     |
| 218.6111          | 40.06            | PK         | -25.7            | 10.6              | 24.96  | 46                        | -21.04 | 201         | Vert     |
| Project No:12u1   | 14613            |            |                  |                   |        |                           |        |             |          |
| Client Name:Ky    | ocera            |            |                  |                   |        |                           |        |             |          |
| Model / Device:   | :G-41            |            |                  |                   |        |                           |        |             |          |
| Config / Other:F  | EUT w/ AC adapte | r & earpho | ones             |                   |        |                           |        |             |          |
| Test By:Tony & I  | Kris             |            |                  |                   |        |                           |        |             |          |
|                   |                  |            |                  |                   |        |                           |        |             |          |

## 8. AC POWER LINE CONDUCTED EMISSIONS

#### **LIMITS**

FCC §15.207 (a)

RSS-Gen 7.2.2

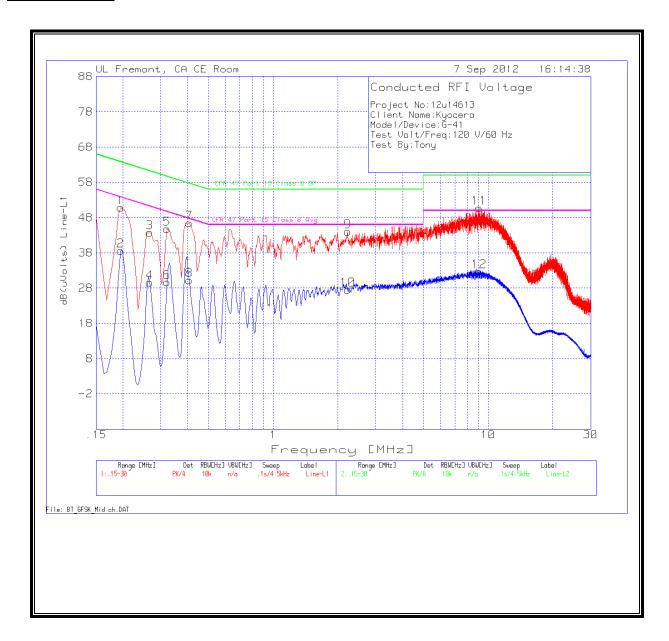
| Frequency of Emission (MHz) | Conducted Limit (dBuV) |            |  |  |  |  |
|-----------------------------|------------------------|------------|--|--|--|--|
|                             | Quasi-peak             | Average    |  |  |  |  |
| 0.15-0.5                    | 66 to 56 °             | 56 to 46 * |  |  |  |  |
| 0.5-5                       | 56                     | 46         |  |  |  |  |
| 5-30                        | 60                     | 50         |  |  |  |  |

Decreases with the logarithm of the frequency.

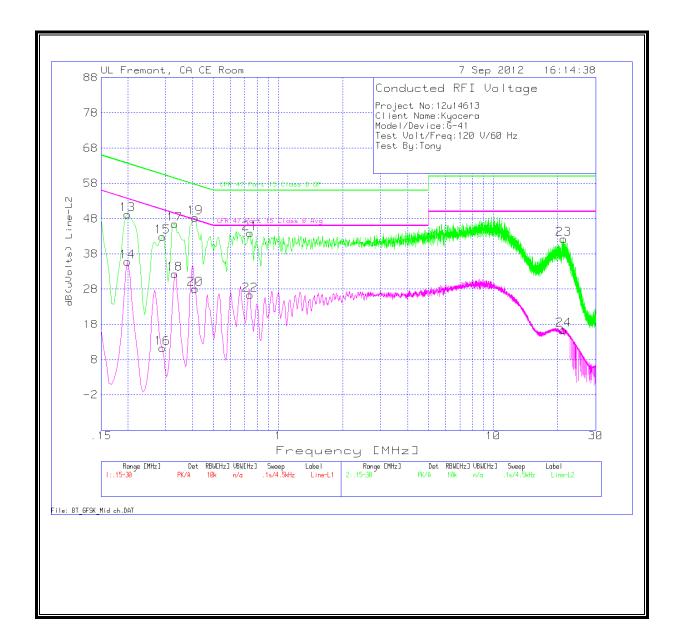
## **TEST PROCEDURE**

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

## **RESULTS**


## **6 WORST EMISSIONS**

| Dunin at No.                          | .1214612  |          |             |           |            |            |           |            |            |
|---------------------------------------|-----------|----------|-------------|-----------|------------|------------|-----------|------------|------------|
| Project No:12u14613                   |           |          |             |           |            |            |           |            |            |
| Client Name:Kyocera Model/Device:G-41 |           |          |             |           |            |            |           |            |            |
| Test Volt/Freq:120 V/                 |           | CO 11-   |             |           |            |            |           |            |            |
|                                       | -         | оо пи    |             |           |            |            |           |            |            |
| Test By:Tor                           | iy        |          |             |           |            |            |           |            |            |
| Line-L1 .15                           | - 30MHz   |          |             |           |            |            |           |            |            |
| Test                                  | Meter     | Detector | T24 IL      | IC Cables | dB(uVolts) | CFR 47     | Margin    | CFR 47     | Margin     |
| Frequency                             |           | Detecto. | L1.TXT      | 1&3.TXT   | ab(avoits) | Part 15    | iviaigiii | Part 15    | iviai giii |
| requency                              | neading   |          | (dB)        | (dB)      |            | Class B    |           | Class B    |            |
|                                       |           |          | (45)        | (45)      |            | QP         |           | Avg        |            |
| 0.195                                 | 50.71     | PK       | 0.1         | 0         | 50.81      | 63.8       | -12.99    |            | _          |
| 0.195                                 |           |          | 0.1         | 0         | 38.63      |            | -         | 53.8       | -15.17     |
| 0.267                                 | 43.68     |          | 0.1         | 0         | 43.78      |            | -17.42    |            | -          |
| 0.267                                 | 29.46     |          | 0.1         | 0         | 29.56      |            | -         | 51.2       | -21.64     |
| 0.321                                 | 44.71     | PK       | 0.1         | 0         | 44.81      | 59.7       | -14.89    |            | -          |
| 0.321                                 | 29.58     |          | 0.1         | 0         | 29.68      |            | -         | 49.7       | -20.02     |
| 0.4065                                | 46.37     | PK       | 0.1         | 0         | 46.47      | 57.7       | -11.23    | -          | _          |
| 0.4065                                | 30.16     | Av       | 0.1         | 0         | 30.26      | -          | -         | 47.7       | -17.44     |
| 2.22                                  | 43.84     | PK       | 0.1         | 0.1       | 44.04      | 56         | -11.96    | -          | -          |
| 2.22                                  | 27.39     | Av       | 0.1         | 0.1       | 27.59      | -          | -         | 46         | -18.41     |
| 9.078                                 | 50.52     | PK       | 0.1         | 0.1       | 50.72      | 60         | -9.28     | -          | -          |
| 9.078                                 | 32.55     | Av       | 0.1         | 0.1       | 32.75      | -          | -         | 50         | -17.25     |
|                                       |           |          |             |           |            |            |           |            |            |
| Line-L2 .15                           | - 30MHz   |          |             |           |            |            |           |            |            |
| Test Freque                           | Meter Rea | Detector | T24 IL L2.T | LC Cables | dB(uVolts) | CFR 47 Pai | Margin    | CFR 47 Par | Margin     |
| 0.1995                                | 49.13     | PK       | 0.1         | 0         | 49.23      | 63.6       | -14.37    | -          | -          |
| 0.1995                                | 35.71     | Av       | 0.1         | 0         | 35.81      | -          | -         | 53.6       | -17.79     |
| 0.2895                                | 42.74     | PK       | 0.1         | 0         | 42.84      | 60.5       | -17.66    | -          | -          |
| 0.2895                                |           |          | 0.1         | 0         | 11.27      |            | -         | 50.5       | -39.23     |
| 0.33                                  |           |          | 0.1         |           | 46.42      | 59.5       | -13.08    | -          | -          |
| 0.33                                  |           | Av       | 0.1         |           |            |            | -         | 49.5       | -17.2      |
| 0.411                                 |           |          | 0.1         |           |            |            | -9.27     | -          | -          |
| 0.411                                 |           |          | 0.1         |           |            |            | -         | 47.6       | -19.57     |
| 0.7395                                |           |          | 0.1         |           |            |            | -12.16    | -          | -          |
| 0.7395                                |           |          | 0.1         |           |            |            | -         | 46         | -19.57     |
| 21.255                                |           |          | 0.3         |           | 42.26      |            | -17.74    |            | -          |
| 21.255                                | 15.93     | Av       | 0.3         | 0.2       | 16.43      | -          | -         | 50         | -33.57     |

#### **LINE 1 RESULTS**



#### **LINE 2 RESULTS**

