

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

RF Emissions Test Report

FCC Part 15.247

For

Kyocera Corporation c/o Kyocera Communication Inc.

Product:	Dual-Band CDMA Phone
Model:	M9300

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

TABLE OF CONTENTS

1	SUMMARY OF TESTING	4
2	EQUIPMENT UNDER TEST INFORMATION	4
3	TEST FACILITIES	5
4	TEST SETUP	5
-	PEAK OUTPUT POWER 5.1 Test Configuration 5.2 Results and Limits:	6
-	20 DB BANDWIDTH 6.1 Test Configuration 6.2 20dB Bandwidth Plots and Results	. 10
-	CARRIER FREQUENCY SEPARATION 7.1 Test Configuration 7.2 Results: Carrier Frequency	. 14
	NUMBER OF HOPPING FREQUENCIES 3.1 Test Configuration 3.2 Results: Number of Hopping Frequencies	. 15
g	TIME OF OCCUPANCY (DWELL TIME) 9.1 Test Configuration 9.2 Results: Dwell Time	. 17
1	BANDEDGE 10.1 Test Configuration 10.2 Results: Bandedge	. 19
1	SPURIOUS RF CONDUCTED EMISSIONS 11.1 Test Configuration 11.2 Results: Conducted Spurious Emissions	. 26
	AC POWER LINE CONDUCTED EMISSIONS 12.1 Test Configuration & Results	
	RADIATED EMISSIONS	
14	TEST EQUIPMENT	. 30

Applicant:KyoceraFCC ID:V65M9300Report #:CT-M9300-15C-1210-R0

ATTESTATION

The tested device complies with the requirements in respect of all parameters subject to the test.

The test results and statements relate only to the items tested.

The test equipment used was suitable for the tests performed and within manufacturer's published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Product:	Dual-Band CDMA Cellular Phone with Bluetooth+EDR
Model #:	M9300
FCC ID:	V65M9300
Tested in accordance with:	FCC Part 15.247
Test performed by:	Comptest Services LLC
Test Requested by:	KYOCERA Corporation
	C/o KYOCERA Communication Inc
	8611 Balboa Avenue
	San Diego, CA92121
Date of Test:	December 21-22, 2010

Responsible Engineer

Benjamin Nguyen

Benjamin Nguyen Test Engineer Reviewed and approved by:

Tammy To Quality Manager

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

1 SUMMARY OF TESTING

Section #	Rule Part	Test Description	Verdict
4	FCC § 15.247 b1, IC RSS-210 §A8.4 (2)	Peak Output Power	Pass
5	FCC § 15.247 a1, IC RSS-210 §6.2.2(o) a1	20 dB Bandwidth	Pass
6	FCC § 15.247 a1, IC RSS-210 §A8.1(2)	Carrier Frequency Separation	Pass
7	FCC § 15.247 a1 iii, IC RSS-210 §A8.1 (4)	Number of Hopping Frequencies	Pass
8	FCC § 15.247 a1 iii, § 15.247 f, IC RSS-210 §A8.1 (4)	Time of Occupancy	Pass
9	FCC § 15.247 d, IC RSS-210 §A8.5	Band-edge Compliance of Conducted Emissions	Pass
10	FCC § 15.247 d, IC RSS-210 §A8.5	Spurious RF Conducted Pass Emissions	
11	11 FCC § 15.107 § 15.207, IC RSS-210 §6.6 AC Power Line Conducted Emissions		Pass
12	FCC § 15.109, § 15.209, IC RSS-210 §A2.9(2)	Spurious Radiated Emissions	Pass

2 EQUIPMENT UNDER TEST INFORMATION

EUT Serial Number:	9300B185
Туре:	[] Prototype, [X] Pre-Production, [] Production
Equipment Category:	Portable
TX Frequency (MHz):	2402 to 2480
Channel Numbers:	79
Channel Spacing (MHz):	1
Bluetooth version:	□ 1.1 □ 1.2 □ 2.0 ⊠ 2.0 + EDR
Modulation:	Frequency Hopping Spread Spectrum (FHSS)
Max. Output Power (dBm)	5.18 dBm
Antenna:	Internal
Antenna Gain (dBi):	-1.0 (Peak)

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

3 TEST FACILITIES

The test sites and measurement facilities used to collect data are located at 10300 Campus Point Drive San Diego, CA 92121, USA

4 TEST SETUP

The Bluetooth RF output of the equipment under test (EUT) was connected to the input of the spectrum analyzer through a RF cable with a specialized RF connector. The amplitude of the spectrum analyzer is corrected for the cable insertion loss and any other applicable losses. A fully charged battery was used as power supply voltage.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

5 PEAK OUTPUT POWER

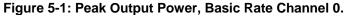
5.1 Test Configuration

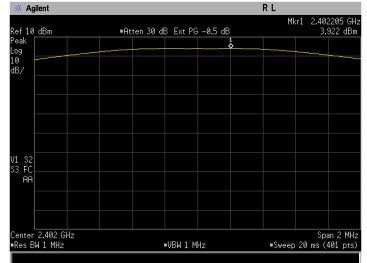
FCC: § 15.247 b1

IC: RSS-210 §A8.4 (2)

The Bluetooth transmitter was enabled at low, mid and high channels of separately to investigate the peak output power for each channel.

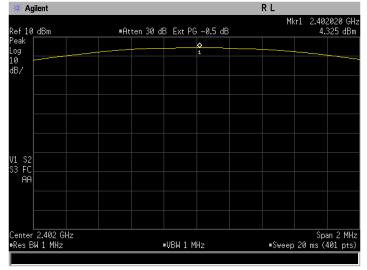
Frequencies of Interest: Spectrum was investigated from 2400 MHz – 2483.5 MHz.

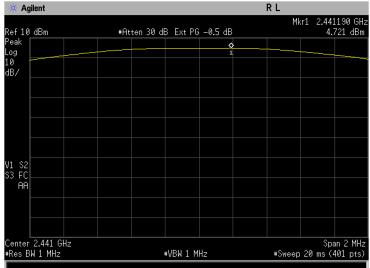

Limits: < 1 watt (for systems with at least 75 hopping channels)

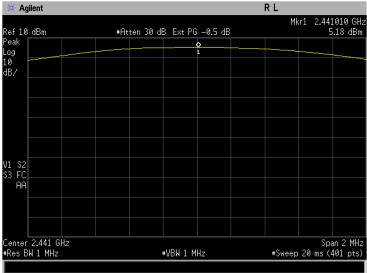

5.2 Results and Limits:			
Figure	Channel	Modulation	Results
5-1		Basic Rate	2.12 dBm
5-1a	0	EDR DQPSK	3.92 dBm
5-1b		EDR D8PSK	4.33 dBm
5-2		Basic Rate	2.93 dBm
5-2a	39	EDR DQPSK	4.72 dBm
5-2b		EDR D8PSK	5.18 dBm
5-3		Basic Rate	2.82 dBm
5-3a	78	EDR DQPSK	4.54 dBm
5-3b		EDR D8PSK	4.98 dBm

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

🔆 Agilent					RL			
Ref 10 dBm	#At	ten 30 d	B Ext PG	-0.5 dB	Mkr1 2.402060 GHz 2.12 dBm			
Peak Log								
10 dB/								
V1 S2 S3 FC								
AA								
Center 2.402 GHz #Res BW 1 MHz			∗VBW 1 M	Hz	#Sweep	Spa 20 ms (4	an 2 MHz 401 pts)	

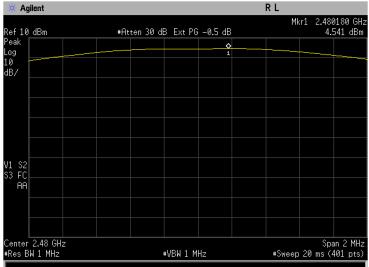



Figure 5-1b: Peak Output Power, EDR D8PSK Channel 0.


Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

🔆 Agilent					RL		
Ref 10 dBm	#At	ten 30 di	B Ext PG	i –0.5 dB	M	kr1 2.44: 2.	1140 GH: 926 dBm
Peak .og				1 \$			
.0 IB/							
/1 \$2 3 FC							
AA							
Center 2.441 GHz Res BW 1 MHz			#VBW 1 M	Hz	#Sweep	Sp: 20 ms (4	an 2 MHz 401 pts)




© 2010 Comptest Services LLC Page 8 of 30 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

🔆 Agilent					RL		
Ref 10 dBm	#At	ten 30 di	B Ext PG	–0.5 dB	M	(r1 2.48) 2.	0175 GH: 822 dBm
Peak .og				1 \$			
.0 IB/							
/1 \$2 53 FC							
AA							
Center 2.48 GHz Res BW 1 MHz			#VBW 1 M	Hz	#Sweep	Sp: 20 ms (-	an 2 MH: 401 pts)

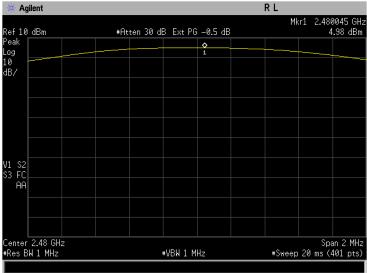


Figure 5-3b: Peak Output Power, EDR D8PSK Channel 78.

© 2010 Comptest Services LLC Page 9 of 30 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

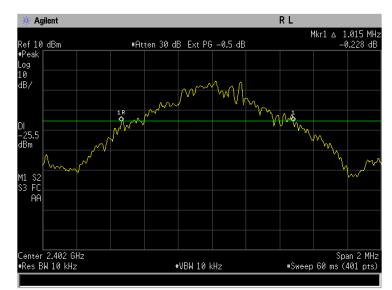
Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

6 20 DB BANDWIDTH

6.1 Test Configuration

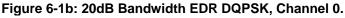
FCC: § 15.247 a1

IC: RSS-210 §6.2.2(o) a1


The Bluetooth transmitter was enabled at low, mid, high channels and at each supporting modulation scheme separately to investigate the 20dB-bandwidth for each channel. Delta marker on the spectrum analyzer was moved from the center frequency until –20dBc to measure the 20dB-bandwidth.

Frequencies of Interest: Spectrum was investigated from 2402 MHz – 2480 MHz.

6.2 20dB Ban	6.2 20dB Bandwidth Plots and Results					
Figure	Channel	Modulation	Results			
6-1a		Basic Rate	1.02 MHz			
6-1b	0	EDR DQPSK	1.28 MHz			
6-2c		EDR D8PSK	1.21 MHz			
6-2a		Basic Rate	915 kHz			
6-2b	39	EDR DQPSK	1.28 MHz			
6-2c		EDR D8PSK	1.22 MHz			
6-3a		Basic Rate	955 kHz			
6-3b	78	EDR DQPSK	1.26 MHz			
6-3c		EDR D8PSK	1.22 MHz			

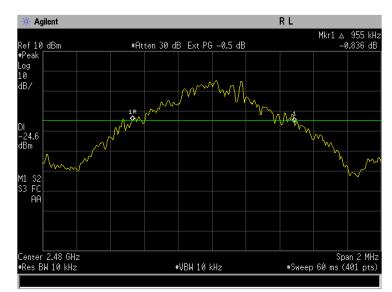


Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0



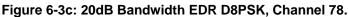
© 2010 Comptest Services LLC Page 11 of 30 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0



© 2010 Comptest Services LLC Page 12 of 30 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Figure 6-2b: 20dB Bandwidth EDR DQPSK, Channel 39.


Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

© 2010 Comptest Services LLC Page 13 of 30 Bluetooth Report This report shall not be reproduced except in full, without the written consent of CompTest Services LLC.

Figure 6-3b: 20dB Bandwidth EDR DQPSK, Channel 78.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

CARRIER FREQUENCY SEPARATION

7.1 Test Configuration

FCC: § 15.247 a1

IC: RSS-210 §A8.1(2)

The Bluetooth transmitter was set in hopping mode to investigate the carrier frequency separation between mid-channel and its adjacent channels. The carrier frequency separation is independent of modulation and packet length (DH1, DH3, etc.).

Limits:

a) \geq 25 kHz or 20 dB Bandwidth, whichever is greater

b) For FH systems operating in 2400-2483.5MHz and with output power less than 125mW the carrier frequency separation should be greater than 25kHz or 2/3 of 20dB Bandwidth.

7.2 Results: Carrier Frequency						
Figure	Frequency Separation	Limits > 2/3 of 20 dB Bandwidth	Result			
7	1.005 GHz	853 kHz (2/3)*1.28 MHz = 853.3 kHz	Pass			

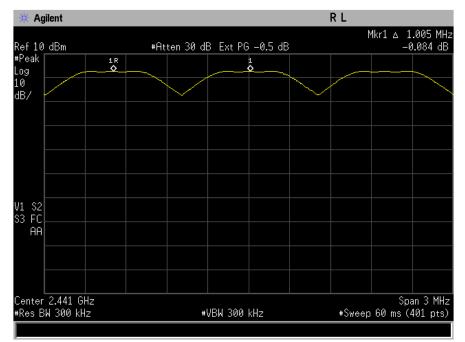


Figure 7: Carrier Frequency Separation between channels 38, 39 (mid-channel) & 40.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

8 NUMBER OF HOPPING FREQUENCIES

8.1 Test Configuration

FCC: § 15.247 a1 iii

IC: RSS-210 §A8.1 (4)

The Bluetooth transmitter was set in hopping mode to investigate the number of hopping frequencies. The number of frequency hopping is independent of modulation and packet length (DH1, DH3, etc.).

Limits:

At least 15 non-overlapping channels

8.2 Results: Number of Hopping Frequencies			
Figure	Channel	Plot Description	Results
8a	Hopping	Number of Hopping Frequencies (Channels 0-39)	79
8b	Number of Hopping Frequencies (Channels 39-78)		(Channels 0-78)
Comments: Pass			

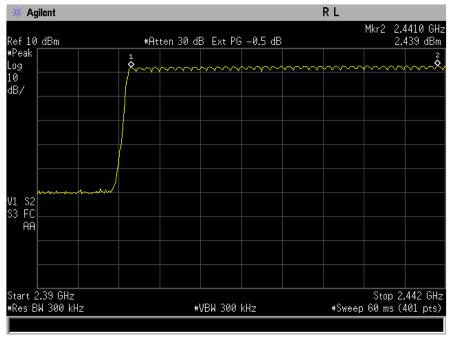


Figure 8a: Number of Hopping Frequencies (Channels 0-39).

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

🔆 Agilent			RL	
Ref 10 dBm	#Atten 30 d	B Ext PG –0.5 dB		Mkr1 2.4411 GHz 2.487 dBm
#Peak 1 Log	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
10 dB/				
V1 S2				hhm
S3 FC				
Start 2.44 GHz #Res BW 300 kHz	#	VBW 300 kHz	#Sweep	Stop 2.485 GHz 60 ms (401 pts)

Figure 8b: Number of Hopping Frequencies (Channels 39-78).

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

9 TIME OF OCCUPANCY (DWELL TIME)

9.1 Test Configuration

FCC: § 15.247 a1 iii, § 15.247 f

IC: RSS-210 §A8.1 (4)

The Bluetooth transmitter was set in hopping mode to capture one of the transmissions of mid-channel. Mid-channel (CH 39) was measured here.

Comments:

The dwell time is independent of modulation and packet length (DH1, DH3, etc.).

According to the Bluetooth Core Specification v1.1, we have 1600 hops in a second for a one slot packet type. One frequency hop lasts 625 μ s; this increment is called a time slot. In a period of 31.6 seconds, the time of occupancy for any given channel is calculated as follows:

Duration of one transmission*(1600 hops/sec)/(No. of time-slots)/(79 channels)*31.6 sec

For a DH1 (1 time-slot) packet type, ideally the duration of one transmission is 625 μ s. Therefore, the dwell time is given by:

 $625 \ \mu s^{1}600/s/(1 \ time-slot)/79^{3}1.6 \ s= 0.4 \ s.$

Spectrum Analyzer Parameters:

The measurement is conducted with zero span centered at mid-channel (2441 MHz) with sweep time sufficient enough to capture one transmission (in this case, \geq 625 µs).

Limits:

 \leq 0.4 s (in a period of 31.6 s)

9.2 Results: Dwell Time		
Figure	Channel	Results
9 Hopping 0.2387s		0.2387s
Comments: PASS		

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

🔆 Agilent					RL		
ef 10 dBm	#Atten 30 dE	8 Ext PG	-0.5 dB	3		Mkr1 ∆	µ 373.7 0.437 dB
Peak og							
0 B/							
1R Ø			^1				
man and a second			/	~~~	~~~	~~~~	
11 S2 3 LS							
AA							
Center 2.441 GHz Wes BW 3 MHz	#	VBW 3 MI	Ηz		Swee	p1ms(Span 0 Hz (100 pts)

Figure 9: Duration of one transmission (Channel 39).

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

10 BANDEDGE

10.1 Test Configuration

FCC:	§ 15.247 d	

IC: RSS-210 §A8.5

The Bluetooth RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low and high channels of Bluetooth transmitter were enabled separately to investigate the band-edge compliance of conducted emissions. To ensure the band-edge compliance when the channels are hopping, measurements were also conducted at low and high channels in this mode. A fully charged battery was used as supply voltage

Frequencies of Interest: Spectrum was investigated from 2400 MHz - 2483.5 MHz.

Limits: ≤ -20 dBc

In any 100kHz band, the highest radio frequency power outside the band (2400-2483.5 MHz) is measured to be at least 20 dB below the desired power of intentional radiator within the band.

10.2 Resul	ts: Bandedge			
Figure	Channel/Edge	Modulation	Plot Description	Results
10-1a		Basic Rate	Hopping disabled	-53.16 dBc
10-1b		Dasic Nate	Hopping enabled	-53.24 dBc
10-2a	0 Low Band Edge	EDR DQPSK	Hopping disabled	-51.51 dBc
10-2b	0 Low Band Edge	EDR DQF3R	Hopping enabled	-53.00 dBc
10-3a		EDR D8PSK	Hopping disabled	-51.01 dBc
10-3b		EDR DOP SR	Hopping enabled	-53.48 dBc
10-4a		Basic Rate	Hopping disabled	-54.39 dBc
10-4b		Dasic Rale	Hopping enabled	-55.08 dBc
10-5a	78 High Band Edge	EDR DQPSK	Hopping disabled	-53.39 dBc
10-5b	70 Thigh Ballu Euge	EDR DQF3K	Hopping enabled	-54.85 dBc
10-6a		EDR D8PSK	Hopping disabled	-54.54 dBc
10-6b		LER DOP SR	Hopping enabled	-55.62 dBc

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

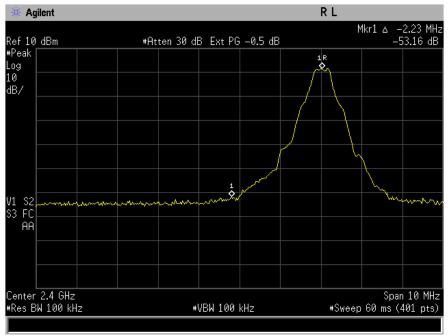


Figure 10-1a: Basic Rate Low band edge with hopping disabled.

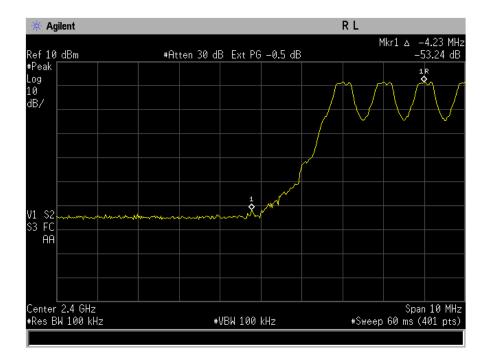


Figure 10-1b: Basic Rate Low band edge with hopping enabled.

Applicant:	Kyocera		
FCC ID:	V65M9300		
Report #:	CT-M9300-15C-1210-R0		

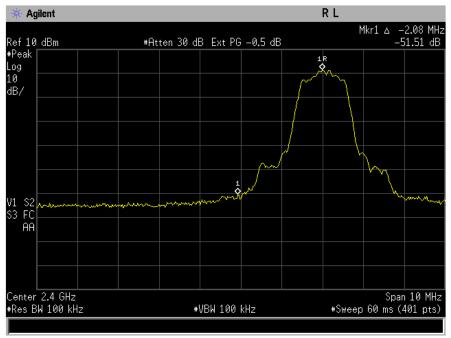


Figure 10-2a: EDR DQPSK Low band edge with hopping disabled.

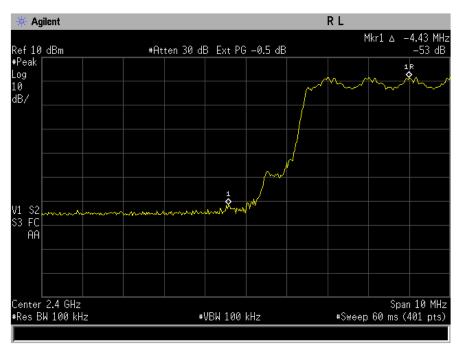


Figure 10-2b: EDR DQPSK Low band edge with hopping enabled.

Applicant:	Kyocera		
FCC ID:	V65M9300		
Report #:	CT-M9300-15C-1210-R0		

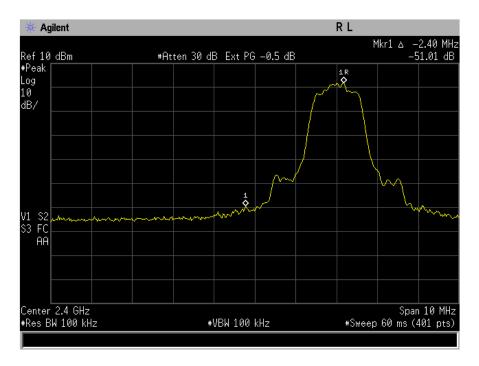


Figure 10-3a: EDR D8PSK Low band edge with hopping disabled.

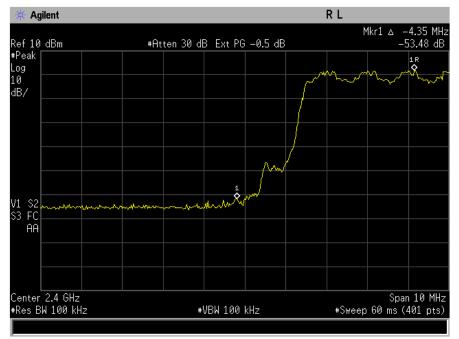


Figure 10-3b: EDR D8PSK Low band edge with hopping enabled.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

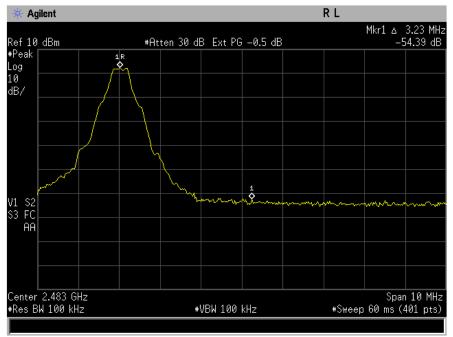


Figure 10-4a: Basic Rate High band edge with hopping disabled.

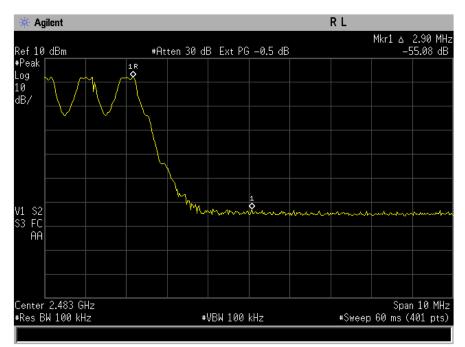


Figure 10-4b: Basic Rate High band edge with hopping enabled.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

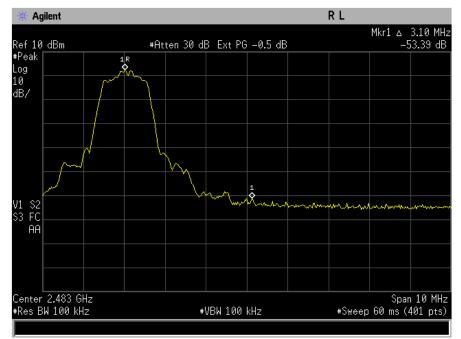


Figure 10-5a: EDR DQPSK High band edge with hopping disabled.

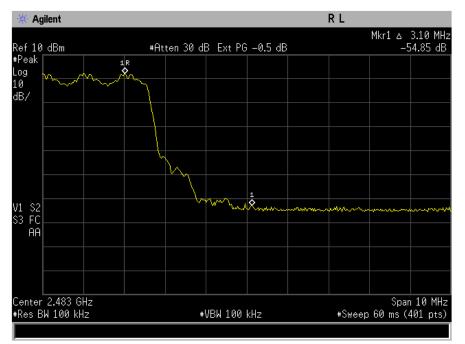


Figure 10-5b: EDR DQPSK High band edge with hopping enabled.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

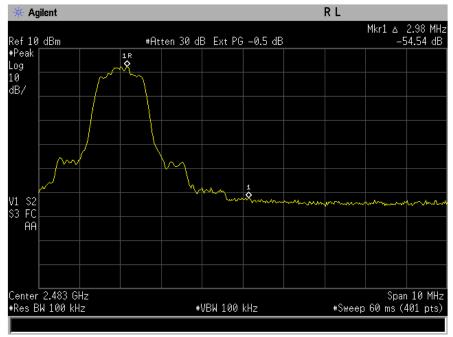


Figure 10-6a: EDR D8PSK High band edge with hopping disabled.

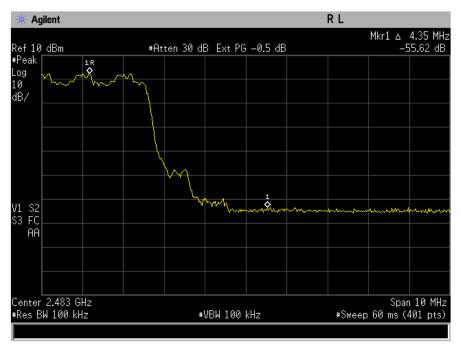


Figure 10-6b: EDR D8PSK High band edge with hopping enabled.

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

11 SPURIOUS RF CONDUCTED EMISSIONS

11.1 Test Configuration

FCC: § 15.247 d

IC: RSS-210 §A8.5

The Bluetooth RF output port of the EUT was directly connected to the input of the spectrum analyzer with sufficient attenuation. Subsequently, the low, mid and high channels of Bluetooth transmitter were enabled separately and the frequency spectrum was investigated for any spurious emissions. A fully charged battery was used as supply voltage.

Frequencies of Interest: Spectrum was investigated from 9kHz – 25 GHz.

Limits: <-20 dBc

11.2 R	11.2 Results: Conducted Spurious Emissions			
Figure	Figure Channel Plot Description		Results	
11-1a	0	Conducted spurious emissions, 9kHz to 2.7GHz	-56.44 dBc	
11-1b	0	Conducted spurious emissions, 2.7GHz to 25GHz	-50.44 dBC	
11-2a	39	Conducted spurious emissions, 9kHz to 2.7GHz	-57.54 dBc	
11-2b		Conducted spurious emissions, 2.7GHz to 25GHz		
11-3a	78	Conducted spurious emissions, 9kHz to 2.7GHz	-57.12 dBc	
11-3b	70	Conducted spurious emissions, 2.7GHz to 25GHz		

Comments:

Spurious RF Conducted Emission testing was performed on the modulation that has the highest conducted power in comparison with the other modulation.

Applicant:	Kyocera	
FCC ID:	V65M9300	
Report #:	CT-M9300-15C-1210-R0	

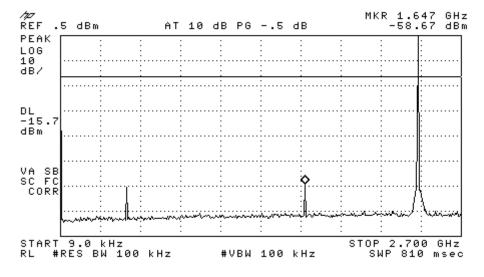


Figure 11-1a: Conducted Spurious Emissions (CH 0).

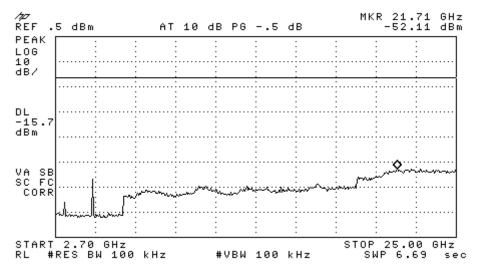
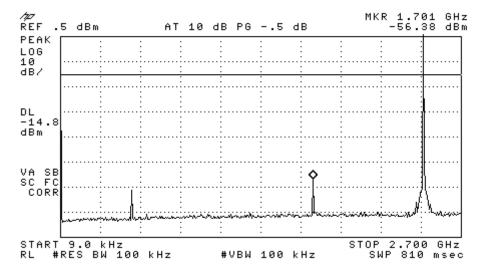
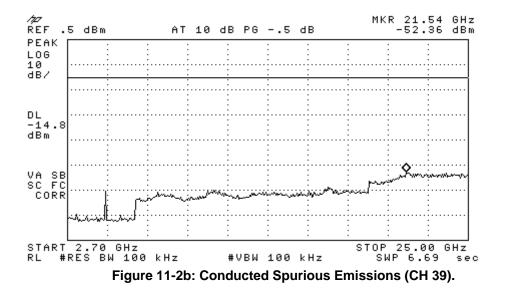
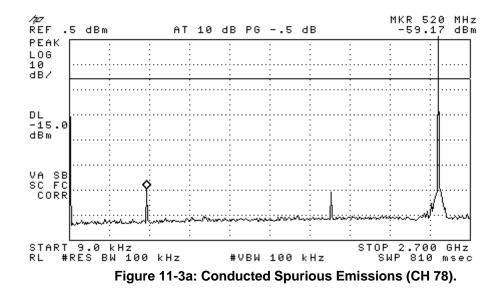
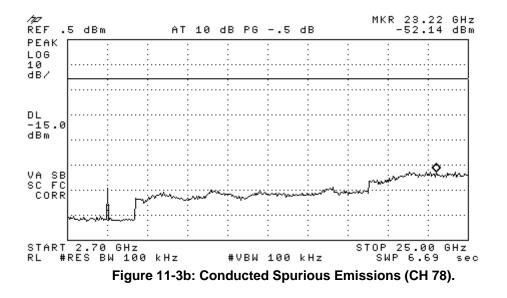


Figure 11-1b: Conducted Spurious Emissions (CH 0).

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0


Figure 11-2a: Conducted Spurious Emissions (CH 39).

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

Applicant:	Kyocera
FCC ID:	V65M9300
Report #:	CT-M9300-15C-1210-R0

12 AC POWER LINE CONDUCTED EMISSIONS

12.1 Test Configuration & Results

FCC: § 15.107 § 15.207

IC: RSS-210 §6.6

See separate report

13 RADIATED EMISSIONS

13.1 Test Configuration & Results

FCC: § 15.109 § 15.209

IC: RSS-210 §A2.9 (2)

See separate report

14 TEST EQUIPMENT

The test equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

Description	Manufacturer	Model No.	Serial No.	Cal Due Date
Spectrum Analyzer	Hewlett Packard	8593EM	3710A00203	06/09/12
Spectrum Analyzer	Agilent	E4405B	US41441217	05/26/12