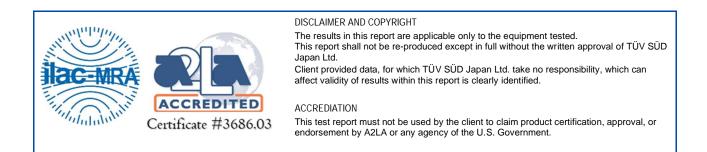
Report on the RF Testing of:

KYOCERA Corporation Mobile Phone, Model: KC-T304C FCC ID: V65KC-T304C

In accordance with FCC Part15 Subpart E (DFS)


Prepared for: KYOCERA Corporation Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-21259-0

SIGNATURE			
	Kiroak Sug	uly	
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Hiroaki Suzuki	Deputy Manager of RF Group	Approved Signatory	2021,12,17
Hiroaki Suzuki		Approved Signatory	2021.12.

EXECUTIVE SUMMARY – Result: Complied A sample of this product was tested and the result above was confirmed in accordance with FCC Part15 Subpart E.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 www.tuv-sud.com/ja-jp

TÜV SÜD Japan Ltd.

TÜV®

Contents

1	Summary of Test	3
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Modification history of the test report	3 3 3 3 3 3
2	Equipment Under Test	4
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	EUT information A Modification to the EUT A Variation of family model(s) B Description of EUT B EUT Maximum Conducted Power B Transmit Power Control (TPC) B Statement of Maunfacturer B U-NII DFS Rule Requirements B Parameters of DFS Test Signals 10	6 6 7 7 8 8
3	Configuration of Equipment1	1
3.1 3.2	Equipment used	
4	Test Result12	2
4.1 4.2 4.3 4.4	DFS Detection Threshold Levels	4 6
5	Measurement uncertainty2	2
6	Laboratory Information	3
Appendix	x A. Test Equipment24	4

1 Summary of Test

1.1 Modification history of the test report

Docur	nent Number	Modification History	Issue Date
JPD-TR	-21259-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart E FCC 14-30

1.3 Test methods

ANSI C63.10-2013 KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 KDB905462 D03 UNII Clients Without Radar Detection New Rules v01r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
KDB905462 D02 (8.2)	DFS Detection Threshold Levels	Radiated	N/A	Note 1
KDB905462 D02 (7.7, 8.3)	Channel Loading/Data Streaming	Radiated	N/A	Note 1
KDB905462 D02 (5.1, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3)	Channel Closing Transmission Time and Channel Move Time	Radiated	PASS	-
KDB905462 D02 (5.1.2, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3) KDB905462 D03	Non-Occupancy Reriod	Radiated	PASS	-

Note 1. Due to the confirmation work based on the setting of the test environment, no judgment is made for applicable items.

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

07-December-2021 - 08- December-2021

2 Equipment Under Test

All information in this chapter was provided by the applicant.

2.1 EUT information

Applicant	KYOCERA Corporation
	Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa, Japan
	Phone: +81-45-943-6253 Fax: +81-45-943-6314
Equipment Under Test (EUT)	Tablet
Model number	KC-T304C
Serial number	2695300163
Trade name	Kyocera
Number of sample(s)	1
EUT condition	Prototype
Power rating	Battery: DC 3.8 V
Size	Size: (W) 259 mm × (D) 168 mm × (H) 8.6 mm
Environment	Indoor and Outdoor use
Terminal limitation	-20°C to 60°C
Hardware version	DMT1
Software version	1.011KC
Firmware version	Not applicable
RF Specification	
Protocol	IEEE802.11a, IEEE802.11n (HT20), IEEE802.11n (HT40) IEEE802.11ac (VHT20), IEEE802.11ac (VHT40), EEE802.11ac (VHT80)
Frequency range	IEEE802.11a/n (HT20) / IEEE802.11ac (VHT20): 5180 MHz-5320 MHz, 5500 MHz-5720 MHz IEEE802.11n (HT40) / IEEE802.11ac (VHT40): 5190 MHz-5310 MHz, 5510 MHz-5710 MHz IEEE802.11ac (VHT80): 5210 MHz, 5290 MHz, 5530 MHz, 5610 MHz, 5690MHz
Number of RF Channels	IEEE802.11a/n/ac(HT20/VHT20): 20 Channels IEEE802.11n/ac (HT40/VHT40): 10 Channels IEEE802.11ac (VHT80): 5 Channels
Modulation type	IEEE802.11a/n/ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)

Data rate	IEEE802.11a: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
	IEEE802.11n (HT20 LGI): 6.5, 13, 19.5, 26, 39, 52, 58.5, 65, 78, 86.5Mbps
	IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2, 86.7, 96.1Mbps
	IEEE802.11ac (VHT20 LGI): 6.5, 13, 19.5, 26, 39, 52, 58.5, 65, 78, 86.5Mbps
	IEEE802.11ac (VHT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2, 86.6, 96.1Mbps
	IEEE802.11n (HT40 LGI): 13.5, 27, 40.5, 54, 81, 108, 121.5, 135, 162, 180Mbps
	IEEE802.11n (HT40 SGI): 15, 30, 45, 60, 90, 120, 135, 150, 180, 200Mbps
	IEEE802.11ac (VHT40 LGI): 13.5, 27, 40.5, 54, 81, 108, 121.5, 135, 162, 180Mbps
	IEEE802.11ac (VHT40 SGI): 15, 30, 45, 60, 90, 120, 135, 150, 180, 200Mbps
	IEEE802.11ac (VHT80 LGI): 29.3, 58.5, 87.8, 117, 175.5, 234, 263.3, 292.6, 351, 390Mbps
	IEEE802.11ac (VHT80 SGI): 32.5, 65, 97.5, 130, 195, 260, 292.5, 325, 390, 433.3Mbps
Channel separation	IEEE802.11a/n/ac (HT20/VHT20): 20 MHz
	IEEE802.11n/ac (HT40/VHT40): 40 MHz
	IEEE802.11ac (VHT80): 80 MHz
Output power	14.339 mW (IEEE802.11a)
(W53 or W56)	13.100 mW (IEEE802.11n: HT20)
· · · · ·	12.766 mW (IEEE802.11n: HT40)
	13.145 mW (IEEE802.11ac: VHT80)
DFS Function	Client (Without Radar Detection)
TPC Function	500mW not required
Antenna type	Internal antenna
Antenna gain	5.15-5.25 GHz band: 2.3 dBi
	5.25-5.35 GHz band: 1.8 dBi
	5.47-5.73 GHz band: 1.3 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification			
Model: KC-T304C,	Model: KC-T304C, Serial Number: 2695300163					
0	As supplied by the applicant	Not Applicable	Not Applicable			

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Description of EUT

Operational Made	Operational Frequency Range		
Operational Mode	5250-5350MHz	5470-5725MHz	
Client without radar detection and adhoc function	Applicable	Applicable	

For FCC and IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges excluding the 5600-5650 MHz range.

2.5 EUT Maximum Conducted Power

	Frequency Band	Maximum Conducted Output Power		Maximum EIRP	
Mode	Mode (MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
902 110	5250-5350	9.765	9.474	1.8	14.339
802.11a	5470-5725	9.955	9.897	1.3	13.351

	Frequency Band (MHz)	Maximum Conducted Output Power		Maximum EIRP	
Mode		Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
802.11n	5250-5350	9.373	8.655	1.8	13.100
(20MHz)	5470-5725	9.713	9.360	1.3	12.626

	Frequency Band	Maximum Conducted Output Power		Maximum EIRP	
Mode	(MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
802.11n	5250-5350	9.261	8.434	1.8	12.766
(40MHz)	5470-5725	9.651	9.227	1.3	12.447

	Frequency Band	Maximum Conducted Output Power		Maximum EIRP	
Mode	Mode (MHz)	Test Result (dBm)	Test Result (mW)	Antenna Gain (dBi)	Result (mW)
802.11ac	5250-5350	9.388	8.685	1.8	13.145
(80MHz)	5470-5725	9.718	9.371	1.3	12.641

2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an E.I.R.P. of less than 500 mW.

Maximum EIRP of this device is 14.339 mW which less than 500mW, therefore it's not require TPC function.

2.7 Statement of Maunfacturer

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

2.8 U-NII DFS Rule Requirements

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately.

DFS Requirements Prior to Use of a Channel

KDB905462 D02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

		Operational Mode					
Requirement	Master	Client Without Radar Detection	Client With Radar Detection				
Non-Occupancy Period	Yes	Not required	Yes				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Availability Check Time	Yes	Not required	Not required				
U-NII Detection Bandwidth	Yes	Not required	Yes				

DFS requirements during normal operation

KDB905462 D02

Table 2: Applicability of DFS requirements during normal operation

	Operation	nal Mode
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection
DFS Detection Threshold	Yes	Not required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.				

DFS Detection Thresholds

KDB905462 D02

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)				
EIRP ≥ 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm				
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.					
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.					
Note3: EIRP is based on the highest antenna gain. For MIMO device 662911 D01.	Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.				

Response Requirements

KDB905462 D02

Table 4: provides the response requirements for Master and Client Devices incorporating DFS.

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds		
	See Note 1.		
	200 milliseconds + an aggregate of 60 milliseconds		
Channel Closing Transmission Time	over remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	NII 99% transmission power bandwidth.		
	See Note 3.		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

2.9 Parameters of DFS Test Signals

Short Pulse Radar Test Waveforms

KDB905462 D02

Table 5: Short Pulse Radar Test Waveforms

0 1 1428 18 See Note 1 See Note 1 1 1 Test A: 15 Roundup: 60% 30 unique {(1/360) x (19 x 10 ⁶) 60% 30	
1 1 Test A: 15 Roundup: 60% 30	ote 1
unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	
2 1-5 150-230 23-29 60% 30)
3 6-10 200-500 16-18 60% 30	
4 11-20 200-500 12-16 60% 30	
Aggregate (Radar Types 1-4)80%12	
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel	
time, and channel closing time tests.	

Long Pulse Radar Test Waveform

KDB905462 D02

Table 6: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Frequency Hopping Radar Test Waveform

KDB905462 D02

Table 7: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

3 Configuration of Equipment

This test configuration is based on the manufacture's instruction. Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID / DoC	Comment
1	Tablet	KYOCERA	KC-T304C	2695300163	V65KC-T304C	EUT

3.2 Support Unit used

No.	Equipment	Company	Model No.	Serial No.	FCC ID	Comment
а	Access Point	Cisco	AIR-CAP3702E-A-K9	FJC1938F0NV	LDK102087	*1, *2
		0.000			EBITI02001	1, 2

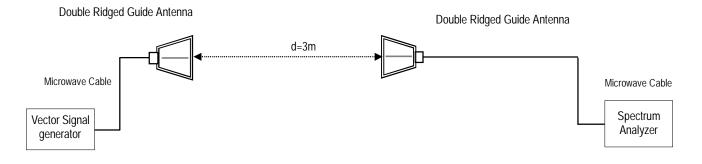
NOTE: 1. This device was functioned as a Master device during the DFS test.

NOTE: 2. The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

4 Test Result

4.1 DFS Detection Threshold Levels

4.1.1 Measurement procedure

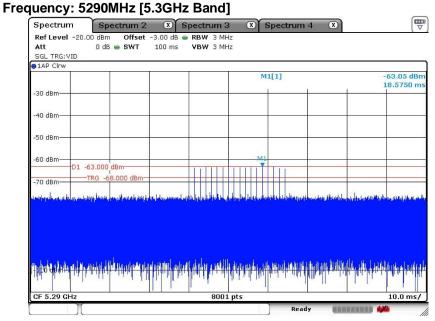

[KDB905462 D02(8.2)]

Spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain - coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -63 dBm as measured on the spectrum analyzer.

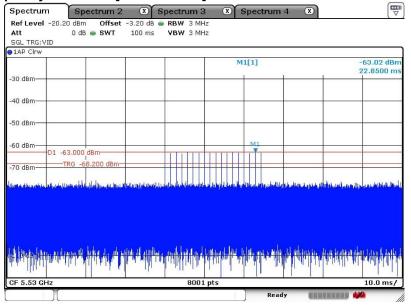
The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The spectrum analyzer is set to;

- RBW=3 MHz, VBW=3 MHz, Span=Zero span Sweep=10ms, Detector=Peak, Trace mode=Clear / write
- Test configuration


None

4.1.3 Radar Waveform


Date	:	07-December-2021			
Temperature	:	20.6 [°C]			
Humidity	:	46.3 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber			Taiki Watanabe

Radar Type 0 Calibration Plot

Date: 7.DEC.2021 13:29:55

Frequency: 5530MHz [5.6GHz Band]

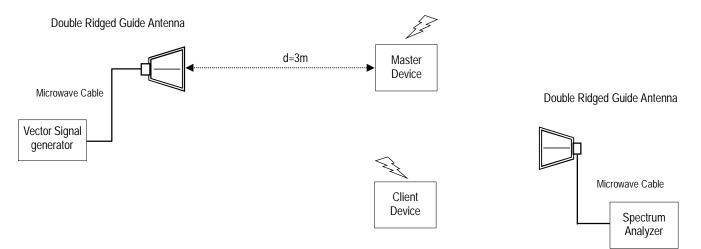
Date: 7.DEC.2021 13:35:55

4.2 Channel Loading/Data Streaming

4.2.1 Measurement procedure

[KDB905462 D02(7.7, 8.3)]

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:


-The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.

-Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.

The spectrum analyzer is set to;

- RBW=3 MHz, VBW=3 MHz, Span=Zero span Sweep=10ms, Detector=Peak, Trace mode=Clear / write

- Test configuration

4.2.2 Limit

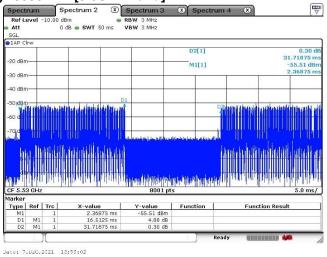
Timing plot duty cycle greater than 17%

4.2.3 Measurement result

Date	:	07-December-2021	
Temperature	:	20.6 [°C]	
Humidity	:	46.3 [%]	Test engineer
Test place	:	3m Semi-anechoic chamber	

Client device Data Traffic Plot

Frequency: 5290MHz [5.3GHz Band]


Spect	rum] Sp	ectrum 2 🛞	Spectrum 3	Spectrum	14 ×
Ref L	evel -	10.00 dB	m 🚽	RBW 3 MHz		
Att		0.0	B 👄 SWT 50 ms	VBW 3 MHz		
SGL						
●1AP C	rw		c (2)	10		
					D2[1]	-0.49
-20 dBm						31.60000
-20 000					M1[1]	-58.89 d
-30 dBm	-				-	8.40000
-40 dBm						
-50 dBm		11055000				+ + +
		MI	Res INCOMENTS CONTRACTOR			DP I
-60 dBm		int	ILLE PRESERVE IN THE PARTY OF THE	and the second sec		
			helling of the same	A RELEASE AND		
-70 dBm					14	
al materia	ort) An JA	a contra		n n anh	ice in the instantion	and a state of the second s
			es i kulus accio	d taile calls		فيجدد ومصالحتها التر
		- 110		ah isi iki ditu		
				AU ALULYIYIILU		
Der P	19 ath	117 111			interfect, and a little bill diver	referenting film af state of a blink barrent
CF 5.2		t side	Liter and Literation	0004	of the large to	5.0 m
	9 GHZ	2		8001 pt	5	5.0 m
larker		- 1				
Type	Ref		X-value	Y-value	Function	Function Result
	M1	1	8.4 ms 16.425 ms	-58.89 dBm -0.43 dB	7	
M1	IV11	1	31.6 ms	-0.43 dB	1	
M1 D1	541					
M1	M1	*		0.110 00	Rea	idy ERRENAN 🚧

1

Taiki Watanabe

ON Time	ON+OFF Time	Duty Cycle
[ms]	[ms]	[%]
16.425	31.6	51.98

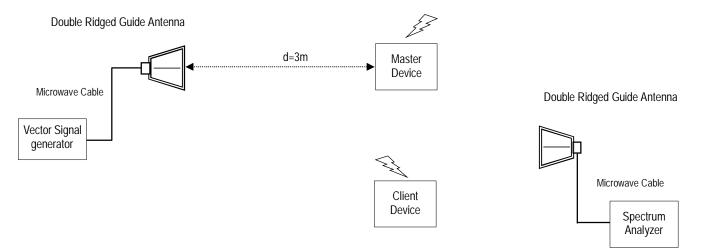
Frequency: 5530MHz [5.6GHz Band]

ON Time	ON+OFF Time	Duty Cycle
[ms]	[ms]	[%]
16.5125	31.71875	52.06

4.3 Channel Closing Transmission Time and Channel Move Time

4.3.1 Measurement procedure

[KDB905462 D02(5.1, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3)]


Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The spectrum analyzer is set to;

- RBW=3 MHz, VBW=3 MHz, Span=Zero span
Sweep=30 s, Detector=Peak, Trace mode=Clear / write

- Test configuration

4.3.2 Limit

(1) Channel Closing Transmission Time: The Aggregate Transmission Time is within 60ms within the Channel Move Time range excluding 200ms after the radar waveform is detected.

(2) Channel Move Time: The time to stop all transmissions on the current channel within 10 seconds when a radar waveform above the DFS detection threshold is detected.

4.3.3 Calculation method

Measurement of the aggregate duration of the Channel Closing Transmission Time method.

Dwell[ms]= S[ms] / B[points]

- Dwell is the dwell time per spectrum analyzer sampling bin.
- S is the sweep time.
- B is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by:

C[ms]= N[bins] x Dwell[ms]

- C is the Closing Time.

- N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

4.3.4 Measurement result

Date Temperature Humidity Test place	: 07-December-2021 : 20.6 [°C] : 46.3 [%] : 3m Semi-anechoic chamber	Test engineer	: -	Taiki Watanabe
Date Temperature Humidity Test place	: 08-December-2021 : 20.6 [°C] : 47.1 [%] : 3m Semi-anechoic chamber	Test engineer	: _	Taiki Watanabe

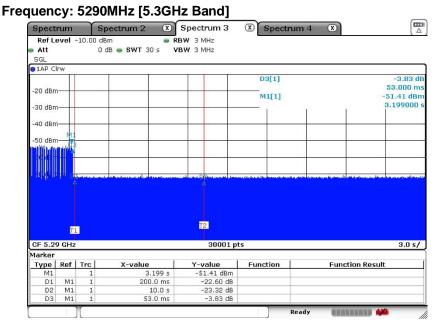
Channel Closing Transmission Time Plot

Spectrum	Sp	ectrum 2 🛛 🗶	Spectrum 3	I Spec	trum 4	×
Ref Level -	10.00 dBr	n 🖷 Ri	BW 3 MHz			
Att	0 d	B 🖮 SWT 30 s 🛛 V	BW 3 MHz			
SGL						
1AP Clrw						
-35 dBm				D3[1]		-3.8
-40 dBm						53.00
- TO ODIN				M1[1]		-51.41
-45 dBm					1	3.1990
-50 000						
1 12						
15 BEDO	-					
i i in	-					
					_	
I III Isterauted	Shattaufun	at an a la sur da la sur da sur si	وروابها الدواريي الادربية والم	the second and the	and a free states	Second of the lot service and the lot of the second s
T1						T2
4						
CF 5.29 GHz			13373 pt	5		
Marker						
Type Ref		X-value	Y-value	Function		Function Result
M1	1	3.199 s	-51.41 dBm		-	
D1 M1 D2 M1	1	200.0 ms 10.0 s	-22.60 dB -23.32 dB			
	1	10.0 s 53.0 ms	-23.32 dB -3.83 dB			
D3 M1						

Date: 8.DEC.2021 14:00:29

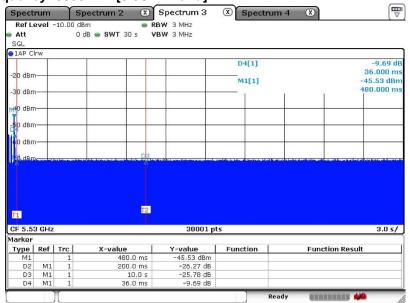
S	B	Dwell	N	Aggregate Channel Closing Transmission Time	Limit
[ms]	[points]	[ms]	[bins]	[ms]	[ms]
13400	13373	1.002019	0	0	60

Frequency: 5530MHz [5.6GHz Band]


Spectrum	Spectrum 2) Spectrum 3	I Spect	rum 4 🙁	<u>۱</u>
Ref Level -1	0.00 dBm 🛛 🖷	RBW 3 MHz			· · · · · ·
Att	0 dB 👄 SWT 30 s	VBW 3 MHz			
SGL					
1AP Clrw				N	
oracoa, Nava at			D4[1]		-9.69 dB
-30 dBm					36.000 ms
-35 dBm			M1[1]		-45.53 dBm
-40 dBm			7713	1 1	480.000 ms
M1			- T		
-45 dBm					
-50 dBm			_		
-55 dBm					
-60 dBm					
6 dBm					
7 DEBm	the manufacture design and the second			8	
1 Manual and And	An In Man 1998, A Stat. A Share and all a state of the	AND BRIDGERATING DEPARTMENT	Latin Additional La		Markov Die Meanstath - Maarka and datar
			7	1985	
T1			L. L.	2	
4			- 11 -		• • •
CF 5.53 GHz		15370 pt	5		1.54 s
Marker					
Type Ref 1		Y-value	Function	Fur	nction Result
M1	1 480.0 ms			-	
D2 M1 D3 M1	1 200.0 ms 1 10.0 s				
D3 M1 D4 M1	1 10.0 s				
	5010 115	5.65 05		1	

Date: 7.DEC.2021 15:01:00

S	B	Dwell	N	Aggregate Channel Closing Transmission Time	Limit
[ms]	[points]	[ms]	[bins]	[ms]	[ms]
15400	15370	1.001952	0	0	


Channel Move Time Plot

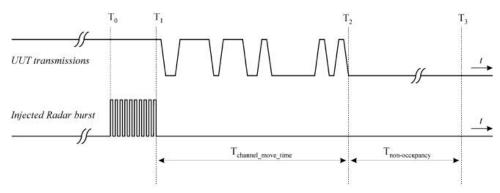
Date: B.DEC.2021 14:03:14

Channel Move Time	Limit
[s]	[s]
0.053	10

Frequency: 5530MHz [5.6GHz Band]

Date: 7.DEC.2021 15:03:19

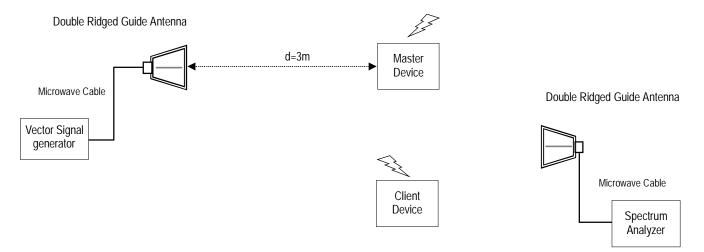
Channel Move Time	Limit
[s]	[s]
0.036	10


4.4 Non-Occupancy Reriod

4.4.1 Measurement procedure

[KDB905462 D02(5.1.2, 5.2, 5.3, 6.1, 7.3.3, 7.6.1, 7.8.3), KDB905462 D03]

The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes.

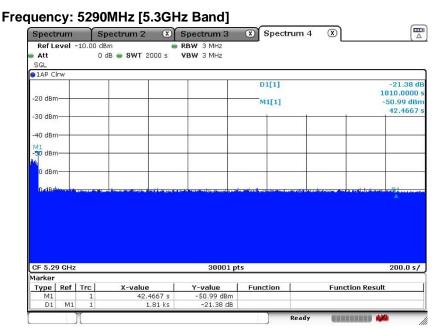

If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

The spectrum analyzer is set to;

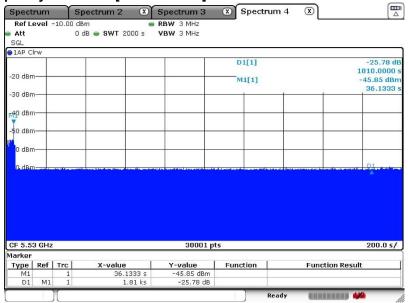
- RBW=3 MHz, VBW=3 MHz, Span=Zero span
Sweep=2000 s, Detector=Peak, Trace mode=Clear / write

- Test configuration

4.4.2 Limit


The client has vacated the Channel in the specified time (Channel Closing Transmission Time and Channel Move Time) and does not transmit on a Channel for 30 minutes after the detection and Channel move (Non-Occupancy Period).

4.4.3 Measurement result


Date	:	08-December-2021			
Temperature	:	20.6 [°C]			
Humidity	:	47.1 [%]	Test engineer	:	
Test place	:	3m Semi-anechoic chamber			Taiki Watanabe

Non-Occupancy Reriod Plot

Date: 8.DEC.2021 15:24:54

Frequency: 5530MHz [5.6GHz Band]

Date: 8.DEC.2021 10:20:30

5 Measurement uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.7 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.3 dB
Radiated emission (9kHz – 30 MHz)	±3.2 dB
Radiated emission (30 MHz – 1000 MHz)	±5.3 dB
Radiated emission (1 GHz – 6 GHz)	±4.8 dB
Radiated emission (6 GHz – 18 GHz)	±4.5 dB
Radiated emission (18 GHz – 40 GHz)	±6.4 dB
Radio Frequency	±1.4 * 10 ⁻⁸
RF power, conducted	±0.8 dB
Adjacent channel power	\pm 2.4 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Measured value and standard limit value						
Case1	hit value Uncertainty -Uncertainty Even if it takes uncertainty into consideration, Measured value a standard limit value is fulfilled. Although measured value is in a standard limit value, a limit value won't be fulfilled if uncertainty is taken into consideration.					
Case3	Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration. Even if it takes uncertainty into consideration,					
	Case1 ++					

6 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81-238-28-2881

Accreditation and Registration

A2LA Certificate #3686.03

VLAC Accreditation No.: VLAC-013

BSMI Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada ISED#: 4224A

VCCI Council

Registration number	Expiration date
A-0166	03-July-2021

Appendix A. Test Equipment

Radiated

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101731	30-Jun-2022	08-Jun-2021
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	257406	31-Mar-2022	17-Mar-2021
Double ridged guide antenna	ETS LINDGREN	3117	00224193	31-Mar-2022	30-Mar-2021
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2340)	31-Dec-2021	15-Dec-2020
Double ridged guide antenna	ETS LINDGREN	3117	00218815	31-Dec-2021	07-Dec-2020
Micro wave cable	HUBER+SUHNER	Sucoflex 102/2m	31648	31-Mar-2022	10-Mar-2021
Micro wave cable	HUBER+SUHNER	SUCOFLEX104/8m	SN MY30033/4	31-Dec-2021	15-Dec-2020
PC	HP	HP ProBook 450 G2	JPA524M85J	N/A	N/A
Software	ROHDE&SCHWARZ	R&S Pulse Sequencer DFS	V1.4 Build:6130	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2022	20-May-2021
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2022	20-May-2021

*: The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.