FCC Test Report

Report No.: RF180821C20-4
FCC ID: V65E6910
Test Model: E6910
Received Date: Aug. 21, 2018
Test Date: Sep. 18, 2018
Issued Date: Sep. 25, 2018

Applicant: Kyocera Corporation c/o Kyocera International, Inc.
Address: 8611 Balboa Avenue, San Diego, CA 92123

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

FCC Registration /
Designation Number:
788550 / TW0003

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 Summary of Test Results 5
2.1 Measurement Uncertainty 5
2.2 Modification Record 5
3 General Information 6
3.1 General Description of EUT 6
3.2 Description of Test Modes 7
3.2.1 Test Mode Applicability and Tested Channel Detail 7
3.3 Description of Support Units 8
3.3.1 Configuration of System under Test 8
3.4 General Description of Applied Standards 8
4 Test Types and Results 9
4.1 Radiated Emission and Bandedge Measurement 9
4.1.1 Limits of Radiated Emission and Bandedge Measurement 9
4.1.2 Test Instruments 10
4.1.3 Test Procedures 11
4.1.4 Deviation from Test Standard 11
4.1.5 Test Setup 12
4.1.6 EUT Operating Conditions 12
4.1.7 Test Results 13
4.2 Conducted Emission Measurement 19
4.2.1 Limits of Conducted Emission Measurement 19
4.2.2 Test Instruments 19
4.2.3 Test Procedures 20
4.2.4 Deviation from Test Standard 21
4.2.5 Test Setup 21
4.2.6 EUT Operating Conditions 21
4.2.7 Test Results 22
5 Pictures of Test Arrangements 24
Appendix - Information on the Testing Laboratories 25

Release Control Record

Issue No.	Description	Date Issued
RF180821C20-4	Original Release	Sep. 25, 2018

1 Certificate of Conformity

Product: Smart Phone
Brand: Kyocera
Test Model: E6910
Sample Status: Identical Prototype
Applicant: Kyocera Corporation c/o Kyocera International, Inc.
Test Date: Sep. 18, 2018
Standards: 47 CFR FCC Part 15, Subpart C (Section 15.209)
ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.209)			
FCC Clause	Test Item	Result	Remarks
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -14.34 dB at 0.48626 MHz.
15.209	Radiated emission test	Pass	Meet the requirement of limit. Minimum passing margin is -9.16 dB at 33.88 MHz.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty $\mathbf{(k = 2)}(\pm)$
Conducted Emissions at mains ports	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	2.44 dB
Radiated Emissions up to 1 GHz	$30 \mathrm{MHz} \sim 200 \mathrm{MHz}$	2.93 dB
	$200 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	2.95 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Phone
Brand	Kyocera
Test Model	E6910
Status of EUT	Identical Prototype
	3.8 Vdc (Battery) 5 Vdc or 9 Vdc or 12 Vdc (Adapter) 5 Vdc (Host equipment)
Power Supply Rating	150 kHz
Antenna Connector	N / A
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

1. The EUT's accessories list refers to Ext. Pho.
2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

1 channel is provided to this EUT:

Channel	Frequency (kHz)
1	150

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode	Applicable To		Description
	RE<1G	PLC	
A	\checkmark	\checkmark	Charging Mode
B	\checkmark	-	Standby Mode
Where	adiated		PLC: Power Line Conducted Emission

Radiated Emission Test (Below 1 GHz :

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel
A, B	1	1

Power Line Conducted Emission Test:

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel
A	1	1

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE	25 deg. C, $65 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Jisyong Wang
PLC	25 deg. C, $65 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Jisyong Wang

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
A.	Earphone	Funkey	FK130102	N/A	N/A
B.	Wireless Charger PAD	LG	WCP-300	N/A	N/A

| No. | Signal Cable Description Of The Above Support Units |
| :---: | :--- | :--- |
| 1. | N/A |
| 2. | N/A |

Note:

1. All power cords of the above support units are non-shielded (1.8m).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.209)
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(\mathrm{uV} / \mathrm{m})$.
3. For frequencies above 1000 MHz , the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

 Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Mar. 16, 2018	Mar. 15, 2019
Spectrum Analyzer Agilent	N9010A	MY52220314	Nov. 24, 2017	Nov. 23, 2018
Spectrum Analyzer ROHDE \& SCHWARZ	FSU43	101261	Jan. 11, 2018	Jan. 10, 2019
BILOG Antenna SCHWARZBECK	VULB 9168	$9168-472$	Dec. 06, 2017	Dec. 05, 2018
Loop Antenna	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
Preamplifier EMCI	EMC001340	980201	Nov. 01, 2017	Oct. 30, 2018
Preamplifier EMCI	EMC 330H	980112	Oct. 13, 2017	Oct. 12, 2018
Power Sensor Anritsu	MA2411B	1315050	Sep. 04, 2018	Sep. 03, 2019
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 20, 2017	Oct. 19, 2018
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	NFT-201SS	NA	NA	NA
Antenna Tower \&Turn Table Controller MF	MF-7802	NA	NA	

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HwaYa Chamber 10.
3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
4. The IC Site Registration No. is IC7450F-10.

4.1.3 Test Procedures

For Radiated Emission below $\mathbf{3 0} \mathbf{~ M H z}$

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. Both Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz .

For Radiated Emission above $\mathbf{3 0} \mathbf{~ M H z}$

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz .
f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz . If the peak reading value also meets average limit, measurement with the average detector is unnecessary.
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz .
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz .
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1 / T$ (Duty cycle < 98%) or 10 Hz (Duty cycle $\geq 98 \%$) for Average detection (AV) at frequency above 1 GHz .
4. All modes of operation were investigated and the worst-case emissions are reported.
4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

<Radiated Emission below 30 MHz>

<Radiated Emission 30 MHz to 1 GHz >

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

<Charging Mode>

EUT Test Condition		Measurement Detail	
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Frequency Range	$0.009 \sim 30 \mathrm{MHz}$
Environmental Conditions	25 deg. C, $65 \% \mathrm{RH}$	Detector Function	Average Quasi-Peak
Tested By	Jisyong Wang		

Antenna Polarity \& Test Distance: Open at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.147	80.86	101.49	104.26	-23.4	20.31	0.02	40.96	100	360	Average
0.294	60.18	80.69	98.24	-38.06	20.27	0.02	40.8	100	360	Average
0.441	54.13	74.51	94.72	-40.59	20.26	0.05	40.69	100	360	Average
0.588	51.44	71.78	72.22	-20.78	20.25	0.08	40.67	100	360	QP
0.735	47.43	67.77	70.28	-22.85	20.26	0.1	40.7	100	360	QP
0.882	48.85	69.19	68.69	-19.84	20.27	0.12	40.73	100	360	QP
1.029	44.54	64.88	67.36	-22.82	20.27	0.13	40.74	100	360	QP

Antenna Polarity \& Test Distance: Close at 3 m

$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.147	77.81	98.44	104.26	-26.45	20.31	0.02	40.96	100	0	Average
0.294	60.93	81.44	98.24	-37.31	20.27	0.02	40.8	100	0	Average
0.441	56.52	76.9	94.72	-38.2	20.26	0.05	40.69	100	0	Average
0.588	49.89	70.23	72.22	-22.33	20.25	0.08	40.67	100	0	QP
0.735	49.18	69.52	70.28	-21.1	20.26	0.1	40.7	100	0	QP
0.882	46.72	67.06	68.69	-21.97	20.27	0.12	40.73	100	0	QP
1.029	43.91	64.25	67.36	-23.45	20.27	0.13	40.74	100	0	QP

Antenna Polarity \& Test Distance: Ground-parallel at $3 \mathbf{m}$										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.147	80.48	101.11	104.26	-23.78	20.31	0.02	40.96	100	360	Average
0.294	60.35	80.86	98.24	-37.89	20.27	0.02	40.8	100	360	Average
0.441	53.77	74.15	94.72	-40.95	20.26	0.05	40.69	100	360	Average
0.588	49.54	69.88	72.22	-22.68	20.25	0.08	40.67	100	360	QP
0.735	48.77	69.11	70.28	-21.51	20.26	0.1	40.7	100	360	QP
0.882	47.88	68.22	68.69	-20.81	20.27	0.12	40.73	100	360	QP
1.029	44.62	64.96	67.36	-22.74	20.27	0.13	40.74	100	360	QP

Remarks:

1. Emission level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB) - Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value.
5. Above limits have been translated by the formula

EUT Test Condition		Measurement Detail	
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Frequency Range	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$
Environmental Conditions	25 deg. C, $65 \% \mathrm{RH}$	Detector Function	Peak
Tested By	Jisyong Wang		

Horizontal

Vertical

Antenna Polarity \& Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	$\begin{gathered} \text { Preamp } \\ \text { Factor }(\mathrm{dB}) \end{gathered}$	Antenna Height (cm)	Table Angle (Degree)	Remark
43.58	22.64	39.66	40	-17.36	13.59	0.5	31.11	152	111	Peak
202.66	27.3	48.3	43.5	-16.2	9.48	1.24	31.72	165	231	Peak
324.88	19.78	36.32	46	-26.22	13.54	1.77	31.85	185	265	Peak
633.34	24.28	33.35	46	-21.72	20.01	3.04	32.12	111	185	Peak
851.59	28.39	33.54	46	-17.61	22.89	3.84	31.88	111	231	Peak
947.62	29.5	33.34	46	-16.5	23.78	4.22	31.84	165	285	Peak
Antenna Polarity \& Test Distance: Vertical at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB / m)	Cable Loss (dB)	$\begin{gathered} \text { Preamp } \\ \text { Factor }(\mathrm{dB}) \end{gathered}$	Antenna Height (cm)	Table Angle (Degree)	Remark
204.6	21.29	42.17	43.5	-22.21	9.56	1.25	31.69	165	132	Peak
378.23	18.65	33.77	46	-27.35	14.82	2	31.94	111	195	Peak
580.96	23.05	33.18	46	-22.95	19.17	2.82	32.12	174	152	Peak
705.12	25.78	33.32	46	-20.22	20.89	3.33	31.76	165	231	Peak
795.33	27.97	33.57	46	-18.03	22.16	3.66	31.42	158	111	Peak
902.03	28.89	33.34	46	-17.11	23.52	4.05	32.02	165	132	Peak

Remarks

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor
2. Margin value $=$ Emission level - Limit value.
3. The other emission levels were very low against the limit.
<Standby Mode>

EUT Test Condition		Measurement Detail	
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Frequency Range	$0.009 \sim 30 \mathrm{MHz}$
Environmental Conditions	25 deg. C, $65 \% \mathrm{RH}$	Detector Function	Average Quasi-Peak
Tested By	Jisyong Wang		

Antenna Polarity \& Test Distance: Open at 3 m										
$\begin{array}{\|c} \text { Frequency } \\ (\mathrm{MHz}) \end{array}$	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.261	66.01	86.53	99.27	-33.26	20.28	0.02	40.82	100	360	Average
0.399	65.01	85.42	95.58	-30.57	20.26	0.04	40.71	100	360	Average
0.529	50.23	70.57	73.13	-22.9	20.25	0.07	40.66	100	360	QP
0.669	61.21	81.55	71.1	-9.89	20.26	0.09	40.69	100	360	QP
0.789	48.12	68.46	69.66	-21.54	20.26	0.11	40.71	100	360	QP
0.911	52.01	72.35	68.41	-16.4	20.27	0.12	40.73	100	360	QP

Antenna Polarity \& Test Distance: Close at $3 \mathbf{m}$

$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Emission Level ($\mathrm{dBuV} / \mathrm{m}$)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.278	63.01	83.53	98.72	-35.71	20.27	0.02	40.81	100	0	Average
0.351	62.85	83.31	96.7	-33.85	20.26	0.03	40.75	100	0	Average
0.501	50.75	71.09	73.61	-22.86	20.25	0.06	40.65	100	0	QP
0.629	57.25	77.59	71.63	-14.38	20.26	0.08	40.68	100	0	QP
0.771	45.98	66.33	69.86	-23.88	20.26	0.1	40.71	100	0	QP
0.899	48.03	68.37	68.53	-20.5	20.27	0.12	40.73	100	0	QP

Antenna Polarity \& Test Distance: Ground-parallel at $\mathbf{3} \mathbf{~ m}$

Frequency										
$(\mathbf{M H z})$	Emission Level $(\mathbf{d B u V} / \mathbf{m})$	Read Level $(\mathbf{d B u V})$	Limit $(\mathbf{d B u V} / \mathbf{m})$	Margin $(\mathbf{d B})$	Antenna Factor $(\mathbf{d B} / \mathbf{m})$	Cable Loss $(\mathbf{d B})$	Preamp Factor $(\mathbf{d B})$	Antenna Height $(\mathbf{c m})$	Table Angle $($ Degree $)$	Remark
0.236	64.01	84.56	100.15	-36.14	20.28	0.02	40.85	100	360	Average
0.371	65.25	85.68	96.22	-30.97	20.26	0.04	40.73	100	360	Average
0.485	50.98	71.33	93.89	-42.91	20.25	0.06	40.66	100	360	$Q P$
0.621	58.65	78.99	71.74	-13.09	20.26	0.08	40.68	100	360	$Q P$
0.748	48.25	68.59	70.13	-21.88	20.26	0.1	40.7	100	360	$Q P$
0.889	50.36	70.7	68.63	-18.27	20.27	0.12	40.73	100	360	$Q P$

Remarks:

1. Emission level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission level - Limit value.
5. Above limits have been translated by the formula

EUT Test Condition		Measurement Detail	
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Frequency Range	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$
Environmental Conditions	25 deg. C, $65 \% \mathrm{RH}$	Detector Function	Peak
Tested By	Jisyong Wang		

Horizontal

Vertical

Antenna Polarity \& Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
206.54	25.69	46.44	43.5	-17.81	9.65	1.26	31.66	152	213	Peak
323.91	17.9	34.47	46	-28.1	13.52	1.77	31.86	111	231	Peak
461.65	20.74	33.82	46	-25.26	16.56	2.33	31.97	165	285	Peak
589.69	23.15	33.07	46	-22.85	19.37	2.85	32.14	195	251	Peak
738.1	26.2	32.89	46	-19.8	21.35	3.46	31.5	111	165	Peak
914.64	29.07	33.4	46	-16.93	23.59	4.11	32.03	102	251	Peak
Antenna Polarity \& Test Distance: Vertical at 3 m										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
33.88	30.84	48.83	40	-9.16	12.63	0.46	31.08	102	251	Peak
202.66	20.42	41.42	43.5	-23.08	9.48	1.24	31.72	165	231	Peak
416.06	19.36	33.59	46	-26.64	15.66	2.14	32.03	147	185	Peak
620.73	23.85	33.17	46	-22.15	19.86	2.99	32.17	165	285	Peak
852.56	28.28	33.4	46	-17.72	22.9	3.86	31.88	165	295	Peak
965.08	30.16	33.89	54	-23.84	23.87	4.3	31.9	111	165	Peak

Remarks:

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor
2. Margin value $=$ Emission level - Limit value.
3. The other emission levels were very low against the limit.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
$0.15-0.5$	$66-56$	$56-46$
$0.50-5.0$	56	46
$5.0-30.0$	60	50

Note:

1. The lower limit shall apply at the transition frequencies.
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz .
3. All emanations from a class A / B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.
4.2.2 Test Instruments

 Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE \& SCHWARZ	ESCI	100613	Nov. 23, 2017	Nov. 22, 2018
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2018	Sep. 04, 2019
LISN/AMN ROHDE \& SCHWARZ (EUT)	ENV216	101826	Feb. 26, 2018	Feb. 25, 2019
LISN/AMN ROHDE \& SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 19, 2018	Aug. 18, 2019
Software ADT	BV ADT_Cond_			
V7.3.7.4				

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The test was performed in HwaYa Shielded Room 1.
3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide $50 \mathrm{ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit - 20 dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency $0.15 \mathrm{MHz}-30 \mathrm{MHz}$.

4.2.4 Deviation from Test Standard

No deviation.
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Frequency Range	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	 Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Environmental Conditions	$25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$
Tested by	Jisyong Wang	Test Date	$2018 / 9 / 18$

Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV}) \end{gathered}$		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.67	30.53	16.62	40.20	26.29	66.00	56.00	-25.80	-29.71
2	0.18075	9.67	28.42	15.41	38.09	25.08	64.45	54.45	-26.36	-29.37
3	0.39635	9.66	23.74	10.05	33.40	19.71	57.93	47.93	-24.53	-28.22
4	0.48626	9.66	32.23	15.07	41.89	24.73	56.23	46.23	-14.34	-21.50
5	2.06981	9.68	24.76	8.59	34.44	18.27	56.00	46.00	-21.56	-27.73
6	7.84097	9.81	30.94	15.43	40.75	25.24	60.00	50.00	-19.25	-24.76

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value $=$ Emission level - Limit value
4. Correction factor $=$ Insertion loss + Cable loss
5. Emission Level $=$ Correction Factor + Reading Value

Frequency Range	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	 Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Environmental Conditions	$25^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$
Tested by	Jisyong Wang	Test Date	$2018 / 9 / 18$

Phase Of Power : Neutral (N)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		$\begin{gathered} \text { Limit } \\ (\mathrm{dBuV}) \end{gathered}$		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17283	9.68	12.93	1.33	22.61	11.01	64.82	54.82	-42.21	-43.81
2	0.47453	9.67	15.90	0.92	25.57	10.59	56.43	46.43	-30.86	-35.84
3	0.81861	9.66	15.58	2.86	25.24	12.52	56.00	46.00	-30.76	-33.48
4	7.86834	9.81	21.15	2.40	30.96	12.21	60.00	50.00	-29.04	-37.79
5	12.87314	9.91	22.87	4.70	32.78	14.61	60.00	50.00	-27.22	-35.39
6	17.17023	9.97	21.74	2.34	31.71	12.31	60.00	50.00	-28.29	-37.69

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level - Limit value
4. Correction factor $=$ Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com
The address and road map of all our labs can be found in our web site also.
--- END ---

